1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Yang Wang1, Tao He2, Zhangqi Shen3, Congming Wu4
  • Editors: Frank Møller Aarestrup5, Stefan Schwarz6, Jianzhong Shen7, Lina Cavaco8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 2: Jiangsu Key Laboratory of Food Quality and Safety—State Key Laboratory Cultivation Base of MOST, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 4: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 5: Technical University of Denmark, Lyngby, Denmark; 6: Freie Universität Berlin, Berlin, Germany; 7: China Agricultural University, Beijing, China; 8: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0005-2017
  • Received 24 February 2017 Accepted 06 November 2017 Published 18 January 2018
  • Yang Wang, wangyang@cau.edu.cn
image of Antimicrobial Resistance in <span class="jp-italic">Stenotrophomonas</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/1/ARBA-0005-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/1/ARBA-0005-2017-2.gif
  • Abstract:

    Bacteria of the genus are found throughout the environment, in close association with soil, sewage, and plants. , the first member of this genus, is the predominant species, observed in soil, water, plants, animals, and humans. It is also an opportunistic pathogen associated with the increased number of infections in both humans and animals in recent years. In this article, we summarize all species (mainly ) isolated from animals and food products of animal origin and further distinguish all isolates based on antimicrobial susceptibility and resistance phenotypes. The various mechanisms of both intrinsic and acquired antimicrobial resistance, which were mainly identified in isolates of nosocomial infections, have been classified as follows: multidrug efflux pumps; resistance to β-lactams, aminoglycosides, quinolones, trimethoprim-sulfamethoxazole, and phenicols; and alteration of lipopolysaccharide and two-component regulatory systems. The dissemination, coselection, and persistence of resistance determinants among isolates have also been elaborated.

  • Citation: Wang Y, He T, Shen Z, Wu C. 2018. Antimicrobial Resistance in spp.. Microbiol Spectrum 6(1):ARBA-0005-2017. doi:10.1128/microbiolspec.ARBA-0005-2017.

References

2. Swings J, De Vos P, Van den Mooter M, De Ley J. 1983. Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia. Int J Syst Bacteriol 33:409–413 http://dx.doi.org/10.1099/00207713-33-2-409.
3. Drancourt M, Bollet C, Raoult D. 1997. Stenotrophomonas africana sp. nov., an opportunistic human pathogen in Africa. Int J Syst Bacteriol 47:160–163 http://dx.doi.org/10.1099/00207713-47-1-160. [PubMed]
4. Brooke JS. 2012. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41 http://dx.doi.org/10.1128/CMR.00019-11. [PubMed]
5. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525 http://dx.doi.org/10.1038/nrmicro2163. [PubMed]
6. Hugh R, Ryschenkow E. 1961. Pseudomonas maltophilia, an alcaligenes-like species. J Gen Microbiol 26:123–132 http://dx.doi.org/10.1099/00221287-26-1-123. [PubMed]
7. Chien YC, Chen CJ, Lin TH, Chen SH, Chien YC. 2011. Characteristics of microbial aerosols released from chicken and swine feces. J Air Waste Manag Assoc 61:882–889 http://dx.doi.org/10.3155/1047-3289.61.8.882. [PubMed]
8. Guo Y, Zhu N, Zhu S, Deng C. 2007. Molecular phylogenetic diversity of bacteria and its spatial distribution in composts. J Appl Microbiol 103:1344–1354 http://dx.doi.org/10.1111/j.1365-2672.2007.03367.x. [PubMed]
9. Mancini DA, Mendonça RM, Dias AL, Mendonça RZ, Pinto JR. 2005. Co-infection between influenza virus and flagellated bacteria. Rev Inst Med Trop São Paulo 47:275–280 http://dx.doi.org/10.1590/S0036-46652005000500007. [PubMed]
