1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance among Staphylococci of Animal Origin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Stefan Schwarz1, Andrea T. Feßler2, Igor Loncaric3, Congming Wu4, Kristina Kadlec5, Yang Wang6, Jianzhong Shen7
  • Editors: Frank Møller Aarestrup8, Stefan Schwarz9, Jianzhong Shen10, Lina Cavaco11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; 2: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; 3: Institute of Microbiology, University of Veterinary Medicine, A-1210 Vienna, Austria; 4: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 5: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt-Mariensee, Germany; 6: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 7: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 8: Technical University of Denmark, Lyngby, Denmark; 9: Friedrich-Loeffler-Institut, Neustadt, Germany; 10: China Agricultural University, Beijing, China; 11: Technical University of Denmark, Lyngby, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017
  • Received 24 February 2017 Accepted 22 March 2018 Published 05 July 2018
  • Stefan Schwarz, stefan.schwarz@fu-berlin.de
image of Antimicrobial Resistance among Staphylococci of Animal Origin
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance among Staphylococci of Animal Origin, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0010-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0010-2017-2.gif
  • Abstract:

    Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin.

  • Citation: Schwarz S, Feßler A, Loncaric I, Wu C, Kadlec K, Wang Y, Shen J. 2018. Antimicrobial Resistance among Staphylococci of Animal Origin. Microbiol Spectrum 6(4):ARBA-0010-2017. doi:10.1128/microbiolspec.ARBA-0010-2017.

References

1. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134. [PubMed]
2. Jensen SO, Lyon BR. 2009. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582 http://dx.doi.org/10.2217/fmb.09.30. [PubMed]
3. Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K. 2011. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci. Ann N Y Acad Sci 1241:82–103 http://dx.doi.org/10.1111/j.1749-6632.2011.06275.x. [PubMed]
4. Feßler AT, Li J, Kadlec K, Wang Y, Schwarz S. 2018. Antimicrobial resistance properties of Staphylococcus aureus, p 57–86. In Fetsch A (ed), Staphylococcus aureus – a Foodborne Pathogen: Epidemiology, Detection, Characterization, Prevention and Control. Academic Press, London, United Kingdom. http://dx.doi.org/10.1016/B978-0-12-809671-0.00004-8
5. Aarestrup FM, Schwarz S. 2006. Antimicrobial resistance in staphylococci and streptococci of animal origin, p 187–212. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
6. Wendlandt S, Feßler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K. 2013. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol 303:338–349 http://dx.doi.org/10.1016/j.ijmm.2013.02.006. [PubMed]
7. Kadlec K, Schwarz S. 2012. Antimicrobial resistance of Staphylococcus pseudintermedius. Vet Dermatol 23:276–282, e55 http://dx.doi.org/10.1111/j.1365-3164.2012.01056.x.
