1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Marisa Haenni1, Agnese Lupo2, Jean-Yves Madec3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Université de Lyon—ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 2: Université de Lyon—ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 3: Université de Lyon—ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0008-2017
  • Received 30 January 2017 Accepted 04 January 2018 Published 29 March 2018
  • Marisa Haenni, marisa.haenni@anses.fr
image of Antimicrobial Resistance in <span class="jp-italic">Streptococcus</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0008-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0008-2017-2.gif
  • Abstract:

    The genus includes Gram-positive organisms shaped in cocci and organized in chains. They are commensals, pathogens, and opportunistic pathogens for humans and animals. Most species of veterinary relevance have a specific ecological niche, such as , which is almost exclusively an environmental pathogen causing bovine mastitis. In contrast, can be considered as a true zoonotic pathogen, causing specific diseases in humans after contact with infected animals or derived food products. Finally, species such as can be sporadically zoonotic, even though they are pathogens of both humans and animals independently. For clarification, a short taxonomical overview will be given here to highlight the diversity of streptococci that infect animals. Several families of antibiotics are used to treat animals for streptococcal infections. First-line treatments are penicillins (alone or in combination with aminoglycosides), macrolides and lincosamides, fluoroquinolones, and tetracyclines. Because of the selecting role of antibiotics, resistance phenotypes have been reported in streptococci isolated from animals worldwide. Globally, the dynamic of resistance acquisition in streptococci is slower than what is experienced in , probably due to the much more limited horizontal spread of resistance genes. Nonetheless, transposons or integrative and conjugative elements can disseminate resistance determinants among streptococci. Besides providing key elements on the prevalence of resistance in streptococci from animals, this article will also largely consider the mechanisms and molecular epidemiology of the major types of resistance to antimicrobials encountered in the most important streptococcal species in veterinary medicine.

  • Citation: Haenni M, Lupo A, Madec J. 2018. Antimicrobial Resistance in spp.. Microbiol Spectrum 6(2):ARBA-0008-2017. doi:10.1128/microbiolspec.ARBA-0008-2017.

References

1. Póntigo F, Moraga M, Flores SV. 2015. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 14:10905–10918 http://dx.doi.org/10.4238/2015.September.21.1. [PubMed]
2. Lancefield RC, Freimer EH. 1966. Type-specific polysaccharide antigens of group B streptococci. J Hyg (Lond) 64:191–203 http://dx.doi.org/10.1017/S0022172400040456. [PubMed]
3. Tanaka D, Isobe J, Watahiki M, Nagai Y, Katsukawa C, Kawahara R, Endoh M, Okuno R, Kumagai N, Matsumoto M, Morikawa Y, Ikebe T, Watanabe H, Working Group for Group A Streptococci in Japan. 2008. Genetic features of clinical isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J Clin Microbiol 46:1526–1529.
4. Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. 2016. Streptococcus pyogenes adhesion and colonization. FEBS Lett 590:3739–3757 http://dx.doi.org/10.1002/1873-3468.12254. [PubMed]
5. Carapetis JR, Steer AC, Mulholland EK, Weber M. 2005. The global burden of group A streptococcal diseases. Lancet Infect Dis 5:685–694 http://dx.doi.org/10.1016/S1473-3099(05)70267-X.
6. Copperman SM. 1982. Cherchez le chien: household pets as reservoirs of persistent or recurrent streptococcal sore throats in children. N Y State J Med 82:1685–1687. [PubMed]
7. Farley MM. 2001. Group B streptococcal disease in nonpregnant adults. Clin Infect Dis 33:556–561 http://dx.doi.org/10.1086/322696. [PubMed]
8. Olivares-Fuster O, Klesius PH, Evans J, Arias CR. 2008. Molecular typing of Streptococcus agalactiae isolates from fish. J Fish Dis 31:277–283 http://dx.doi.org/10.1111/j.1365-2761.2007.00900.x. [PubMed]
9. Fischer A, Liljander A, Kaspar H, Muriuki C, Fuxelius HH, Bongcam-Rudloff E, de Villiers EP, Huber CA, Frey J, Daubenberger C, Bishop R, Younan M, Jores J. 2013. Camel Streptococcus agalactiae populations are associated with specific disease complexes and acquired the tetracycline resistance gene tetM via a Tn916-like element. Vet Res (Faisalabad) 44:86 http://dx.doi.org/10.1186/1297-9716-44-86. [PubMed]
10. Yildirim AO, Lämmler C, Weiss R. 2002. Identification and characterization of Streptococcus agalactiae isolated from horses. Vet Microbiol 85:31–35 http://dx.doi.org/10.1016/S0378-1135(01)00481-3. [PubMed]
11. McDonald TJ, McDonald JS. 1976. Streptococci isolated from bovine intramammary infections. Am J Vet Res 37:377–381. [PubMed]
12. Brochet M, Couvé E, Zouine M, Vallaeys T, Rusniok C, Lamy MC, Buchrieser C, Trieu-Cuot P, Kunst F, Poyart C, Glaser P. 2006. Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect 8:1227–1243 http://dx.doi.org/10.1016/j.micinf.2005.11.010. [PubMed]
13. Rajendram P, Mar Kyaw W, Leo YS, Ho H, Chen WK, Lin R, Pratim P, Badaruddin H, Ang B, Barkham T, Chow A. 2016. Group B streptococcus sequence type 283 disease linked to consumption of raw fish, Singapore. Emerg Infect Dis 22:1974–1977 http://dx.doi.org/10.3201/eid2211.160252. [PubMed]
14. Evans JJ, Klesius PH, Pasnik DJ, Bohnsack JF. 2009. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus). Emerg Infect Dis 15:774–776 http://dx.doi.org/10.3201/eid1505.080222. [PubMed]
15. Bradley A. 2002. Bovine mastitis: an evolving disease. Vet J 164:116–128 http://dx.doi.org/10.1053/tvjl.2002.0724. [PubMed]
16. Leigh JA. 1999. Streptococcus uberis: a permanent barrier to the control of bovine mastitis? Vet J 157:225–238 http://dx.doi.org/10.1053/tvjl.1998.0298. [PubMed]
17. Schleifer KH, Kilpper-Bälz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 34:31–34.
18. Köhler W. 2007. The present state of species within the genera Streptococcus and Enterococcus. Int J Med Microbiol 297:133–150 http://dx.doi.org/10.1016/j.ijmm.2006.11.008. [PubMed]
19. Ben-Chetrit E, Wiener-Well Y, Kashat L, Yinnon AM, Assous MV. 2016. Streptococcus bovis new taxonomy: does subspecies distinction matter? Eur J Clin Microbiol Infect Dis 36(2):387. [PubMed]
20. Dumke J, Hinse D, Vollmer T, Schulz J, Knabbe C, Dreier J. 2015. Potential transmission pathways of Streptococcus gallolyticus subsp. gallolyticus. PLoS One 10:e0126507 http://dx.doi.org/10.1371/journal.pone.0126507. [PubMed]
21. Gherardi G, Palmieri C, Marini E, Pompilio A, Crocetta V, Di Bonaventura G, Creti R, Facinelli B. 2016. Identification, antimicrobial resistance and molecular characterization of the human emerging pathogen Streptococcus gallolyticus subsp. pasteurianus. Diagn Microbiol Infect Dis 86:329–335 http://dx.doi.org/10.1016/j.diagmicrobio.2016.09.019. [PubMed]
22. Sheng WH, Chuang YC, Teng LJ, Hsueh PR. 2014. Bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus is associated with digestive tract malignancies and resistance to macrolides and clindamycin. J Infect 69:145–153 http://dx.doi.org/10.1016/j.jinf.2014.03.010. [PubMed]
23. Sturt AS, Yang L, Sandhu K, Pei Z, Cassai N, Blaser MJ. 2010. Streptococcus gallolyticus subspecies pasteurianus (biotype II/2), a newly reported cause of adult meningitis. J Clin Microbiol 48:2247–2249 http://dx.doi.org/10.1128/JCM.00081-10. [PubMed]
24. Barnett J, Ainsworth H, Boon JD, Twomey DF. 2008. Streptococcus gallolyticus subsp. pasteurianus septicaemia in goslings. Vet J 176:251–253 http://dx.doi.org/10.1016/j.tvjl.2007.02.011. [PubMed]
25. Li M, Gu C, Zhang W, Li S, Liu J, Qin C, Su J, Cheng G, Hu X. 2013. Isolation and characterization of Streptococcus gallolyticus subsp. pasteurianus causing meningitis in ducklings. Vet Microbiol 162:930–936 http://dx.doi.org/10.1016/j.vetmic.2012.11.038. [PubMed]
26. Marmolin ES, Hartmeyer GN, Christensen JJ, Nielsen XC, Dargis R, Skov MN, Knudsen E, Kemp M, Justesen US. 2016. Bacteremia with the bovis group streptococci: species identification and association with infective endocarditis and with gastrointestinal disease. Diagn Microbiol Infect Dis 85:239–242 http://dx.doi.org/10.1016/j.diagmicrobio.2016.02.019. [PubMed]
27. Wessman GE. 1986. Biology of the group E streptococci: a review. Vet Microbiol 12:297–328 http://dx.doi.org/10.1016/0378-1135(86)90081-7.