10. Hou D, Bi Y, Sun H, Yang J, Fu G, Sun Y, Liu J, Pu J. 2012. Identification of swine influenza A virus and Stenotrophomonas maltophilia co-infection in Chinese pigs. Virol J 9:169 http://dx.doi.org/10.1186/1743-422X-9-169. [PubMed]
11. Munsch-Alatossava P, Alatossava T. 2006. Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiol Res 161:334–346 http://dx.doi.org/10.1016/j.micres.2005.12.004. [PubMed]
12. Cleto S, Matos S, Kluskens L, Vieira MJ. 2012. Characterization of contaminants from a sanitized milk processing plant. PLoS One 7:e40189 http://dx.doi.org/10.1371/journal.pone.0040189. [PubMed]
13. Coton M, Delbés-Paus C, Irlinger F, Desmasures N, Le Fleche A, Stahl V, Montel MC, Coton E. 2012. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiol 29:88–98 http://dx.doi.org/10.1016/j.fm.2011.08.020. [PubMed]
14. Cloud-Hansen KA, Villiard KM, Handelsman J, Carey HV. 2007. Thirteen-lined ground squirrels (Spermophilus tridecemlineatus) harbor multiantibiotic-resistant bacteria. J Am Assoc Lab Anim Sci 46:21–23. [PubMed]
15. Hejnar P, Bardon J, Sauer P, Kolár M. 2007. Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics. Vet Microbiol 121:357–362 http://dx.doi.org/10.1016/j.vetmic.2006.12.026. [PubMed]
16. Kim M, Kwon TH, Jung SM, Cho SH, Jin SY, Park NH, Kim CG, Kim JS. 2013. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs. PLoS One 8:e70887 http://dx.doi.org/10.1371/journal.pone.0070887. [PubMed]
17. Furushita M, Okamoto A, Maeda T, Ohta M, Shiba T. 2005. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl Environ Microbiol 71:5598–5600 http://dx.doi.org/10.1128/AEM.71.9.5598-5600.2005. [PubMed]
18. Matyar F, Kaya A, Dinçer S. 2008. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ 407:279–285 http://dx.doi.org/10.1016/j.scitotenv.2008.08.014.
19. Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC. 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47:883–888 http://dx.doi.org/10.1128/AAC.47.3.883-888.2003. [PubMed]
20. Miranda CD, Zemelman R. 2002. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci Total Environ 293:207–218 http://dx.doi.org/10.1016/S0048-9697(02)00022-0.
21. Althouse GC, Kuster CE, Clark SG, Weisiger RM. 2000. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53:1167–1176 http://dx.doi.org/10.1016/S0093-691X(00)00261-2.
22. Althouse GC, Lu KG. 2005. Bacteriospermia in extended porcine semen. Theriogenology 63:573–584 http://dx.doi.org/10.1016/j.theriogenology.2004.09.031. [PubMed]
23. Kilburn C, Rooks DJ, McCarthy AJ, Murray RD. 2013. Antimicrobial resistance in some Gram-negative bacteria isolated from the bovine ejaculate. Reprod Domest Anim 48:525–528 http://dx.doi.org/10.1111/rda.12127. [PubMed]
24. O’Connell D, Mruk K, Rocheleau JM, Kobertz WR. 2011. Xenopus laevis oocytes infected with multi-drug-resistant bacteria: implications for electrical recordings. J Gen Physiol 138:271–277 http://dx.doi.org/10.1085/jgp.201110661. [PubMed]
25. Johnson EH, Al-Busaidy R, Hameed MS. 2003. An outbreak of lymphadenitis associated with Stenotrophomonas (Xanthomonas) maltophilia in Omani goats. J Vet Med B Infect Dis Vet Public Health 50:102–104 http://dx.doi.org/10.1046/j.1439-0450.2003.00643.x. [PubMed]
26. Macdiarmid JA, Burrell DH. 1986. Characterization of Pseudomonas maltophilia isolates from fleece rot. Appl Environ Microbiol 51:346–348. [PubMed]
27. Ohnishi M, Sawada T, Marumo K, Harada K, Hirose K, Shimizu A, Hayashimoto M, Sato R, Uchida N, Kato H. 2012. Antimicrobial susceptibility and genetic relatedness of bovine Stenotrophomonas maltophilia isolates from a mastitis outbreak. Lett Appl Microbiol 54:572–576 http://dx.doi.org/10.1111/j.1472-765X.2012.03246.x. [PubMed]
28. Hagi T, Sasaki K, Aso H, Nomura M. 2013. Adhesive properties of predominant bacteria in raw cow’s milk to bovine mammary gland epithelial cells. Folia Microbiol (Praha) 58:515–522 http://dx.doi.org/10.1007/s12223-013-0240-z. [PubMed]