8. Werckenthin C, Cardoso M, Martel J-L, Schwarz S. 2001. Antimicrobial resistance in staphylococci from animals with particular reference to bovine Staphylococcus aureus, porcine Staphylococcus hyicus, and canine Staphylococcus intermedius. Vet Res 32:341–362 http://dx.doi.org/10.1051/vetres:2001129. [PubMed]
9. Kadlec K, Feßler AT, Hauschild T, Schwarz S. 2012. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 18:745–755 http://dx.doi.org/10.1111/j.1469-0691.2012.03842.x. [PubMed]
10. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. 2011. Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203 http://dx.doi.org/10.3389/fmicb.2011.00203. [PubMed]
11. Roberts MC, Schwarz S, Aarts HJ. 2012. Erratum: acquired antibiotic resistance genes: an overview. Front Microbiol 3:384 http://dx.doi.org/10.3389/fmicb.2012.00384. [PubMed]
12. Wendlandt S, Schwarz S, Silley P. 2013. MRSA: a foodborne pathogen? Annu Rev Food Sci Technol 4:117–139 http://dx.doi.org/10.1146/annurev-food-030212-182653. [PubMed]
13. Rowland SJ, Dyke KG. 1989. Characterization of the staphylococcal β-lactamase transposon Tn552. EMBO J 8:2761–2773. [PubMed]
14. Vesterholm-Nielsen M, Olhom Larsen M, Olsen JE, Aarestrup FM. 1999. Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta Vet Scand 40:279–286. [PubMed]
15. Yazdankhah SP, Sørum H, Oppegaard H. 2000. Comparison of genes involved in penicillin resistance in staphylococci of bovine origin. Microb Drug Resist 6:29–36 http://dx.doi.org/10.1089/mdr.2000.6.29. [PubMed]
16. Haveri M, Suominen S, Rantala L, Honkanen-Buzalski T, Pyörälä S. 2005. Comparison of phenotypic and genotypic detection of penicillin G resistance of Staphylococcus aureus isolated from bovine intramammary infection. Vet Microbiol 106:97–102 http://dx.doi.org/10.1016/j.vetmic.2004.12.015. [PubMed]
17. Olsen JE, Christensen H, Aarestrup FM. 2006. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 57:450–460 http://dx.doi.org/10.1093/jac/dki492. [PubMed]
18. Sawant AA, Gillespie BE, Oliver SP. 2009. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134:73–81 http://dx.doi.org/10.1016/j.vetmic.2008.09.006. [PubMed]
19. Aarestrup FM, Jensen LB. 2002. Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs. Vet Microbiol 89:83–94 http://dx.doi.org/10.1016/S0378-1135(02)00177-3.
20. Feßler AT, Thomas P, Mühldorfer K, Grobbel M, Brombach J, Eichhorn I, Monecke S, Ehricht S, Schwarz S. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from zoo and wild animals. Vet Microbiol 218:98–103 http://dx.doi.org/10.1016/j.vetmic.2018.03.020. [PubMed]
21. Kadlec K, Ehricht R, Monecke S, Steinacker U, Kaspar H, Mankertz J, Schwarz S. 2009. Diversity of antimicrobial resistance pheno- and genotypes of methicillin-resistant Staphylococcus aureus ST398 from diseased swine. J Antimicrob Chemother 64:1156–1164 http://dx.doi.org/10.1093/jac/dkp350. [PubMed]
22. Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Käsbohrer A, Schroeter A, Hammerl JA, Hertwig S, Helmuth R, Bräunig J, Mendoza MC, Appel B, Rodicio MR, Guerra B. 2011. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol 77:3052–3060 http://dx.doi.org/10.1128/AEM.02260-10. [PubMed]
23. Overesch G, Büttner S, Rossano A, Perreten V. 2011. The increase of methicillin-resistant Staphylococcus aureus (MRSA) and the presence of an unusual sequence type ST49 in slaughter pigs in Switzerland. BMC Vet Res 7:30 http://dx.doi.org/10.1186/1746-6148-7-30. [PubMed]
24. Feßler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. 2010. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 65:619–625 http://dx.doi.org/10.1093/jac/dkq021. [PubMed]