28. Facklam R, Elliott J, Pigott N, Franklin AR. 1995. Identification of Streptococcus porcinus from human sources. J Clin Microbiol 33:385–388. [PubMed]
29. Duarte RS, Barros RR, Facklam RR, Teixeira LM. 2005. Phenotypic and genotypic characteristics of Streptococcus porcinus isolated from human sources. J Clin Microbiol 43:4592–4601 http://dx.doi.org/10.1128/JCM.43.9.4592-4601.2005. [PubMed]
30. Jonsson P, Olsson SO, Olofson AS, Fälth C, Holmberg O, Funke H. 1991. Bacteriological investigations of clinical mastitis in heifers in Sweden. J Dairy Res 58:179–185 http://dx.doi.org/10.1017/S0022029900029721. [PubMed]
31. Cuccuru C, Meloni M, Sala E, Scaccabarozzi L, Locatelli C, Moroni P, Bronzo V. 2011. Effects of intramammary infections on somatic cell score and milk yield in Sarda sheep. N Z Vet J 59:128–131 http://dx.doi.org/10.1080/00480169.2011.562862. [PubMed]
32. Timoney JF. 2004. The pathogenic equine streptococci. Vet Res 35:397–409 http://dx.doi.org/10.1051/vetres:2004025. [PubMed]
33. Hashikawa S, Iinuma Y, Furushita M, Ohkura T, Nada T, Torii K, Hasegawa T, Ohta M. 2004. Characterization of group C and G streptococcal strains that cause streptococcal toxic shock syndrome. J Clin Microbiol 42:186–192 http://dx.doi.org/10.1128/JCM.42.1.186-192.2004. [PubMed]
34. Pinho MD, Matos SC, Pomba C, Lübke-Becker A, Wieler LH, Preziuso S, Melo-Cristino J, Ramirez M. 2013. Multilocus sequence analysis of Streptococcus canis confirms the zoonotic origin of human infections and reveals genetic exchange with Streptococcus dysgalactiae subsp. equisimilis. J Clin Microbiol 51:1099–1109 http://dx.doi.org/10.1128/JCM.02912-12. [PubMed]
35. Iglauer F, Kunstýr I, Mörstedt R, Farouq H, Wullenweber M, Damsch S. 1991. Streptococcus canis arthritis in a cat breeding colony. J Exp Anim Sci 34:59–65. [PubMed]
36. Lacave G, Coutard A, Troché G, Augusto S, Pons S, Zuber B, Laurent V, Amara M, Couzon B, Bédos JP, Pangon B, Grimaldi D. 2016. Endocarditis caused by Streptococcus canis: an emerging zoonosis? Infection 44:111–114 http://dx.doi.org/10.1007/s15010-015-0809-3. [PubMed]
37. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. 2014. Streptococcus suis, an important pig pathogen and emerging zoonotic agent: an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 3:e45 http://dx.doi.org/10.1038/emi.2014.45. [PubMed]
38. Segura M, Calzas C, Grenier D, Gottschalk M. 2016. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 590:3772–3799 http://dx.doi.org/10.1002/1873-3468.12364. [PubMed]
39. Taniyama D, Sakurai M, Sakai T, Kikuchi T, Takahashi T. 2016. Human case of bacteremia due to Streptococcus suis serotype 5 in Japan: the first report and literature review. IDCases 6:36–38 http://dx.doi.org/10.1016/j.idcr.2016.09.011. [PubMed]
40. Ward PN, Holden MT, Leigh JA, Lennard N, Bignell A, Barron A, Clark L, Quail MA, Woodward J, Barrell BG, Egan SA, Field TR, Maskell D, Kehoe M, Dowson CG, Chanter N, Whatmore AM, Bentley SD, Parkhill J. 2009. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics 10:54–71 http://dx.doi.org/10.1186/1471-2164-10-54. [PubMed]
41. Phuektes P, Mansell PD, Dyson RS, Hooper ND, Dick JS, Browning GF. 2001. Molecular epidemiology of Streptococcus uberis isolates from dairy cows with mastitis. J Clin Microbiol 39:1460–1466 http://dx.doi.org/10.1128/JCM.39.4.1460-1466.2001. [PubMed]
42. Wilesmith JW, Francis PG, Wilson CD. 1986. Incidence of clinical mastitis in a cohort of British dairy herds. Vet Rec 118:199–204 http://dx.doi.org/10.1136/vr.118.8.199. [PubMed]
43. Compton CW, Heuer C, Parker K, McDougall S. 2007. Epidemiology of mastitis in pasture-grazed peripartum dairy heifers and its effects on productivity. J Dairy Sci 90:4157–4170 http://dx.doi.org/10.3168/jds.2006-880. [PubMed]
44. Hasson KW, Wyld EM, Fan Y, Lingsweiller SW, Weaver SJ, Cheng J, Varner PW. 2009. Streptococcosis in farmed Litopenaeus vannamei: a new emerging bacterial disease of penaeid shrimp. Dis Aquat Organ 86:93–106 http://dx.doi.org/10.3354/dao02132. [PubMed]
45. Parker KI, Compton C, Anniss FM, Weir A, Heuer C, McDougall S. 2007. Subclinical and clinical mastitis in heifers following the use of a teat sealant precalving. J Dairy Sci 90:207–218 http://dx.doi.org/10.3168/jds.S0022-0302(07)72622-X.
46. Dodd FH. 1983. Mastitis: progress on control. J Dairy Sci 66:1773–1780 http://dx.doi.org/10.3168/jds.S0022-0302(83)82005-0.
47. Zehner MM, Farnsworth RJ, Appleman RD, Larntz K, Springer JA. 1986. Growth of environmental mastitis pathogens in various bedding materials. J Dairy Sci 69:1932–1941 http://dx.doi.org/10.3168/jds.S0022-0302(86)80620-8.
48. Koh TH, Sng LH, Yuen SM, Thomas CK, Tan PL, Tan SH, Wong NS. 2009. Streptococcal cellulitis following preparation of fresh raw seafood. Zoonoses Public Health 56:206–208 http://dx.doi.org/10.1111/j.1863-2378.2008.01213.x. [PubMed]
49. Weinstein MR, Litt M, Kertesz DA, Wyper P, Rose D, Coulter M, McGeer A, Facklam R, Ostach C, Willey BM, Borczyk A, Low DE. 1997. Invasive infections due to a fish pathogen, Streptococcus iniae. S. iniae Study Group. N Engl J Med 337:589–594 http://dx.doi.org/10.1056/NEJM199708283370902. [PubMed]
50. Nilson B, Olaison L, Rasmussen M. 2016. Clinical presentation of infective endocarditis caused by different groups of non-beta haemolytic streptococci. Eur J Clin Microbiol Infect Dis 35:215–218 http://dx.doi.org/10.1007/s10096-015-2532-5. [PubMed]
51. Simón-Soro A, Mira A. 2015. Solving the etiology of dental caries. Trends Microbiol 23:76–82 http://dx.doi.org/10.1016/j.tim.2014.10.010. [PubMed]
52. Yombi J, Belkhir L, Jonckheere S, Wilmes D, Cornu O, Vandercam B, Rodriguez-Villalobos H. 2012. Streptococcus gordonii septic arthritis: two cases and review of literature. BMC Infect Dis 12:215–220 http://dx.doi.org/10.1186/1471-2334-12-215. [PubMed]
53. Burrell MH, Mackintosh ME, Taylor CE. 1986. Isolation of Streptococcus pneumoniae from the respiratory tract of horses. Equine Vet J 18:183–186 http://dx.doi.org/10.1111/j.2042-3306.1986.tb03591.x. [PubMed]
54. Köndgen S, Calvignac-Spencer S, Grützmacher K, Keil V, Mätz-Rensing K, Nowak K, Metzger S, Kiyang J, Becker AL, Deschner T, Wittig RM, Lankester F, Leendertz FH. 2017. Evidence for human Streptococcus pneumoniae in wild and captive chimpanzees: a potential threat to wild populations. Sci Rep 7:14581 http://dx.doi.org/10.1038/s41598-017-14769-z. [PubMed]
55. Beighton D, Hayday H. 1982. The streptococcal flora of the tongue of the monkey Macaca fascicularis. Arch Oral Biol 27:331–335 http://dx.doi.org/10.1016/0003-9969(82)90163-7. [PubMed]
56. Devriese LA, Hommez J, Pot B, Haesebrouck F. 1994. Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs. J Appl Bacteriol 77:31–36 http://dx.doi.org/10.1111/j.1365-2672.1994.tb03040.x. [PubMed]
57. Devriese LA, Pot B, Vandamme P, Kersters K, Collins MD, Alvarez N, Haesebrouck F, Hommez J. 1997. Streptococcus hyovaginalis sp. nov. and Streptococcus thoraltensis sp. nov., from the genital tract of sows. Int J Syst Bacteriol 47:1073–1077 http://dx.doi.org/10.1099/00207713-47-4-1073. [PubMed]
58. Freedman ML, Coykendall AL, O’Neill EM. 1982. Physiology of “mutans-like” Streptococcus ferus from wild rats. Infect Immun 35:476–482. [PubMed]
59. Zhu H, Willcox MD, Knox KW. 2000. A new species of oral Streptococcus isolated from Sprague-Dawley rats, Streptococcus orisratti sp. nov. Int J Syst Evol Microbiol 50:55–61 http://dx.doi.org/10.1099/00207713-50-1-55. [PubMed]
60. Rinkinen ML, Koort JM, Ouwehand AC, Westermarck E, Björkroth KJ. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol Lett 230:35–39 http://dx.doi.org/10.1016/S0378-1097(03)00851-6.