29. Petridou E, Filioussis G, Karavanis E, Kritas SK. 2010. Stenotrophomonas maltophilia as a causal agent of pyogranulomatous hepatitis in a buffalo (Bubalus bubalis). J Vet Diagn Invest 22:772–774 http://dx.doi.org/10.1177/104063871002200522. [PubMed]
30. Boedeker NC, Walsh T, Murray S, Bromberg N. 2010. Medical and surgical management of severe inflammation of the nictitating membrane in a giant panda (Ailuropoda melanoleuca). Vet Ophthalmol 13(Suppl):109–115 http://dx.doi.org/10.1111/j.1463-5224.2010.00802.x. [PubMed]
31. Albini S, Abril C, Franchini M, Hüssy D, Filioussis G. 2009. Stenotrophomonas maltophilia isolated from the airways of animals with chronic respiratory disease. Schweiz Arch Tierheilkd 151:323–328 http://dx.doi.org/10.1024/0036-7281.151.7.323. [PubMed]
32. Winther L, Andersen RM, Baptiste KE, Aalbæk B, Guardabassi L. 2010. Association of Stenotrophomonas maltophilia infection with lower airway disease in the horse: a retrospective case series. Vet J 186:358–363 http://dx.doi.org/10.1016/j.tvjl.2009.08.026. [PubMed]
33. He T, Shen J, Schwarz S, Wu C, Wang Y. 2015. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother 70:1031–1036. [PubMed]
34. Harris NB, Rogers DG. 2001. Septicemia associated with Stenotrophomonas maltophilia in a West African dwarf crocodile (Osteolaemus tetraspis subsp. tetraspis). J Vet Diagn Invest 13:255–258 http://dx.doi.org/10.1177/104063870101300313. [PubMed]
35. Muir P, Oldenhoff WE, Hudson AP, Manley PA, Schaefer SL, Markel MD, Hao Z. 2007. Detection of DNA from a range of bacterial species in the knee joints of dogs with inflammatory knee arthritis and associated degenerative anterior cruciate ligament rupture. Microb Pathog 42:47–55 http://dx.doi.org/10.1016/j.micpath.2006.10.002. [PubMed]
36. Clinical and Laboratory Standards Institute. 2015. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fifth Informational Supplement M-S, CLSI, Wayne, PA.
37. Hejnar P, Kolár M, Sauer P. 2010. Antibiotic resistance of Stenotrophomonas maltophilia strains isolated from captive snakes. Folia Microbiol (Praha) 55:83–87 http://dx.doi.org/10.1007/s12223-010-0014-9. [PubMed]
38. Al-Hamad A, Upton M, Burnie J. 2009. Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. J Antimicrob Chemother 64:731–734 http://dx.doi.org/10.1093/jac/dkp271. [PubMed]
39. Lin YT, Huang YW, Liou RS, Chang YC, Yang TC. 2014. MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother 69:3221–3226 http://dx.doi.org/10.1093/jac/dku317. [PubMed]
40. Huang YW, Hu RM, Chu FY, Lin HR, Yang TC. 2013. Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J Antimicrob Chemother 68:2498–2505 http://dx.doi.org/10.1093/jac/dkt250. [PubMed]
41. Hu RM, Liao ST, Huang CC, Huang YW, Yang TC. 2012. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One 7:e51053 http://dx.doi.org/10.1371/journal.pone.0051053. [PubMed]
42. Li XZ, Zhang L, Poole K. 2002. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343 http://dx.doi.org/10.1128/AAC.46.2.333-343.2002. [PubMed]
43. Alonso A, Martínez JL. 2000. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:3079–3086 http://dx.doi.org/10.1128/AAC.44.11.3079-3086.2000. [PubMed]
44. Chen CH, Huang CC, Chung TC, Hu RM, Huang YW, Yang TC. 2011. Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 55:5826–5833 http://dx.doi.org/10.1128/AAC.00317-11. [PubMed]
45. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB. 2008. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74 http://dx.doi.org/10.1186/gb-2008-9-4-r74. [PubMed]
46. Gould VC, Okazaki A, Avison MB. 2013. Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 57:655–657 http://dx.doi.org/10.1128/AAC.01020-12. [PubMed]