25. Walther B, Monecke S, Ruscher C, Friedrich AW, Ehricht R, Slickers P, Soba A, Wleklinski CG, Wieler LH, Lübke-Becker A. 2009. Comparative molecular analysis substantiates zoonotic potential of equine methicillin-resistant Staphylococcus aureus. J Clin Microbiol 47:704–710 http://dx.doi.org/10.1128/JCM.01626-08. [PubMed]
26. Gharsa H, Ben Sallem R, Ben Slama K, Gómez-Sanz E, Lozano C, Jouini A, Klibi N, Zarazaga M, Boudabous A, Torres C. 2012. High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage. BMC Vet Res 8:203 http://dx.doi.org/10.1186/1746-6148-8-203. [PubMed]
27. Gharsa H, Ben Slama K, Lozano C, Gómez-Sanz E, Klibi N, Ben Sallem R, Gómez P, Zarazaga M, Boudabous A, Torres C. 2012. Prevalence, antibiotic resistance, virulence traits and genetic lineages of Staphylococcus aureus in healthy sheep in Tunisia. Vet Microbiol 156:367–373 http://dx.doi.org/10.1016/j.vetmic.2011.11.009. [PubMed]
28. Monecke S, Ruppelt A, Wendlandt S, Schwarz S, Slickers P, Ehricht R, Jäckel SC. 2013. Genotyping of Staphylococcus aureus isolates from diseased poultry. Vet Microbiol 162:806–812 http://dx.doi.org/10.1016/j.vetmic.2012.10.018. [PubMed]
29. Wendlandt S, Kadlec K, Feßler AT, Monecke S, Ehricht R, van de Giessen AW, Hengeveld PD, Huijsdens X, Schwarz S, van Duijkeren E. 2013. Resistance phenotypes and genotypes of methicillin-resistant Staphylococcus aureus isolates from broiler chickens at slaughter and abattoir workers. J Antimicrob Chemother 68:2458–2463 http://dx.doi.org/10.1093/jac/dkt239. [PubMed]
30. Wendlandt S, Kadlec K, Feßler AT, Mevius D, van Essen-Zandbergen A, Hengeveld PD, Bosch T, Schouls L, Schwarz S, van Duijkeren E. 2013. Transmission of methicillin-resistant Staphylococcus aureus isolates on broiler farms. Vet Microbiol 167:632–637 http://dx.doi.org/10.1016/j.vetmic.2013.09.019. [PubMed]
31. Monecke S, Gavier-Widén D, Hotzel H, Peters M, Guenther S, Lazaris A, Loncaric I, Müller E, Reissig A, Ruppelt-Lorz A, Shore AC, Walter B, Coleman DC, Ehricht R. 2016. Diversity of Staphylococcus aureus isolates in European wildlife. PLoS One 11:e0168433 http://dx.doi.org/10.1371/journal.pone.0168433. [PubMed]
32. Malik S, Christensen H, Peng H, Barton MD. 2007. Presence and diversity of the β-lactamase gene in cat and dog staphylococci. Vet Microbiol 123:162–168 http://dx.doi.org/10.1016/j.vetmic.2007.02.012. [PubMed]
33. Norström M, Sunde M, Tharaldsen H, Mørk T, Bergsjø B, Kruse H. 2009. Antimicrobial resistance in Staphylococcus pseudintermedius in the Norwegian dog population. Microb Drug Resist 15:55–59 http://dx.doi.org/10.1089/mdr.2009.0865. [PubMed]
34. Perreten V, Kadlec K, Schwarz S, Grönlund Andersson U, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. 2010. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother 65:1145–1154 http://dx.doi.org/10.1093/jac/dkq078. [PubMed]
35. Kadlec K, Schwarz S, Perreten V, Andersson UG, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. 2010. Molecular analysis of methicillin-resistant Staphylococcus pseudintermedius of feline origin from different European countries and North America. J Antimicrob Chemother 65:1826–1828 http://dx.doi.org/10.1093/jac/dkq203. [PubMed]
36. Gómez-Sanz E, Torres C, Lozano C, Sáenz Y, Zarazaga M. 2011. Detection and characterization of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs in La Rioja, Spain. Comp Immunol Microbiol Infect Dis 34:447–453 http://dx.doi.org/10.1016/j.cimid.2011.08.002.