61. Toepfner N, Shetty S, Kunze M, Orlowska-Volk M, Krüger M, Berner R, Hentschel R. 2014. Fulminant neonatal sepsis due to Streptococcus alactolyticus: a case report and review. APMIS 122:654–656 http://dx.doi.org/10.1111/apm.12219. [PubMed]
62. Beighton D, Russell RR, Hayday H. 1981. The isolation of characterization of Streptococcus mutans serotype h from dental plaque of monkeys (Macaca fascicularis). J Gen Microbiol 124:271–279.
63. Yoo SY, Kim KJ, Lim SH, Kim KW, Hwang HK, Min BM, Choe SJ, Kook JK. 2005. First isolation of Streptococcus downei from human dental plaques. FEMS Microbiol Lett 249:323–326 http://dx.doi.org/10.1016/j.femsle.2005.06.020. [PubMed]
64. Aryasinghe L, Sabbar S, Kazim Y, Awan LM, Khan HK. 2014. Streptococcus pluranimalium: a novel human pathogen? Int J Surg Case Rep 5:1242–1246 http://dx.doi.org/10.1016/j.ijscr.2014.11.029. [PubMed]
65. Devriese LA, Vandamme P, Collins MD, Alvarez N, Pot B, Hommez J, Butaye P, Haesebrouck F. 1999. Streptococcus pluranimalium sp. nov., from cattle and other animals. Int J Syst Bacteriol 49:1221–1226 http://dx.doi.org/10.1099/00207713-49-3-1221. [PubMed]
66. Facklam R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630 http://dx.doi.org/10.1128/CMR.15.4.613-630.2002. [PubMed]
67. Silley P, Simjee S, Schwarz S. 2012. Surveillance and monitoring ofantimicrobial resistance and antibiotic consumption in humans and animals. Rev Sci Tech 31:105–120 http://dx.doi.org/10.20506/rst.31.1.2100. [PubMed]
68. de Jong A, Thomas V, Klein U, Marion H, Moyaert H, Simjee S, Vallé M. 2013. Pan-European resistance monitoring programmes encompassing food-borne bacteria and target pathogens of food-producing and companion animals. Int J Antimicrob Agents 41:403–409 http://dx.doi.org/10.1016/j.ijantimicag.2012.11.004. [PubMed]
69. Metcalf BJ, Chochua S, Gertz RE Jr, Hawkins PA, Ricaldi J, Li Z, Walker H, Tran T, Rivers J, Mathis S, Jackson D, Glennen A, Lynfield R, McGee L, Beall B, Active Bacterial Core surveillance team. 2017. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin Microbiol Infect 23:574e577–574e514.
70. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE Jr, Walker H, Hawkins PA, Tran T, Whitney CG, McGee L, Beall BW. 2016. Penicillin-binding protein transpeptidase signatures for tracking and predicting beta-lactam resistance levels in Streptococcus pneumoniae. MBio 7:pii e00756-16 http://dx.doi.org/10.1128/mBio.00756-16. [PubMed]
71. Mobegi FM, Cremers AJ, de Jonge MI, Bentley SD, van Hijum SA, Zomer A. 2017. Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data. Sci Rep 7:42808 http://dx.doi.org/10.1038/srep42808. [PubMed]
72. MARAN. 2009. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in The Netherlands in 2008. CIDC-Lelystad, Lelystad, The Netherlands.
73. Leclercq R. 2002. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492 http://dx.doi.org/10.1086/324626. [PubMed]
74. Collignon P, Powers JH, Chiller TM, Aidara-Kane A, Aarestrup FM. 2009. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin Infect Dis 49:132–141 http://dx.doi.org/10.1086/599374. [PubMed]
75. Edmondson PW. 1989. An economic justification of “blitz” therapy to eradicate Streptococcus agalactiae from a dairy herd. Vet Rec 125:591–593. [PubMed]
76. Pyörälä S, Baptiste KE, Catry B, van Duijkeren E, Greko C, Moreno MA, Pomba MC, Rantala M, Ružauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K. 2014. Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance. Vet J 200:230–239 http://dx.doi.org/10.1016/j.tvjl.2014.02.028. [PubMed]
77. De Mouy D, Cavallo JD, Leclercq R, Fabre R, AFICORPI-BIO Network. Association de Formation Continue en Pathologie Infectieuse des Biologistes. 2001. Antibiotic susceptibility and mechanisms of erythromycin resistance in clinical isolates of Streptococcus agalactiae: French multicenter study. Antimicrob Agents Chemother 45:2400–2402 http://dx.doi.org/10.1128/AAC.45.8.2400-2402.2001. [PubMed]
78. Puopolo KM, Klinzing DC, Lin MP, Yesucevitz DL, Cieslewicz MJ. 2007. A composite transposon associated with erythromycin and clindamycin resistance in group B Streptococcus. J Med Microbiol 56:947–955 http://dx.doi.org/10.1099/jmm.0.47131-0. [PubMed]
79. Cai Y, Kong F, Gilbert GL. 2007. Three new macrolide efflux (mef) gene variants in Streptococcus agalactiae. J Clin Microbiol 45:2754–2755 http://dx.doi.org/10.1128/JCM.00579-07. [PubMed]
80. Ambrose KD, Nisbet R, Stephens DS. 2005. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 49:4203–4209 http://dx.doi.org/10.1128/AAC.49.10.4203-4209.2005. [PubMed]
81. Gay K, Stephens DS. 2001. Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae. J Infect Dis 184:56–65 http://dx.doi.org/10.1086/321001. [PubMed]
82. Mingoia M, Vecchi M, Cochetti I, Tili E, Vitali LA, Manzin A, Varaldo PE, Montanari MP. 2007. Composite structure of Streptococcus pneumoniae containing the erythromycin efflux resistance gene mefI and the chloramphenicol resistance gene catQ. Antimicrob Agents Chemother 51:3983–3987 http://dx.doi.org/10.1128/AAC.00790-07. [PubMed]
83. Santagati M, Iannelli F, Cascone C, Campanile F, Oggioni MR, Stefani S, Pozzi G. 2003. The novel conjugative transposon tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb Drug Resist 9:243–247 http://dx.doi.org/10.1089/107662903322286445. [PubMed]
84. Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. 1997. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 41:2719–2723. [PubMed]
85. Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R. 1999. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 43:925–929. [PubMed]
86. de Azavedo JC, McGavin M, Duncan C, Low DE, McGeer A. 2001. Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. Antimicrob Agents Chemother 45:3504–3508 http://dx.doi.org/10.1128/AAC.45.12.3504-3508.2001.