47. Lin CW, Huang YW, Hu RM, Yang TC. 2014. SmeOP-TolCSm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58:2405–2408 http://dx.doi.org/10.1128/AAC.01974-13. [PubMed]
48. Cho HH, Sung JY, Kwon KC, Koo SH. 2012. Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 32:38–43 http://dx.doi.org/10.3343/alm.2012.32.1.38. [PubMed]
49. Srijaruskul K, Charoenlap N, Namchaiw P, Chattrakarn S, Giengkam S, Mongkolsuk S, Vattanaviboon P. 2015. Regulation by SoxR of mfsA, which encodes a major facilitator protein involved in paraquat resistance in Stenotrophomonas maltophilia. PLoS One 10:e0123699 http://dx.doi.org/10.1371/journal.pone.0123699. [PubMed]
50. Dulyayangkul P, Charoenlap N, Srijaruskul K, Mongkolsuk S, Vattanaviboon P. 2016. Major facilitator superfamily MfsA contributes to multidrug resistance in emerging nosocomial pathogen Stenotrophomonas maltophilia. J Antimicrob Chemother 71:2990–2991 http://dx.doi.org/10.1093/jac/dkw233. [PubMed]
51. Zhang L, Li XZ, Poole K. 2001. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:3497–3503 http://dx.doi.org/10.1128/AAC.45.12.3497-3503.2001. [PubMed]
52. Hernández A, Ruiz FM, Romero A, Martínez JL. 2011. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog 7:e1002103 http://dx.doi.org/10.1371/journal.ppat.1002103. [PubMed]
53. Sánchez MB, Martínez JL. 2015. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 59:4347–4348 http://dx.doi.org/10.1128/AAC.00714-15. [PubMed]
54. Lin YT, Huang YW, Chen SJ, Chang CW, Yang TC. 2015. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother 59:4067–4073 http://dx.doi.org/10.1128/AAC.00372-15. [PubMed]
55. Huang YW, Liou RS, Lin YT, Huang HH, Yang TC. 2014. A linkage between SmeIJK efflux pump, cell envelope integrity, and σE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784 http://dx.doi.org/10.1371/journal.pone.0111784. [PubMed]
56. Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J. 1998. Overexpression, purification, and characterization of the cloned metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 42:921–926. [PubMed]
57. Walsh TR, MacGowan AP, Bennett PM. 1997. Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:1460–1464. [PubMed]
58. Okazaki A, Avison MB. 2008. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother 52:1525–1528 http://dx.doi.org/10.1128/AAC.01485-07. [PubMed]
59. Huang YW, Lin CW, Hu RM, Lin YT, Chung TC, Yang TC. 2010. AmpN-AmpG operon is essential for expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54:2583–2589 http://dx.doi.org/10.1128/AAC.01283-09. [PubMed]
60. Yang TC, Huang YW, Hu RM, Huang SC, Lin YT. 2009. AmpDI is involved in expression of the chromosomal L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 53:2902–2907 http://dx.doi.org/10.1128/AAC.01513-08. [PubMed]
61. Lin CW, Lin HC, Huang YW, Chung TC, Yang TC. 2011. Inactivation of mrcA gene derepresses the basal-level expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. J Antimicrob Chemother 66:2033–2037 http://dx.doi.org/10.1093/jac/dkr276. [PubMed]
62. al Naiemi N, Duim B, Bart A. 2006. A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Med Microbiol 55:1607–1608 http://dx.doi.org/10.1099/jmm.0.46704-0. [PubMed]
63. Lavigne JP, Gaillard JB, Bourg G, Tichit C, Lecaillon E, Sotto A. 2008. Extended-spectrum β-lactamases-producing Stenotrophomonas maltophilia strains: CTX-M enzymes detection and virulence study. Pathol Biol (Paris) 56:447–453 http://dx.doi.org/10.1016/j.patbio.2008.07.013. (In French.) [PubMed]
64. Maravić A, Skočibušić M, Fredotović Z, Cvjetan S, Samanić I, Puizina J. 2014. Characterization of environmental CTX-M-15-producing Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58:6333–6334 http://dx.doi.org/10.1128/AAC.03601-14. [PubMed]
65. Avison MB, von Heldreich CJ, Higgins CS, Bennett PM, Walsh TR. 2000. A TEM-2 β-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother 46:879–884 http://dx.doi.org/10.1093/jac/46.6.879. [PubMed]