37. Andreis SN, Perreten V, Schwendener S. 2017. Novel β-Lactamase blaARL in Staphylococcus arlettae. MSphere 2:e00117-17 http://dx.doi.org/10.1128/mSphere.00117-17. [PubMed]
38. Descloux S, Rossano A, Perreten V. 2008. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. J Clin Microbiol 46:1818–1823 http://dx.doi.org/10.1128/JCM.02255-07. [PubMed]
39. Black CC, Solyman SM, Eberlein LC, Bemis DA, Woron AM, Kania SA. 2009. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet Microbiol 139:333–338 http://dx.doi.org/10.1016/j.vetmic.2009.06.029. [PubMed]
40. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961–4967 http://dx.doi.org/10.1128/AAC.00579-09. [PubMed]
41. Wu Z, Li F, Liu D, Xue H, Zhao X. 2015. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob Agents Chemother 59:7597–7601 http://dx.doi.org/10.1128/AAC.01692-15. [PubMed]
42. Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U, Ohlsen K, Strommenger B, Walther B, Wieler L, Witte W. 2010. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 300:109–117 http://dx.doi.org/10.1016/j.ijmm.2009.11.002. [PubMed]
43. Loeffler A, Lloyd DH. 2010. Companion animals: a reservoir for methicillin-resistant Staphylococcus aureus in the community? Epidemiol Infect 138:595–605 http://dx.doi.org/10.1017/S0950268809991476. [PubMed]
44. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. 2010. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138:606–625 http://dx.doi.org/10.1017/S0950268809991567. [PubMed]
45. Weese JS. 2010. Methicillin-resistant Staphylococcus aureus in animals. ILAR J 51:233–244 http://dx.doi.org/10.1093/ilar.51.3.233. [PubMed]
46. Weese JS, van Duijkeren E. 2010. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol 140:418–429 http://dx.doi.org/10.1016/j.vetmic.2009.01.039. [PubMed]
47. Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. 2011. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634 http://dx.doi.org/10.1016/j.ijmm.2011.09.004. [PubMed]
48. Fitzgerald JR. 2012. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20:192–198 http://dx.doi.org/10.1016/j.tim.2012.01.006. [PubMed]
49. Fluit AC. 2012. Livestock-associated Staphylococcus aureus. Clin Microbiol Infect 18:735–744 http://dx.doi.org/10.1111/j.1469-0691.2012.03846.x. [PubMed]
50. Pantosti A. 2012. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front Microbiol 3:127 http://dx.doi.org/10.3389/fmicb.2012.00127. [PubMed]
51. Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966 http://dx.doi.org/10.3201/eid1112.050428. [PubMed]
52. de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, van de Giessen AW, van Duijkeren E, Huijsdens XW. 2007. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 122:366–372 http://dx.doi.org/10.1016/j.vetmic.2007.01.027. [PubMed]
53. van Duijkeren E, Jansen MD, Flemming SC, de Neeling H, Wagenaar JA, Schoormans AH, van Nes A, Fluit AC. 2007. Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerg Infect Dis 13:1408–1410 http://dx.doi.org/10.3201/eid1309.061268. [PubMed]
54. Wagenaar JA, Yue H, Pritchard J, Broekhuizen-Stins M, Huijsdens X, Mevius DJ, Bosch T, Van Duijkeren E. 2009. Unexpected sequence types in livestock associated methicillin-resistant Staphylococcus aureus (MRSA): MRSA ST9 and a single locus variant of ST9 in pig farming in China. Vet Microbiol 139:405–409 http://dx.doi.org/10.1016/j.vetmic.2009.06.014. [PubMed]
55. Monecke S, Kuhnert P, Hotzel H, Slickers P, Ehricht R. 2007. Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125:128–140 http://dx.doi.org/10.1016/j.vetmic.2007.05.016. [PubMed]
56. Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P. 2010. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet Microbiol 144:166–171 http://dx.doi.org/10.1016/j.vetmic.2009.12.044. [PubMed]
57. Holmes MA, Zadoks RN. 2011. Methicillin resistant S. aureus in human and bovine mastitis. J Mammary Gland Biol Neoplasia 16:373–382 http://dx.doi.org/10.1007/s10911-011-9237-x. [PubMed]