87. Achard A, Villers C, Pichereau V, Leclercq R. 2005. New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother 49:2716–2719 http://dx.doi.org/10.1128/AAC.49.7.2716-2719.2005. [PubMed]
88. Petinaki E, Guérin-Faublée V, Pichereau V, Villers C, Achard A, Malbruny B, Leclercq R. 2008. Lincomycin resistance gene lnu(D) in Streptococcus uberis. Antimicrob Agents Chemother 52:626–630 http://dx.doi.org/10.1128/AAC.01126-07. [PubMed]
89. Chesneau O, Tsvetkova K, Courvalin P. 2007. Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett 269:317–322 http://dx.doi.org/10.1111/j.1574-6968.2007.00643.x. [PubMed]
90. Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. 2013. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol 161:286–294 http://dx.doi.org/10.1016/j.vetmic.2012.07.043. [PubMed]
91. Dogan B, Schukken YH, Santisteban C, Boor KJ. 2005. Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J Clin Microbiol 43:5899–5906 http://dx.doi.org/10.1128/JCM.43.12.5899-5906.2005. [PubMed]
92. Gao J, Yu FQ, Luo LP, He JZ, Hou RG, Zhang HQ, Li SM, Su JL, Han B. 2012. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis. Vet J 194:423–424 http://dx.doi.org/10.1016/j.tvjl.2012.04.020. [PubMed]
93. Pinto TC, Costa NS, Vianna Souza AR, Silva LG, Corrêa AB, Fernandes FG, Oliveira IC, Mattos MC, Rosado AS, Benchetrit LC. 2013. Distribution of serotypes and evaluation of antimicrobial susceptibility among human and bovine Streptococcus agalactiae strains isolated in Brazil between 1980 and 2006. Braz J Infect Dis 17:131–136 http://dx.doi.org/10.1016/j.bjid.2012.09.006. [PubMed]
94. Haenni M, Saras E, Bertin S, Leblond P, Madec JY, Payot S. 2010. Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol 76:7957–7965 http://dx.doi.org/10.1128/AEM.00805-10.
95. Loch IM, Glenn K, Zadoks RN. 2005. Macrolide and lincosamide resistance genes of environmental streptococci from bovine milk. Vet Microbiol 111:133–138 http://dx.doi.org/10.1016/j.vetmic.2005.09.001. [PubMed]
96. Haenni M, Saras E, Chaussière S, Treilles M, Madec JY. 2011. ermB-mediated erythromycin resistance in Streptococcus uberis from bovine mastitis. Vet J 189:356–358 http://dx.doi.org/10.1016/j.tvjl.2010.06.021. [PubMed]
97. Schmitt-Van de Leemput E, Zadoks RN. 2007. Genotypic and phenotypic detection of macrolide and lincosamide resistance in Streptococcus uberis. J Dairy Sci 90:5089–5096 http://dx.doi.org/10.3168/jds.2007-0101. [PubMed]
98. Achard A, Guérin-Faublée V, Pichereau V, Villers C, Leclercq R. 2008. Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-like gene. Antimicrob Agents Chemother 52:2767–2770 http://dx.doi.org/10.1128/AAC.00481-08. [PubMed]
99. Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Meunier D, Butaye P, Franco A, Utinane A, Amado A, Moreno M, Greko C, Stärk K, Berghold C, Myllyniemi AL, Wasyl D, Sunde M, Aarestrup FM. 2008. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004. Acta Vet Scand 50:28–38 http://dx.doi.org/10.1186/1751-0147-50-28. [PubMed]
100. Thomas V, de Jong A, Moyaert H, Simjee S, El Garch F, Morrissey I, Marion H, Vallé M. 2015. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: VetPath results. Int J Antimicrob Agents 46:13–20 http://dx.doi.org/10.1016/j.ijantimicag.2015.03.013. [PubMed]
101. Persson Y, Nyman AK, Grönlund-Andersson U. 2011. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand 53:36 http://dx.doi.org/10.1186/1751-0147-53-36. [PubMed]
102. Aarestrup FM, Rasmussen SR, Artursson K, Jensen NE. 1998. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden. Vet Microbiol 63:71–80 http://dx.doi.org/10.1016/S0378-1135(98)00228-4. [PubMed]
103. Wasteson Y, Høie S, Roberts MC. 1994. Characterization of antibiotic resistance in Streptococcus suis. Vet Microbiol 41:41–49 http://dx.doi.org/10.1016/0378-1135(94)90134-1. [PubMed]
104. Gurung M, Tamang MD, Moon DC, Kim SR, Jeong JH, Jang GC, Jung SC, Park YH, Lim SK. 2015. Molecular basis of resistance to selected antimicrobial agents in the emerging zoonotic pathogen Streptococcus suis. J Clin Microbiol 53:2332–2336 http://dx.doi.org/10.1128/JCM.00123-15. [PubMed]
105. Palmieri C, Varaldo PE, Facinelli B. 2011. Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol 2:235–241 http://dx.doi.org/10.3389/fmicb.2011.00235. [PubMed]
106. Zhao Q, Wendlandt S, Li H, Li J, Wu C, Shen J, Schwarz S, Wang Y. 2014. Identification of the novel lincosamide resistance gene lnu(E) truncated by ISEnfa5-cfr-ISEnfa5 insertion in Streptococcus suis: de novo synthesis and confirmation of functional activity in Staphylococcus aureus. Antimicrob Agents Chemother 58:1785–1788 http://dx.doi.org/10.1128/AAC.02007-13. [PubMed]
107. Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Jouy E, Butaye P, Franco A, Utinane A, Amado A, Moreno M, Greko C, Stärk KD, Berghold C, Myllyniemi AL, Hoszowski A, Sunde M, Aarestrup FM. 2008. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: the ARBAO-II study. Acta Vet Scand 50:19–29 http://dx.doi.org/10.1186/1751-0147-50-19. [PubMed]
108. Lüthje P, Schwarz S. 2007. Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int J Antimicrob Agents 29:528–535 http://dx.doi.org/10.1016/j.ijantimicag.2006.12.016. [PubMed]
109. Silva LG, Genteluci GL, Corrêa de Mattos M, Glatthardt T, Sá Figueiredo AM, Ferreira-Carvalho BT. 2015. Group C Streptococcus dysgalactiae subsp. equisimilis in south-east Brazil: genetic diversity, resistance profile and the first report of human and equine isolates belonging to the same multilocus sequence typing lineage. J Med Microbiol 64:551–558 http://dx.doi.org/10.1099/jmm.0.000052. [PubMed]
110. Pedersen K, Pedersen K, Jensen H, Finster K, Jensen VF, Heuer OE. 2007. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J Antimicrob Chemother 60:775–781 http://dx.doi.org/10.1093/jac/dkm269. [PubMed]
111. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
112. Speer BS, Shoemaker NB, Salyers AA. 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 5:387–399 http://dx.doi.org/10.1128/CMR.5.4.387. [PubMed]
113. Roberts MC. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24 http://dx.doi.org/10.1111/j.1574-6976.1996.tb00251.x.
114. Kazimierczak KA, Rincon MT, Patterson AJ, Martin JC, Young P, Flint HJ, Scott KP. 2008. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones. Antimicrob Agents Chemother 52:4001–4009 http://dx.doi.org/10.1128/AAC.00308-08. [PubMed]
115. Moulin G, Cavalié P, Pellanne I, Chevance A, Laval A, Millemann Y, Colin P, Chauvin C, Antimicrobial Resistance ad hoc Group of the French Food Safety Agency. 2008. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J Antimicrob Chemother 62:617–625 http://dx.doi.org/10.1093/jac/dkn213. [PubMed]
116. Report UOH. 2015. Joint report on human and animal antibiotic use, sales and resistance, 2013. https://www.gov.uk/government/collections/antimicrobial-resistance-amr-information-and-resources.
117. FDA. 2014. 2012 Summary report on antimicrobials sold or distributed for use in food-producing animals. FDA, Washington, DC. http://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM416983.pdf.
118. van den Bogaard AE, Bruinsma N, Stobberingh EE. 2000. The effect of banning avoparcin on VRE carriage in The Netherlands. J Antimicrob Chemother 46:146–148 http://dx.doi.org/10.1093/jac/46.1.146. [PubMed]
119. Da Cunha V, Davies MR, Douarre PE, Rosinski-Chupin I, Margarit I, Spinali S, Perkins T, Lechat P, Dmytruk N, Sauvage E, Ma L, Romi B, Tichit M, Lopez-Sanchez MJ, Descorps-Declere S, Souche E, Buchrieser C, Trieu-Cuot P, Moszer I, Clermont D, Maione D, Bouchier C, McMillan DJ, Parkhill J, Telford JL, Dougan G, Walker MJ, Holden MTG, Poyart C, Glaser P, Glaser P, DEVANI Consortium. 2014. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat Commun 5:4544 http://dx.doi.org/10.1038/ncomms5544. [PubMed]
120. Roberts MC. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203 http://dx.doi.org/10.1016/j.femsle.2005.02.034. [PubMed]
121. Roberts MC, Schwarz S. 2016. Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual 45:576–592 http://dx.doi.org/10.2134/jeq2015.04.0207. [PubMed]
122. Khan SA, Novick RP. 1983. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259 http://dx.doi.org/10.1016/0147-619X(83)90039-2.
123. Burdett V, Inamine J, Rajagopalan S. 1982. Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol 149:995–1004. [PubMed]
124. Hartley DL, Jones KR, Tobian JA, LeBlanc DJ, Macrina FL. 1984. Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun 45:13–17. [PubMed]
125. Courvalin P, Carlier C. 1987. Tn1545: a conjugative shuttle transposon. Mol Gen Genet 206:259–264 http://dx.doi.org/10.1007/BF00333582. [PubMed]
126. Clewell DB, Flannagan SE, Jaworski DD, Clewell DB. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 3:229–236 http://dx.doi.org/10.1016/S0966-842X(00)88930-1.