66. Liu W, Zou D, Wang X, Li X, Zhu L, Yin Z, Yang Z, Wei X, Han L, Wang Y, Shao C, Wang S, He X, Liu D, Liu F, Wang J, Huang L, Yuan J. 2012. Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with blaNDM-1, blaL1 and blaL2 β-lactamase genes under imipenem treatment. J Proteome Res 11:4024–4033 http://dx.doi.org/10.1021/pr300062v. [PubMed]
67. Li XZ, Zhang L, McKay GA, Poole K. 2003. Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother 51:803–811 http://dx.doi.org/10.1093/jac/dkg148. [PubMed]
68. Okazaki A, Avison MB. 2007. Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 51:359–360 http://dx.doi.org/10.1128/AAC.00795-06. [PubMed]
69. Tada T, Miyoshi-Akiyama T, Dahal RK, Mishra SK, Shimada K, Ohara H, Kirikae T, Pokhrel BM. 2014. Identification of a novel 6′-N-aminoglycoside acetyltransferase, AAC(6′)-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 58:6324–6327 http://dx.doi.org/10.1128/AAC.03354-14. [PubMed]
70. Sánchez MB. 2015. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 6:658 http://dx.doi.org/10.3389/fmicb.2015.00658. [PubMed]
71. Ribera A, Doménech-Sanchez A, Ruiz J, Benedi VJ, Jimenez de Anta MT, Vila J. 2002. Mutations in gyrA and parC QRDRs are not relevant for quinolone resistance in epidemiological unrelated Stenotrophomonas maltophilia clinical isolates. Microb Drug Resist 8:245–251 http://dx.doi.org/10.1089/10766290260469499. [PubMed]
72. Valdezate S, Vindel A, Echeita A, Baquero F, Cantó R. 2002. Topoisomerase II and IV quinolone resistance-determining regions in Stenotrophomonas maltophilia clinical isolates with different levels of quinolone susceptibility. Antimicrob Agents Chemother 46:665–671 http://dx.doi.org/10.1128/AAC.46.3.665-671.2002. [PubMed]
73. Cha MK, Kang CI, Kim SH, Cho SY, Ha YE, Chung DR, Peck KR, Song JH. 2016. Emergence of fluoroquinolone-resistant Stenotrophomonas maltophilia in blood isolates causing bacteremia: molecular epidemiology and microbiologic characteristics. Diagn Microbiol Infect Dis 85:210–212 http://dx.doi.org/10.1016/j.diagmicrobio.2016.02.020. [PubMed]
74. Sanchez MB, Hernandez A, Martinez JL. 2009. Stenotrophomonas maltophilia drug resistance. Future Microbiol 4:655–660 http://dx.doi.org/10.2217/fmb.09.45. [PubMed]
75. Gordon NC, Wareham DW. 2010. Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 65:483–489 http://dx.doi.org/10.1093/jac/dkp476. [PubMed]
76. Sánchez MB, Hernández A, Rodríguez-Martínez JM, Martínez-Martínez L, Martínez JL. 2008. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol 8:148 http://dx.doi.org/10.1186/1471-2180-8-148. [PubMed]
77. Sánchez MB, Martínez JL. 2010. SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 54:580–581 http://dx.doi.org/10.1128/AAC.00496-09. [PubMed]
78. Shimizu K, Kikuchi K, Sasaki T, Takahashi N, Ohtsuka M, Ono Y, Hiramatsu K. 2008. Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 52:3823–3825 http://dx.doi.org/10.1128/AAC.00026-08. [PubMed]
79. Garcia-Leon G, Salgado F, Oliveros JC, Sanchez MB, Martinez JL. 2014. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ Microbiol 16:1282–1296. [PubMed]
80. García-León G, Ruiz de Alegría Puig C, García de la Fuente C, Martínez-Martínez L, Martínez JL, Sánchez MB. 2015. High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clin Microbiol Infect 21:464–467 http://dx.doi.org/10.1016/j.cmi.2015.01.007. [PubMed]
81. Rådström P, Swedberg G. 1988. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother 32:1684–1692 http://dx.doi.org/10.1128/AAC.32.11.1684. [PubMed]
82. Barbolla R, Catalano M, Orman BE, Famiglietti A, Vay C, Smayevsky J, Centrón D, Piñeiro SA. 2004. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother 48:666–669 http://dx.doi.org/10.1128/AAC.48.2.666-669.2004. [PubMed]