58. Spohr M, Rau J, Friedrich A, Klittich G, Fetsch A, Guerra B, Hammerl JA, Tenhagen BA. 2011. Methicillin-resistant Staphylococcus aureus (MRSA) in three dairy herds in southwest Germany. Zoonoses Public Health 58:252–261 http://dx.doi.org/10.1111/j.1863-2378.2010.01344.x. [PubMed]
59. Feßler AT, Olde Riekerink RG, Rothkamp A, Kadlec K, Sampimon OC, Lam TJ, Schwarz S. 2012. Characterization of methicillin-resistant Staphylococcus aureus CC398 obtained from humans and animals on dairy farms. Vet Microbiol 160:77–84 http://dx.doi.org/10.1016/j.vetmic.2012.05.005. [PubMed]
60. Wang XM, Zhang WJ, Schwarz S, Yu SY, Liu H, Si W, Zhang RM, Liu S. 2012. Methicillin-resistant Staphylococcus aureus ST9 from a case of bovine mastitis carries the genes cfr and erm(A) on a small plasmid. J Antimicrob Chemother 67:1287–1289 http://dx.doi.org/10.1093/jac/dks028. [PubMed]
61. Juhász-Kaszanyitzky E, Jánosi S, Somogyi P, Dán A, van der Graaf-van Bloois L, van Duijkeren E, Wagenaar JA. 2007. MRSA transmission between cows and humans. Emerg Infect Dis 13:630–632 http://dx.doi.org/10.3201/eid1304.060833. [PubMed]
62. Schauer B, Krametter-Frötscher R, Knauer F, Ehricht R, Monecke S, Feßler AT, Schwarz S, Grunert T, Spergser J, Loncaric I. 2018. Diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Austrian ruminants and New World camelids. Vet Microbiol 215:77–82 http://dx.doi.org/10.1016/j.vetmic.2018.01.006. [PubMed]
63. Chu C, Yu C, Lee Y, Su Y. 2012. Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Vet Res 8:39 http://dx.doi.org/10.1186/1746-6148-8-39. [PubMed]
64. Nemati M, Hermans K, Lipinska U, Denis O, Deplano A, Struelens M, Devriese LA, Pasmans F, Haesebrouck F. 2008. Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: first detection of livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 52:3817–3819 http://dx.doi.org/10.1128/AAC.00613-08. [PubMed]
65. Persoons D, Van Hoorebeke S, Hermans K, Butaye P, de Kruif A, Haesebrouck F, Dewulf J. 2009. Methicillin-resistant Staphylococcus aureus in poultry. Emerg Infect Dis 15:452–453 http://dx.doi.org/10.3201/eid1503.080696. [PubMed]
66. Cuny C, Strommenger B, Witte W, Stanek C. 2008. Clusters of infections in horses with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug Resist 14:307–310 http://dx.doi.org/10.1089/mdr.2008.0845. [PubMed]
67. van Duijkeren E, Moleman M, Sloet van Oldruitenborgh-Oosterbaan MM, Multem J, Troelstra A, Fluit AC, van Wamel WJ, Houwers DJ, de Neeling AJ, Wagenaar JA. 2010. Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. Vet Microbiol 141:96–102 http://dx.doi.org/10.1016/j.vetmic.2009.08.009. [PubMed]
68. Sieber S, Gerber V, Jandova V, Rossano A, Evison JM, Perreten V. 2011. Evolution of multidrug-resistant Staphylococcus aureus infections in horses and colonized personnel in an equine clinic between 2005 and 2010. Microb Drug Resist 17:471–478 http://dx.doi.org/10.1089/mdr.2010.0188. [PubMed]
69. Sing A, Tuschak C, Hörmansdorfer S. 2008. Methicillin-resistant Staphylococcus aureus in a family and its pet cat. N Engl J Med 358:1200–1201 http://dx.doi.org/10.1056/NEJMc0706805. [PubMed]
70. Walther B, Wieler LH, Friedrich AW, Hanssen AM, Kohn B, Brunnberg L, Lübke-Becker A. 2008. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from small and exotic animals at a university hospital during routine microbiological examinations. Vet Microbiol 127:171–178 http://dx.doi.org/10.1016/j.vetmic.2007.07.018. [PubMed]
71. Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Schwarz S, Simon D, Nolte I. 2009. Transmission of methicillin-resistant Staphylococcus aureus strains between humans and dogs: two case reports. J Antimicrob Chemother 64:660–662 http://dx.doi.org/10.1093/jac/dkp243. [PubMed]