127. Rice LB. 1998. Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother 42:1871–1877. [PubMed]
128. Sougakoff W, Papadopoulou B, Nordmann P, Courvalin P. 1987. Nucleotide sequence and distribution of gene tetO encoding tetracycline resistance in Campylobacter coli. FEMS Microbiol Lett 44:153–159 http://dx.doi.org/10.1111/j.1574-6968.1987.tb02260.x.
129. Charpentier E, Gerbaud G, Courvalin P. 1993. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131:27–34 http://dx.doi.org/10.1016/0378-1119(93)90665-P. [PubMed]
130. Fletcher HM, Macrina FL. 1991. Molecular survey of clindamycin and tetracycline resistance determinants in Bacteroides species. Antimicrob Agents Chemother 35:2415–2418 http://dx.doi.org/10.1128/AAC.35.11.2415. [PubMed]
131. Clermont D, Chesneau O, De Cespédès G, Horaud T. 1997. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrob Agents Chemother 41:112–116. [PubMed]
132. Barbosa TM, Scott KP, Flint HJ. 1999. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. Environ Microbiol 1:53–64 http://dx.doi.org/10.1046/j.1462-2920.1999.00004.x. [PubMed]
133. Bengtsson B, Unnerstad HE, Ekman T, Artursson K, Nilsson-Ost M, Waller KP. 2009. Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet Microbiol 136:142–149 http://dx.doi.org/10.1016/j.vetmic.2008.10.024. [PubMed]
134. Guérin-Faublée V, Tardy F, Bouveron C, Carret G. 2002. Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. Int J Antimicrob Agents 19:219–226 http://dx.doi.org/10.1016/S0924-8579(01)00485-X. [PubMed]
135. Botrel MA, Haenni M, Morignat E, Sulpice P, Madec JY, Calavas D. 2010. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis 7:479–487 http://dx.doi.org/10.1089/fpd.2009.0425.
136. Rossitto PV, Ruiz L, Kikuchi Y, Glenn K, Luiz K, Watts JL, Cullor JS. 2002. Antibiotic susceptibility patterns for environmental streptococci isolated from bovine mastitis in central California dairies. J Dairy Sci 85:132–138 http://dx.doi.org/10.3168/jds.S0022-0302(02)74061-7.
137. Brown MB, Roberts MC. 1991. Tetracycline resistance determinants in streptococcal species isolated from the bovine mammary gland. Vet Microbiol 29:173–180 http://dx.doi.org/10.1016/0378-1135(91)90124-X.
138. Lollai SA, Ziccheddu M, Duprè I, Piras D. 2016. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance. J Appl Microbiol 121:941–951 http://dx.doi.org/10.1111/jam.13229. [PubMed]
139. Wisselink HJ, Veldman KT, Van den Eede C, Salmon SA, Mevius DJ. 2006. Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licensed in veterinary medicine. Vet Microbiol 113:73–82 http://dx.doi.org/10.1016/j.vetmic.2005.10.035. [PubMed]
140. Princivalli MS, Palmieri C, Magi G, Vignaroli C, Manzin A, Camporese A, Barocci S, Magistrali C, Facinelli B. 2009. Genetic diversity of Streptococcus suis clinical isolates from pigs and humans in Italy (2003–2007). Euro Surveill 14:pii=19310. http://www.eurosurveillance.org/content/10.2807/ese.14.33.19310-en http://dx.doi.org/10.2807/ese.14.33.19310-en. [PubMed]
141. Kataoka Y, Yoshida T, Sawada T. 2000. A 10-year survey of antimicrobial susceptibility of Streptococcus suis isolates from swine in Japan. J Vet Med Sci 62:1053–1057 http://dx.doi.org/10.1292/jvms.62.1053. [PubMed]
142. Zhang C, Ning Y, Zhang Z, Song L, Qiu H, Gao H. 2008. In vitro antimicrobial susceptibility of Streptococcus suis strains isolated from clinically healthy sows in China. Vet Microbiol 131:386–392 http://dx.doi.org/10.1016/j.vetmic.2008.04.005. [PubMed]
143. Vela AI, Moreno MA, Cebolla JA, González S, Latre MV, Domínguez L, Fernández-Garayzábal JF. 2005. Antimicrobial susceptibility of clinical strains of Streptococcus suis isolated from pigs in Spain. Vet Microbiol 105:143–147 http://dx.doi.org/10.1016/j.vetmic.2004.10.009. [PubMed]
144. Soares TC, Paes AC, Megid J, Ribolla PE, Paduan KS, Gottschalk M. 2014. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil. Can J Vet Res 78:145–149. [PubMed]
145. Manzin A, Palmieri C, Serra C, Saddi B, Princivalli MS, Loi G, Angioni G, Tiddia F, Varaldo PE, Facinelli B. 2008. Streptococcus suis meningitis without history of animal contact, Italy. Emerg Infect Dis 14:1946–1948 http://dx.doi.org/10.3201/eid1412.080679. [PubMed]
146. Chen L, Song Y, Wei Z, He H, Zhang A, Jin M. 2013. Antimicrobial susceptibility, tetracycline and erythromycin resistance genes, and multilocus sequence typing of Streptococcus suis isolates from diseased pigs in China. J Vet Med Sci 75:583–587 http://dx.doi.org/10.1292/jvms.12-0279. [PubMed]
147. Chander Y, Oliveira SR, Goyal SM. 2011. Identification of the tet(B) resistance gene in Streptococcus suis. Vet J 189:359–360 http://dx.doi.org/10.1016/j.tvjl.2010.07.004. [PubMed]
148. Haenni M, Hourquet C, Saras E, Madec JY. 2015. Genetic determinants of antimicrobial resistance in Streptococcus canis in France. J Glob Antimicrob Resist 3:142–143 http://dx.doi.org/10.1016/j.jgar.2015.02.001. [PubMed]
149. Tsuyuki Y, Kurita G, Murata Y, Goto M, Takahashi T. 2017. Identification of group G streptococci isolates from companion animals in Japan and their antimicrobial resistance. Jpn J Infect Dis 70:394–398 http://dx.doi.org/10.7883/yoken.JJID.2016.375. [PubMed]
150. Moyaert H, De Graef EM, Haesebrouck F, Decostere A. 2006. Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. Res Vet Sci 81:1–7 http://dx.doi.org/10.1016/j.rvsc.2005.10.004. [PubMed]
151. Pérez-Trallero E, Fernández-Mazarrasa C, García-Rey C, Bouza E, Aguilar L, García-de-Lomas J, Baquero F, Spanish Surveillance Group for Respiratory Pathogens. 2001. Antimicrobial susceptibilities of 1,684 Streptococcus pneumoniae and 2,039 Streptococcus pyogenes isolates and their ecological relationships: results of a 1-year (1998–1999) multicenter surveillance study in Spain. Antimicrob Agents Chemother 45:3334–3340 http://dx.doi.org/10.1128/AAC.45.12.3334-3340.2001. [PubMed]
152. Filipe SR, Tomasz A. 2000. Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc Natl Acad Sci USA 97:4891–4896 http://dx.doi.org/10.1073/pnas.080067697. [PubMed]
153. Guenzi E, Gasc AM, Sicard MA, Hakenbeck R. 1994. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12:505–515 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x. [PubMed]
154. Crisóstomo MI, Vollmer W, Kharat AS, Inhülsen S, Gehre F, Buckenmaier S, Tomasz A. 2006. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol Microbiol 61:1497–1509 http://dx.doi.org/10.1111/j.1365-2958.2006.05340.x. [PubMed]
155. Dias R, Félix D, Caniça M, Trombe MC. 2009. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins. BMC Microbiol 9:121 http://dx.doi.org/10.1186/1471-2180-9-121. [PubMed]
156. Soualhine H, Brochu V, Ménard F, Papadopoulou B, Weiss K, Bergeron MG, Légaré D, Drummelsmith J, Ouellette M. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol Microbiol 58:1430–1440 http://dx.doi.org/10.1111/j.1365-2958.2005.04914.x. [PubMed]
157. Fani F, Leprohon P, Légaré D, Ouellette M. 2011. Whole genome sequencing of penicillin-resistant Streptococcus pneumoniae reveals mutations in penicillin-binding proteins and in a putative iron permease. Genome Biol 12:R115 http://dx.doi.org/10.1186/gb-2011-12-11-r115. [PubMed]
158. Goldstein FW. 1999. Penicillin-resistant Streptococcus pneumoniae: selection by both beta-lactam and non-beta-lactam antibiotics. J Antimicrob Chemother 44:141–144 http://dx.doi.org/10.1093/jac/44.2.141. [PubMed]
159. Anonymous. 2008. Recent trends in antimicrobial resistance among Streptococcus pneumoniae and Staphylococcus aureus isolates: the French experience. Euro Surveill 13:pii=19035. http://eurosurveillance.org/content/10.2807/ese.13.46.19035-en.