83. Toleman MA, Bennett PM, Bennett DM, Jones RN, Walsh TR. 2007. Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis 13:559–565 http://dx.doi.org/10.3201/eid1304.061378. [PubMed]
84. Chung HS, Kim K, Hong SS, Hong SG, Lee K, Chong Y. 2015. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole. Ann Lab Med 35:246–249 http://dx.doi.org/10.3343/alm.2015.35.2.246. [PubMed]
85. Hu LF, Chang X, Ye Y, Wang ZX, Shao YB, Shi W, Li X, Li JB. 2011. Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int J Antimicrob Agents 37:230–234 http://dx.doi.org/10.1016/j.ijantimicag.2010.10.025. [PubMed]
86. Hu LF, Chen GS, Kong QX, Gao LP, Chen X, Ye Y, Li JB. 2016. Increase in the prevalence of resistance determinants to trimethoprim/sulfamethoxazole in clinical Stenotrophomonas maltophilia isolates in China. PLoS One 11:e0157693 http://dx.doi.org/10.1371/journal.pone.0157693. [PubMed]
87. Huang YW, Hu RM, Yang TC. 2013. Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. J Antimicrob Chemother 68:1987–1993 http://dx.doi.org/10.1093/jac/dkt148. [PubMed]
88. Sánchez MB, Martínez JL. 2015. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 59:4347–4348 http://dx.doi.org/10.1128/AAC.00714-15. [PubMed]
89. He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Feßler AT, Zhang R, Wu C, Shen J, Wang Y. 2016. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 71:1466–1473 http://dx.doi.org/10.1093/jac/dkw016. [PubMed]
90. Chang LL, Lin HH, Chang CY, Lu PL. 2007. Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 59:1038–1039 http://dx.doi.org/10.1093/jac/dkm034. [PubMed]
91. Rahmati-Bahram A, Magee JT, Jackson SK. 1995. Growth temperature-dependent variation of cell envelope lipids and antibiotic susceptibility in Stenotrophomonas (Xanthomonas) maltophilia. J Antimicrob Chemother 36:317–326 http://dx.doi.org/10.1093/jac/36.2.317. [PubMed]
92. McKay GA, Woods DE, MacDonald KL, Poole K. 2003. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71:3068–3075 http://dx.doi.org/10.1128/IAI.71.6.3068-3075.2003. [PubMed]
93. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168 http://dx.doi.org/10.1016/S1473-3099(15)00424-7.
94. Gooderham WJ, Hancock RE. 2009. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33:279–294 http://dx.doi.org/10.1111/j.1574-6976.2008.00135.x. [PubMed]
95. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472 http://dx.doi.org/10.1016/j.cell.2005.05.030. [PubMed]
96. Liu MC, Tsai YL, Huang YW, Chen HY, Hsueh PR, Lai SY, Chen LC, Chou YH, Lin WY, Liaw SJ. 2016. Stenotrophomonas maltophilia PhoP, a two-component response regulator, involved in antimicrobial susceptibilities. PLoS One 11:e0153753 http://dx.doi.org/10.1371/journal.pone.0153753. [PubMed]
97. Avison MB, Higgins CS, von Heldreich CJ, Bennett PM, Walsh TR. 2001. Plasmid location and molecular heterogeneity of the L1 and L2 β-lactamase genes of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:413–419 http://dx.doi.org/10.1128/AAC.45.2.413-419.2001. [PubMed]
98. Alonso A, Sanchez P, Martínez JL. 2000. Stenotrophomonas maltophilia D457R contains a cluster of genes from Gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782 http://dx.doi.org/10.1128/AAC.44.7.1778-1782.2000. [PubMed]
99. Palleroni NJ, Bradbury JF. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609 http://dx.doi.org/10.1099/00207713-43-3-606. [PubMed]
100. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. 2000. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282 http://dx.doi.org/10.1099/00207713-50-1-273. [PubMed]
101. Yamamura S, Morita Y, Hasan Q, Rao SR, Murakami Y, Yokoyama K, Tamiya E. 2002. Characterization of a new keratin-degrading bacterium isolated from deer fur. J Biosci Bioeng 93:595–600 http://dx.doi.org/10.1016/S1389-1723(02)80243-2.
102. Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M, Macarie H. 2002. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:559–568 http://dx.doi.org/10.1099/00207713-52-2-559. [PubMed]
103. Wolf A, Fritze A, Hagemann M, Berg G. 2002. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944. [PubMed]
104. Yoon JH, Kang SJ, Oh HW, Oh TK. 2006. Stenotrophomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:1363–1367 http://dx.doi.org/10.1099/ijs.0.64091-0. [PubMed]
105. Yang HC, Im WT, Kang MS, Shin DY, Lee ST. 2006. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84 http://dx.doi.org/10.1099/ijs.0.63826-0. [PubMed]
106. Heylen K, Vanparys B, Peirsegaele F, Lebbe L, De Vos P. 2007. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 57:2056–2061 http://dx.doi.org/10.1099/ijs.0.65044-0. [PubMed]
107. Kaparullina E, Doronina N, Chistyakova T, Trotsenko Y. 2009. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst Appl Microbiol 32:157–162 http://dx.doi.org/10.1016/j.syapm.2008.12.003. [PubMed]
108. Kim HB, Srinivasan S, Sathiyaraj G, Quan LH, Kim SH, Bui TP, Liang ZQ, Kim YJ, Yang DC. 2010. Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 60:1522–1526 http://dx.doi.org/10.1099/ijs.0.014662-0. [PubMed]
109. Lee M, Woo SG, Chae M, Shin MC, Jung HM, Ten LN. 2011. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 61:598–604 http://dx.doi.org/10.1099/ijs.0.017780-0. [PubMed]
110. Ramos PL, Van Trappen S, Thompson FL, Rocha RC, Barbosa HR, De Vos P, Moreira-Filho CA. 2011. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 61:926–931 http://dx.doi.org/10.1099/ijs.0.019372-0. [PubMed]
111. Handa Y, Tazato N, Nagatsuka Y, Koide T, Kigawa R, Sano C, Sugiyama J. 2016. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 66:1119–1124 http://dx.doi.org/10.1099/ijsem.0.000843. [PubMed]
112. Pan X, Lin D, Zheng Y, Zhang Q, Yin Y, Cai L, Fang H, Yu Y. 2016. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Sci Rep 6:21332 http://dx.doi.org/10.1038/srep21332. [PubMed]
113. Hindler JF, Tamashiro L. 2004. Broth microdilution MIC test, p 5.2.1–5.2.17. In Clarke L, Della-Latta P, Denys GA, Douglas SD, Garcia LS, Hazen KC, Hindler JF, Jenkins SG, Mangels JI, Miller JM, Nachamkin I, Pfaller MA, Snyder JW, Weissfeld AS, York MK (ed), Clinical Microbiology Procedures Handbook, 2nd ed. ASM Press, Washington, DC.
microbiolspec.ARBA-0005-2017.citations
cm/6/1
content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0005-2017
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0005-2017
2018-01-18
2018-02-20

Abstract:

Bacteria of the genus are found throughout the environment, in close association with soil, sewage, and plants. , the first member of this genus, is the predominant species, observed in soil, water, plants, animals, and humans. It is also an opportunistic pathogen associated with the increased number of infections in both humans and animals in recent years. In this article, we summarize all species (mainly ) isolated from animals and food products of animal origin and further distinguish all isolates based on antimicrobial susceptibility and resistance phenotypes. The various mechanisms of both intrinsic and acquired antimicrobial resistance, which were mainly identified in isolates of nosocomial infections, have been classified as follows: multidrug efflux pumps; resistance to β-lactams, aminoglycosides, quinolones, trimethoprim-sulfamethoxazole, and phenicols; and alteration of lipopolysaccharide and two-component regulatory systems. The dissemination, coselection, and persistence of resistance determinants among isolates have also been elaborated.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Linear representation of the complete GI and its flanking regions in GZP-Sm1. The regions in gray represent the flanking regions of the GI when inserted into the bacterial chromosome. The arrows indicate the directions of gene transcription, and truncated genes are indicated by rectangles without arrowheads. Genes are depicted in different colors, and the regions of particular relevance (≥95% nucleotide sequence identity) are indicated by the dotted lines ( 33 ).

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0005-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Characterization of species

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0005-2017
Generic image for table
TABLE 2

Antimicrobial resistance of isolated from animals and animal products

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0005-2017
Generic image for table
TABLE 3

Molecular mechanisms of antimicrobial resistance of

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0005-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error