72. Coelho C, Torres C, Radhouani H, Pinto L, Lozano C, Gómez-Sanz E, Zaragaza M, Igrejas G, Poeta P. 2011. Molecular detection and characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates from dogs in Portugal. Microb Drug Resist 17:333–337 http://dx.doi.org/10.1089/mdr.2010.0080. [PubMed]
73. Haenni M, Saras E, Châtre P, Médaille C, Bes M, Madec JY, Laurent F. 2012. A USA300 variant and other human-related methicillin-resistant Staphylococcus aureus strains infecting cats and dogs in France. J Antimicrob Chemother 67:326–329 http://dx.doi.org/10.1093/jac/dkr499. [PubMed]
74. Ruscher C, Lübke-Becker A, Wleklinski CG, Soba A, Wieler LH, Walther B. 2009. Prevalence of methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals and equidaes. Vet Microbiol 136:197–201 http://dx.doi.org/10.1016/j.vetmic.2008.10.023. [PubMed]
75. Ruscher C, Lübke-Becker A, Semmler T, Wleklinski CG, Paasch A, Soba A, Stamm I, Kopp P, Wieler LH, Walther B. 2010. Widespread rapid emergence of a distinct methicillin- and multidrug-resistant Staphylococcus pseudintermedius (MRSP) genetic lineage in Europe. Vet Microbiol 144:340–346 http://dx.doi.org/10.1016/j.vetmic.2010.01.008. [PubMed]
76. Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Kreienbrock L, Schwarz S, Simon D, Nolte I. 2011. Methicillin-resistant Staphylococcus pseudintermedius among dogs admitted to a small animal hospital. Vet Microbiol 150:191–197 http://dx.doi.org/10.1016/j.vetmic.2010.12.018. [PubMed]
77. Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Schwarz S, Kreienbrock L, Nolte I, Simon D. 2011. Methicillin-resistant Staphylococcus pseudintermedius among cats admitted to a veterinary teaching hospital. Vet Microbiol 153:414–416 http://dx.doi.org/10.1016/j.vetmic.2011.05.045. [PubMed]
78. Wang Y, Yang J, Logue CM, Liu K, Cao X, Zhang W, Shen J, Wu C. 2012. Methicillin-resistant Staphylococcus pseudintermedius isolated from canine pyoderma in North China. J Appl Microbiol 112:623–630 http://dx.doi.org/10.1111/j.1365-2672.2012.05233.x. [PubMed]
79. Kadlec K, Weiß S, Wendlandt S, Schwarz S, Tonpitak W. 2016. Characterization of canine and feline methicillin-resistant Staphylococcus pseudintermedius (MRSP) from Thailand. Vet Microbiol 194:93–97 http://dx.doi.org/10.1016/j.vetmic.2016.04.015. [PubMed]
80. Hassler C, Nitzsche S, Iversen C, Zweifel C, Stephan R. 2008. Characteristics of Staphylococcus hyicus strains isolated from pig carcasses in two different slaughterhouses. Meat Sci 80:505–510 http://dx.doi.org/10.1016/j.meatsci.2008.02.001. [PubMed]
81. Zhang Y, Agidi S, LeJeune JT. 2009. Diversity of staphylococcal cassette chromosome in coagulase-negative staphylococci from animal sources. J Appl Microbiol 107:1375–1383 http://dx.doi.org/10.1111/j.1365-2672.2009.04322.x. [PubMed]
82. Feßler AT, Billerbeck C, Kadlec K, Schwarz S. 2010. Identification and characterization of methicillin-resistant coagulase-negative staphylococci from bovine mastitis. J Antimicrob Chemother 65:1576–1582 http://dx.doi.org/10.1093/jac/dkq172. [PubMed]
83. Vanderhaeghen W, Vandendriessche S, Crombé F, Nemeghaire S, Dispas M, Denis O, Hermans K, Haesebrouck F, Butaye P. 2013. Characterization of methicillin-resistant non-Staphylococcus aureus staphylococci carriage isolates from different bovine populations. J Antimicrob Chemother 68:300–307 http://dx.doi.org/10.1093/jac/dks403. [PubMed]
84. Tulinski P, Fluit AC, Wagenaar JA, Mevius D, van de Vijver L, Duim B. 2012. Methicillin-resistant coagulase-negative staphylococci on pig farms as a reservoir of heterogeneous staphylococcal cassette chromosome mec elements. Appl Environ Microbiol 78:299–304 http://dx.doi.org/10.1128/AEM.05594-11. [PubMed]
85. Wang Y, He T, Schwarz S, Zhao Q, Shen Z, Wu C, Shen J. 2013. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int J Med Microbiol 303:84–87 http://dx.doi.org/10.1016/j.ijmm.2012.12.004.