160. Dagan R, Klugman KP. 2008. Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis 8:785–795 http://dx.doi.org/10.1016/S1473-3099(08)70281-0.
161. Kimura K, Suzuki S, Wachino J, Kurokawa H, Yamane K, Shibata N, Nagano N, Kato H, Shibayama K, Arakawa Y. 2008. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 52:2890–2897 http://dx.doi.org/10.1128/AAC.00185-08. [PubMed]
162. Nagano N, Nagano Y, Kimura K, Tamai K, Yanagisawa H, Arakawa Y. 2008. Genetic heterogeneity in pbp genes among clinically isolated group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 52:4258–4267 http://dx.doi.org/10.1128/AAC.00596-08. [PubMed]
163. Kimura K, Nagano N, Arakawa Y. 2015. Classification of group B streptococci with reduced β-lactam susceptibility (GBS-RBS) based on the amino acid substitutions in PBPs. J Antimicrob Chemother 70:1601–1603.
164. Cain D, Malouin F, Dargis M, Harel J, Gottschalk M. 1995. Alterations in penicillin-binding proteins in strains of Streptococcus suis possessing moderate and high levels of resistance to penicillin. FEMS Microbiol Lett 130:121–127 http://dx.doi.org/10.1111/j.1574-6968.1995.tb07708.x. [PubMed]
165. Haenni M, Galofaro L, Ythier M, Giddey M, Majcherczyk P, Moreillon P, Madec JY. 2010. Penicillin-binding protein gene alterations in Streptococcus uberis isolates presenting decreased susceptibility to penicillin. Antimicrob Agents Chemother 54:1140–1145 http://dx.doi.org/10.1128/AAC.00915-09. [PubMed]
166. Haenni M, Saras E, Madec JY. 2010. Demonstration of a shift towards penicillin resistance in the Streptococcus uberis population. J Med Microbiol 59:993–995 http://dx.doi.org/10.1099/jmm.0.018978-0. [PubMed]
167. Rüegsegger F, Ruf J, Tschuor A, Sigrist Y, Rosskopf M, Hässig M. 2014. Antimicrobial susceptibility of mastitis pathogens of dairy cows in Switzerland. Schweiz Arch Tierheilkd 156:483–488 http://dx.doi.org/10.1024/0036-7281/a000635. [PubMed]
168. Kalmus P, Aasmäe B, Kärssin A, Orro T, Kask K. 2011. Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Vet Scand 53:4 http://dx.doi.org/10.1186/1751-0147-53-4. [PubMed]
169. Bal EB, Bayar S, Bal MA. 2010. Antimicrobial susceptibilities of coagulase-negative staphylococci (CNS) and streptococci from bovine subclinical mastitis cases. J Microbiol 48:267–274 http://dx.doi.org/10.1007/s12275-010-9373-9. [PubMed]
170. Zhang C, Zhang Z, Song L, Fan X, Wen F, Xu S, Ning Y. 2015. Antimicrobial resistance profile and genotypic characteristics of Streptococcus suis capsular type 2 isolated from clinical carrier sows and diseased pigs in China. BioMed Res Int 2015:284303. [PubMed]
171. van Hout J, Heuvelink A, Gonggrijp M. 2016. Monitoring of antimicrobial susceptibility of Streptococcus suis in the Netherlands, 2013–2015. Vet Microbiol 194:5–10 http://dx.doi.org/10.1016/j.vetmic.2016.03.014. [PubMed]
172. Moreno LZ, da Costa BL, Matajira CE, Gomes VT, Mesquita RE, Silva AP, Moreno AM. 2016. Molecular and antimicrobial susceptibility profiling of Streptococcus dysgalactiae isolated from swine. Diagn Microbiol Infect Dis 86:178–180 http://dx.doi.org/10.1016/j.diagmicrobio.2016.07.020. [PubMed]
173. Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392. [PubMed]
174. Escudero JA, San Millan A, Gutierrez B, Hidalgo L, La Ragione RM, AbuOun M, Galimand M, Ferrándiz MJ, Domínguez L, de la Campa AG, Gonzalez-Zorn B. 2011. Fluoroquinolone efflux in Streptococcus suis is mediated by SatAB and not by SmrA. Antimicrob Agents Chemother 55:5850–5860 http://dx.doi.org/10.1128/AAC.00498-11. [PubMed]
175. Meunier D, Acar JF, Martel JL, Kroemer S, Vallé M. 2004. Seven years survey of susceptibility to marbofloxacin of bovine pathogenic strains from eight European countries. Int J Antimicrob Agents 24:268–278 http://dx.doi.org/10.1016/j.ijantimicag.2003.12.011. [PubMed]
176. Kroemer S, Galland D, Guérin-Faublée V, Giboin H, Woehrlé-Fontaine F. 2012. Survey of marbofloxacin susceptibility of bacteria isolated from cattle with respiratory disease and mastitis in Europe. Vet Rec 170:53 http://dx.doi.org/10.1136/vr.100246. [PubMed]
177. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. 2016. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet Microbiol 194:11–22 http://dx.doi.org/10.1016/j.vetmic.2016.04.009. [PubMed]
178. Morrissey I, Moyaert H, de Jong A, El Garch F, Klein U, Ludwig C, Thiry J, Youala M. 2016. Antimicrobial susceptibility monitoring of bacterial pathogens isolated from respiratory tract infections in dogs and cats across Europe: ComPath results. Vet Microbiol 191:44–51 http://dx.doi.org/10.1016/j.vetmic.2016.05.020. [PubMed]
179. Ludwig C, de Jong A, Moyaert H, El Garch F, Janes R, Klein U, Morrissey I, Thiry J, Youala M. 2016. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J Appl Microbiol 121:1254–1267 http://dx.doi.org/10.1111/jam.13287. [PubMed]
180. Burrus V, Pavlovic G, Decaris B, Guédon G. 2002. Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610 http://dx.doi.org/10.1046/j.1365-2958.2002.03191.x. [PubMed]
181. Wozniak RA, Waldor MK. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563 http://dx.doi.org/10.1038/nrmicro2382. [PubMed]
182. Santoro F, Vianna ME, Roberts AP. 2014. Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol 5:535–545 http://dx.doi.org/10.3389/fmicb.2014.00535. [PubMed]
183. Roberts AP, Mullany P. 2011. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35:856–871 http://dx.doi.org/10.1111/j.1574-6976.2011.00283.x. [PubMed]
184. Ambroset C, Coluzzi C, Guédon G, Devignes MD, Loux V, Lacroix T, Payot S, Leblond-Bourget N. 2016. New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration. Front Microbiol 6:1483–1504 http://dx.doi.org/10.3389/fmicb.2015.01483. [PubMed]
185. Huang J, Ma J, Shang K, Hu X, Liang Y, Li D, Wu Z, Dai L, Chen L, Wang L. 2016. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci. Front Cell Infect Microbiol 6:118 http://dx.doi.org/10.3389/fcimb.2016.00118. [PubMed]
186. Brenciani A, Tiberi E, Morici E, Oryasin E, Giovanetti E, Varaldo PE. 2012. ICESp1116, the genetic element responsible for erm(B)-mediated, inducible resistance to erythromycin in Streptococcus pyogenes. Antimicrob Agents Chemother 56:6425–6429 http://dx.doi.org/10.1128/AAC.01494-12. [PubMed]
187. Giovanetti E, Brenciani A, Tiberi E, Bacciaglia A, Varaldo PE. 2012. ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother 56:591–594 http://dx.doi.org/10.1128/AAC.05352-11. [PubMed]
188. Mingoia M, Morici E, Marini E, Brenciani A, Giovanetti E, Varaldo PE. 2016. Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother 71:593–600 http://dx.doi.org/10.1093/jac/dkv408. [PubMed]
189. Huang K, Song Y, Zhang Q, Zhang A, Jin M. 2016. Characterisation of a novel integrative and conjugative element ICESsD9 carrying erm(B) and tet(O) resistance determinants in Streptococcus suis, and the distribution of ICESsD9-like elements in clinical isolates. J Glob Antimicrob Resist 7:13–18 http://dx.doi.org/10.1016/j.jgar.2016.05.008. [PubMed]
190. Palmieri C, Magi G, Creti R, Baldassarri L, Imperi M, Gherardi G, Facinelli B. 2013. Interspecies mobilization of an ermT-carrying plasmid of Streptococcus dysgalactiae subsp. equisimilis by a coresident ICE of the ICESa2603 family. J Antimicrob Chemother 68:23–26 http://dx.doi.org/10.1093/jac/dks352. [PubMed]
191. Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, Bason NC, Mitchell AM, Quail MA, Andrew PW, Parkhill J, Bentley SD, Mitchell TJ. 2009. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniaeSpain23F ST81. J Bacteriol 191:1480–1489 http://dx.doi.org/10.1128/JB.01343-08. [PubMed]
192. Douarre PE, Sauvage E, Poyart C, Glaser P. 2015. Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother 70:3205–3213. [PubMed]
193. Huang K, Zhang Q, Song Y, Zhang Z, Zhang A, Xiao J, Jin M. 2016. Characterization of spectinomycin resistance in Streptococcus suis leads to two novel insights into drug resistance formation and dissemination mechanism. Antimicrob Agents Chemother 60:6390–6392 http://dx.doi.org/10.1128/AAC.01157-16. [PubMed]
194. Marini E, Palmieri C, Magi G, Facinelli B. 2015. Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol 178:99–104 http://dx.doi.org/10.1016/j.vetmic.2015.04.013. [PubMed]
195. Srinivasan V, Metcalf BJ, Knipe KM, Ouattara M, McGee L, Shewmaker PL, Glennen A, Nichols M, Harris C, Brimmage M, Ostrowsky B, Park CJ, Schrag SJ, Frace MA, Sammons SA, Beall B. 2014. vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus. MBio 5:e01386-14 http://dx.doi.org/10.1128/mBio.01386-14. [PubMed]
196. Meng F, Kanai K, Yoshikoshi K. 2009. Structural characterization of Tn916-like element in Streptococcus parauberis serotype II strains isolated from diseased Japanese flounder. Lett Appl Microbiol 48:770–776. [PubMed]
197. Palmieri C, Magi G, Mingoia M, Bagnarelli P, Ripa S, Varaldo PE, Facinelli B. 2012. Characterization of a Streptococcus suis tet(O/W/32/O)-carrying element transferable to major streptococcal pathogens. Antimicrob Agents Chemother 56:4697–4702 http://dx.doi.org/10.1128/AAC.00629-12. [PubMed]
198. Richards VP, Zadoks RN, Pavinski Bitar PD, Lefébure T, Lang P, Werner B, Tikofsky L, Moroni P, Stanhope MJ. 2012. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis. BMC Microbiol 12:293–309 http://dx.doi.org/10.1186/1471-2180-12-293. [PubMed]
199. Bekele T, Molla B. 2001. Mastitis in lactating camels (Camelus dromedarius) in Afar Region, north-eastern Ethiopia. Berl Munch Tierarztl Wochenschr 114:169–172. [PubMed]
200. Evans JJ, Pasnik DJ, Klesius PH, Al-Ablani S. 2006. First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose dolphin (Tursiops truncatus). J Wildl Dis 42:561–569 http://dx.doi.org/10.7589/0090-3558-42.3.561. [PubMed]
201. Jordal S, Glambek M, Oppegaard O, Kittang BR. 2015. New tricks from an old cow: infective endocarditis caused by Streptococcus dysgalactiae subsp. dysgalactiae. J Clin Microbiol 53:731–734 http://dx.doi.org/10.1128/JCM.02437-14. [PubMed]
202. Nomoto R, Munasinghe LI, Jin DH, Shimahara Y, Yasuda H, Nakamura A, Misawa N, Itami T, Yoshida T. 2004. Lancefield group C Streptococcus dysgalactiae infection responsible for fish mortalities in Japan. J Fish Dis 27:679–686 http://dx.doi.org/10.1111/j.1365-2761.2004.00591.x. [PubMed]
203. Hilmarsdóttir I, Valsdóttir F. 2007. Molecular typing of beta-hemolytic streptococci from two patients with lower-limb cellulitis: identical isolates from toe web and blood specimens. J Clin Microbiol 45:3131–3132 http://dx.doi.org/10.1128/JCM.00532-07. [PubMed]
204. Kawata K, Minakami T, Mori Y, Katsumi M, Kataoka Y, Ezawa A, Kikuchi N, Takahashi T. 2003. rDNA sequence analyses of Streptococcus dysgalactiae subsp. equisimilis isolates from pigs. Int J Syst Evol Microbiol 53:1941–1946 http://dx.doi.org/10.1099/ijs.0.02666-0. [PubMed]
205. Lopardo HA, Vidal P, Sparo M, Jeric P, Centron D, Facklam RR, Paganini H, Pagniez NG, Lovgren M, Beall B. 2005. Six-month multicenter study on invasive infections due to Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis in Argentina. J Clin Microbiol 43:802–807 http://dx.doi.org/10.1128/JCM.43.2.802-807.2005. [PubMed]
206. Nei T, Akutsu K, Shima A, Tsuboi I, Suzuki H, Yamamoto T, Tanaka K, Shinoyama A, Kojima Y, Washio Y, Okawa S, Sonobe K, Norose Y, Saito R. 2012. A case of streptococcal toxic shock syndrome due to group G streptococci identified as Streptococcus dysgalactiae subsp. equisimilis. J Infect Chemother 18:919–924 http://dx.doi.org/10.1007/s10156-012-0375-x. [PubMed]
207. Savini V, Catavitello C, Talia M, Manna A, Pompetti F, Di Bonaventura G, Di Giuseppe N, Febbo F, Balbinot A, Di Zacomo S, Esattore F, D’Antonio D. 2008. Beta-lactam failure in treatment of two group G Streptococcus dysgalactiae subsp. equisimilis pharyngitis patients. J Clin Microbiol 46:814–816 http://dx.doi.org/10.1128/JCM.00985-07. [PubMed]
208. Siljander T, Karppelin M, Vähäkuopus S, Syrjänen J, Toropainen M, Kere J, Vuento R, Jussila T, Vuopio-Varkila J. 2008. Acute bacterial, nonnecrotizing cellulitis in Finland: microbiological findings. Clin Infect Dis 46:855–861 http://dx.doi.org/10.1086/527388. [PubMed]
209. Wajima T, Morozumi M, Hanada S, Sunaoshi K, Chiba N, Iwata S, Ubukata K. 2016. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis, Japan. Emerg Infect Dis 22:247–254 http://dx.doi.org/10.3201/eid2202.141732. [PubMed]
210. Zoric M, Nilsson E, Lundeheim N, Wallgren P. 2009. Incidence of lameness and abrasions in piglets in identical farrowing pens with four different types of floor. Acta Vet Scand 51:23–32 http://dx.doi.org/10.1186/1751-0147-51-23. [PubMed]
211. Casagrande Proietti P, Bietta A, Coppola G, Felicetti M, Cook RF, Coletti M, Marenzoni ML, Passamonti F. 2011. Isolation and characterization of β-haemolytic-streptococci from endometritis in mares. Vet Microbiol 152:126–130 http://dx.doi.org/10.1016/j.vetmic.2011.04.009. [PubMed]
212. Imai D, Jang S, Miller M, Conrad PA. 2009. Characterization of beta-hemolytic streptococci isolated from southern sea otters (Enhydra lutris nereis) stranded along the California coast. Vet Microbiol 136:378–381 http://dx.doi.org/10.1016/j.vetmic.2008.11.009. [PubMed]
213. García-País MJ, Rabuñal R, Armesto V, López-Reboiro M, García-Garrote F, Coira A, Pita J, Rodríguez-Macías AI, López-Álvarez MJ, Alonso MP, Corredoira J. 2016. Streptococcus bovis septic arthritis and osteomyelitis: a report of 21 cases and a literature review. Semin Arthritis Rheum 45:738–746 http://dx.doi.org/10.1016/j.semarthrit.2016.02.001. [PubMed]
214. Osawa R, Sly LI. 1991. Phenotypic characterization of CO2-requiring strains of Streptococcus bovis from koalas. Appl Environ Microbiol 57:3037–3039. [PubMed]
215. Sekizaki T, Nishiya H, Nakajima S, Nishizono M, Kawano M, Okura M, Takamatsu D, Nishino H, Ishiji T, Osawa R. 2008. Endocarditis in chickens caused by subclinical infection of Streptococcus gallolyticus subsp. gallolyticus. Avian Dis 52:183–186 http://dx.doi.org/10.1637/8048-070307-Case. [PubMed]
216. van Samkar A, Brouwer MC, Pannekoek Y, van der Ende A, van de Beek D. 2015. Streptococcus gallolyticus meningitis in adults: report of five cases and review of the literature. Clin Microbiol Infect 21:1077–1083 http://dx.doi.org/10.1016/j.cmi.2015.08.003. [PubMed]
217. Katsumi M, Kataoka Y, Takahashi T, Kikuchi N, Hiramune T. 1997. Bacterial isolation from slaughtered pigs associated with endocarditis, especially the isolation of Streptococcus suis. J Vet Med Sci 59:75–78 http://dx.doi.org/10.1292/jvms.59.75. [PubMed]
218. O’Sullivan T, Friendship R, Blackwell T, Pearl D, McEwen B, Carman S, Slavić D, Dewey C. 2011. Microbiological identification and analysis of swine tonsils collected from carcasses at slaughter. Can J Vet Res 75:106–111. [PubMed]
219. Miller CW, Prescott JF, Mathews KA, Betschel SD, Yager JA, Guru V, DeWinter L, Low DE. 1996. Streptococcal toxic shock syndrome in dogs. J Am Vet Med Assoc 209:1421–1426. [PubMed]
220. Reissmann S, Friedrichs C, Rajkumari R, Itzek A, Fulde M, Rodloff AC, Brahmadathan KN, Chhatwal GS, Nitsche-Schmitz DP. 2010. Contribution of Streptococcus anginosus to infections caused by groups C and G streptococci, southern India. Emerg Infect Dis 16:656–663 http://dx.doi.org/10.3201/eid1604.090448. [PubMed]
221. Hatrongjit R, Kerdsin A, Gottschalk M, Takeuchi D, Hamada S, Oishi K, Akeda Y. 2015. First human case report of sepsis due to infection with Streptococcus suis serotype 31 in Thailand. BMC Infect Dis 15:392–399 http://dx.doi.org/10.1186/s12879-015-1136-0. [PubMed]
222. Mancini F, Adamo F, Creti R, Monaco M, Alfarone G, Pantosti A, Ciervo A. 2016. A fatal case of streptococcal toxic shock syndrome caused by Streptococcus suis carrying tet (40) and tet (O/W/32/O), Italy. J Infect Chemother 22:774–776 http://dx.doi.org/10.1016/j.jiac.2016.05.011.