86. Kawano J, Shimizu A, Saitoh Y, Yagi M, Saito T, Okamoto R. 1996. Isolation of methicillin-resistant coagulase-negative staphylococci from chickens. J Clin Microbiol 34:2072–2077. [PubMed]
87. Yasuda R, Kawano J, Matsuo E, Masuda T, Shimizu A, Anzai T, Hashikura S. 2002. Distribution of mecA-harboring staphylococci in healthy mares. J Vet Med Sci 64:821–827 http://dx.doi.org/10.1292/jvms.64.821. [PubMed]
88. Schnellmann C, Gerber V, Rossano A, Jaquier V, Panchaud Y, Doherr MG, Thomann A, Straub R, Perreten V. 2006. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J Clin Microbiol 44:4444–4454 http://dx.doi.org/10.1128/JCM.00868-06. [PubMed]
89. Bagcigil FA, Moodley A, Baptiste KE, Jensen VF, Guardabassi L. 2007. Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals. Vet Microbiol 121:307–315 http://dx.doi.org/10.1016/j.vetmic.2006.12.007. [PubMed]
90. De Martino L, Lucido M, Mallardo K, Facello B, Mallardo M, Iovane G, Pagnini U, Tufano MA, Catalanotti P. 2010. Methicillin-resistant staphylococci isolated from healthy horses and horse personnel in Italy. J Vet Diagn Invest 22:77–82 http://dx.doi.org/10.1177/104063871002200114. [PubMed]
91. van Duijkeren E, Box AT, Heck ME, Wannet WJ, Fluit AC. 2004. Methicillin-resistant staphylococci isolated from animals. Vet Microbiol 103:91–97 http://dx.doi.org/10.1016/j.vetmic.2004.07.014. [PubMed]
92. Kania SA, Williamson NL, Frank LA, Wilkes RP, Jones RD, Bemis DA. 2004. Methicillin resistance of staphylococci isolated from the skin of dogs with pyoderma. Am J Vet Res 65:1265–1268 http://dx.doi.org/10.2460/ajvr.2004.65.1265. [PubMed]
93. Monecke S, Müller E, Schwarz S, Hotzel H, Ehricht R. 2012. Rapid microarray-based identification of different mecA alleles in staphylococci. Antimicrob Agents Chemother 56:5547–5554 http://dx.doi.org/10.1128/AAC.00574-12. [PubMed]
94. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603 http://dx.doi.org/10.1016/S1473-3099(11)70126-8.