223. Sánchez del Rey V, Fernández-Garayzábal JF, Briones V, Iriso A, Domínguez L, Gottschalk M, Vela AI. 2013. Genetic analysis of Streptococcus suis isolates from wild rabbits. Vet Microbiol 165:483–486 http://dx.doi.org/10.1016/j.vetmic.2013.04.025. [PubMed]
224. Sánchez del Rey V, Fernández-Garayzábal JF, Domínguez L, Gottschalk M, Vela AI. 2016. Screening of virulence-associated genes as a molecular typing method for characterization of Streptococcus suis isolates recovered from wild boars and pigs. Vet J 209:108–112 http://dx.doi.org/10.1016/j.tvjl.2015.11.007. [PubMed]
225. Staats JJ, Feder I, Okwumabua O, Chengappa MM. 1997. Streptococcus suis: past and present. Vet Res Commun 21:381–407 http://dx.doi.org/10.1023/A:1005870317757. [PubMed]
226. Anshary H, Kurniawan RA, Sriwulan S, Ramli R, Baxa DV. 2014. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia. Springerplus 3:627–638 http://dx.doi.org/10.1186/2193-1801-3-627.
227. Bonar CJ, Wagner RA. 2003. A third report of “golf ball disease” in an Amazon River dolphin (Inia geoffrensis) associated with Streptococcus iniae. J Zoo Wildl Med 34:296–301 http://dx.doi.org/10.1638/1042-7260(2003)034[0296:ATROGB]2.0.CO;2.
228. Chou L, Griffin MJ, Fraites T, Ware C, Ferguson H, Keirstead N, Brake J, Wiles J, Hawke JP, Kearney MT, Getchell RG, Gaunt P, Soto E. 2014. Phenotypic and genotypic heterogeneity among Streptococcus iniae isolates recovered from cultured and wild fish in North America, Central America and the Caribbean islands. J Aquat Anim Health 26:263–271 http://dx.doi.org/10.1080/08997659.2014.945048. [PubMed]
229. El Aamri F, Padilla D, Acosta F, Caballero M, Roo J, Bravo J, Vivas J, Real F. 2010. First report of Streptococcus iniae in red porgy (Pagrus pagrus, L.). J Fish Dis 33:901–905 http://dx.doi.org/10.1111/j.1365-2761.2010.01191.x. [PubMed]
230. Figueiredo HC, Netto LN, Leal CA, Pereira UP, Mian GF. 2012. Streptococcus iniae outbreaks in Brazilian Nile tilapia (Oreochromis niloticus L:) farms. Braz J Microbiol 43:576–580 http://dx.doi.org/10.1590/S1517-83822012000200019. [PubMed]
231. Keirstead ND, Brake JW, Griffin MJ, Halliday-Simmonds I, Thrall MA, Soto E. 2014. Fatal septicemia caused by the zoonotic bacterium Streptococcus iniae during an outbreak in Caribbean reef fish. Vet Pathol 51:1035–1041 http://dx.doi.org/10.1177/0300985813505876. [PubMed]
232. Denamiel G, Llorente P, Carabella M, Rebuelto M, Gentilini E. 2005. Anti-microbial susceptibility of Streptococcus spp. isolated from bovine mastitis in Argentina. J Vet Med B Infect Dis Vet Public Health 52:125–128 http://dx.doi.org/10.1111/j.1439-0450.2005.00830.x. [PubMed]
233. Nam HM, Lim SK, Kang HM, Kim JM, Moon JS, Jang KC, Joo YS, Kang MI, Jung SC. 2009. Antimicrobial resistance of streptococci isolated from mastitic bovine milk samples in Korea. J Vet Diagn Invest 21:698–701 http://dx.doi.org/10.1177/104063870902100517. [PubMed]
234. Entorf M, Feßler AT, Kaspar H, Kadlec K, Peters T, Schwarz S. 2016. Comparative erythromycin and tylosin susceptibility testing of streptococci from bovine mastitis. Vet Microbiol 194:36–42 http://dx.doi.org/10.1016/j.vetmic.2015.12.003. [PubMed]
235. Marie J, Morvan H, Berthelot-Hérault F, Sanders P, Kempf I, Gautier-Bouchardon AV, Jouy E, Kobisch M. 2002. Antimicrobial susceptibility of Streptococcus suis isolated from swine in France and from humans in different countries between 1996 and 2000. J Antimicrob Chemother 50:201–209 http://dx.doi.org/10.1093/jac/dkf099. [PubMed]
236. Martel A, Baele M, Devriese LA, Goossens H, Wisselink HJ, Decostere A, Haesebrouck F. 2001. Prevalence and mechanism of resistance against macrolides and lincosamides in Streptococcus suis isolates. Vet Microbiol 83:287–297 http://dx.doi.org/10.1016/S0378-1135(01)00426-6.
237. Tian Y, Aarestrup FM, Lu CP. 2004. Characterization of Streptococcus suis serotype 7 isolates from diseased pigs in Denmark. Vet Microbiol 103:55–62 http://dx.doi.org/10.1016/j.vetmic.2004.07.009. [PubMed]
238. Overesch G, Stephan R, Perreten V. 2013. Antimicrobial susceptibility of gram-positive udder pathogens from bovine mastitis milk in Switzerland. Schweiz Arch Tierheilkd 155:339–350. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0008-2017
2018-03-29
2018-04-21

Abstract:

The genus includes Gram-positive organisms shaped in cocci and organized in chains. They are commensals, pathogens, and opportunistic pathogens for humans and animals. Most species of veterinary relevance have a specific ecological niche, such as , which is almost exclusively an environmental pathogen causing bovine mastitis. In contrast, can be considered as a true zoonotic pathogen, causing specific diseases in humans after contact with infected animals or derived food products. Finally, species such as can be sporadically zoonotic, even though they are pathogens of both humans and animals independently. For clarification, a short taxonomical overview will be given here to highlight the diversity of streptococci that infect animals. Several families of antibiotics are used to treat animals for streptococcal infections. First-line treatments are penicillins (alone or in combination with aminoglycosides), macrolides and lincosamides, fluoroquinolones, and tetracyclines. Because of the selecting role of antibiotics, resistance phenotypes have been reported in streptococci isolated from animals worldwide. Globally, the dynamic of resistance acquisition in streptococci is slower than what is experienced in , probably due to the much more limited horizontal spread of resistance genes. Nonetheless, transposons or integrative and conjugative elements can disseminate resistance determinants among streptococci. Besides providing key elements on the prevalence of resistance in streptococci from animals, this article will also largely consider the mechanisms and molecular epidemiology of the major types of resistance to antimicrobials encountered in the most important streptococcal species in veterinary medicine.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Ten-year evolution of resistance in France in (A) and (B) .

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0008-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Overview of streptococci causative of infections in humans and animals

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0008-2017
Generic image for table
TABLE 2

Erythromycin and lincosamide resistance in streptococci in animal hosts

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0008-2017
Generic image for table
TABLE 3

Distribution of the tetracycline resistance genes in streptococci in animal hosts

Source: microbiolspec March 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0008-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error