95. Shore AC, Deasy EC, Slickers P, Brennan G, O’Connell B, Monecke S, Ehricht R, Coleman DC. 2011. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:3765–3773 http://dx.doi.org/10.1128/AAC.00187-11. [PubMed]
96. Laurent F, Chardon H, Haenni M, Bes M, Reverdy ME, Madec JY, Lagier E, Vandenesch F, Tristan A. 2012. MRSA harboring mecA variant gene mecC, France. Emerg Infect Dis 18:1465–1467 http://dx.doi.org/10.3201/eid1809.111920. [PubMed]
97. Medhus A, Slettemeås J, Marstein L, Larssen K, Sunde M. 2013. MRSA with the novel mecC gene variant isolated from a cat suffering from chronic conjunctivitis. J Antimicrob Chemother 68:968–969 http://dx.doi.org/10.1093/jac/dks487. [PubMed]
98. Paterson GK, Larsen AR, Robb A, Edwards GE, Pennycott TW, Foster G, Mot D, Hermans K, Baert K, Peacock SJ, Parkhill J, Zadoks RN, Holmes MA. 2012. The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J Antimicrob Chemother 67:2809–2813 http://dx.doi.org/10.1093/jac/dks329. [PubMed]
99. Robb A, Pennycott T, Duncan G, Foster G. 2013. Staphylococcus aureus carrying divergent mecA homologue (mecALGA251) isolated from a free-ranging wild bird. Vet Microbiol 162:300–301 http://dx.doi.org/10.1016/j.vetmic.2012.09.003. [PubMed]
100. Walther B, Wieler LH, Vincze S, Antão E-M, Brandenburg A, Stamm I, Kopp PA, Kohn B, Semmler T, Lübke-Becker A. 2012. MRSA variant in companion animals. Emerg Infect Dis 18:2017–2020 http://dx.doi.org/10.3201/eid1812.120238. [PubMed]
101. Loncaric I, Kübber-Heiss A, Posautz A, Stalder GL, Hoffmann D, Rosengarten R, Walzer C. 2013. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J Antimicrob Chemother 68:2222–2225.
102. Gómez P, González-Barrio D, Benito D, García JT, Viñuela J, Zarazaga M, Ruiz-Fons F, Torres C. 2014. Detection of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in wild small mammals in Spain. J Antimicrob Chemother 69:2061–2064 http://dx.doi.org/10.1093/jac/dku100. [PubMed]
103. Gómez P, Lozano C, González-Barrio D, Zarazaga M, Ruiz-Fons F, Torres C. 2015. High prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene in a semi-extensive red deer (Cervus elaphus hispanicus) farm in Southern Spain. Vet Microbiol 177:326–331 http://dx.doi.org/10.1016/j.vetmic.2015.03.029. [PubMed]
104. Gómez P, Lozano C, Camacho MC, Lima-Barbero JF, Hernández JM, Zarazaga M, Höfle Ú, Torres C. 2016. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J Antimicrob Chemother 71:53–57 http://dx.doi.org/10.1093/jac/dkv314. [PubMed]
105. Paterson GK, Harrison EM, Holmes MA. 2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 22:42–47 http://dx.doi.org/10.1016/j.tim.2013.11.003. [PubMed]
106. Harrison EM, Paterson GK, Holden MT, Morgan FJ, Larsen AR, Petersen A, Leroy S, De Vliegher S, Perreten V, Fox LK, Lam TJ, Sampimon OC, Zadoks RN, Peacock SJ, Parkhill J, Holmes MA. 2013. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob Agents Chemother 57:1524–1528 http://dx.doi.org/10.1128/AAC.01882-12. [PubMed]
107. Małyszko I, Schwarz S, Hauschild T. 2014. Detection of a new mecC allotype, mecC2, in methicillin-resistant Staphylococcus saprophyticus. J Antimicrob Chemother 69:2003–2005 http://dx.doi.org/10.1093/jac/dku043. [PubMed]
108. Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G. 2018. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis 24:242–248 http://dx.doi.org/10.3201/eid2402.171074. [PubMed]
109. Ba X, Harrison EM, Edwards GF, Holden MT, Larsen AR, Petersen A, Skov RL, Peacock SJ, Parkhill J, Paterson GK, Holmes MA. 2014. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother 69:594–597 http://dx.doi.org/10.1093/jac/dkt418.
110. Berger-Bächi B, Tschierske M. 1998. Role of fem factors in methicillin resistance. Drug Resist Updat 1:325–335 http://dx.doi.org/10.1016/S1368-7646(98)80048-4.
111. Roberts MC. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24 http://dx.doi.org/10.1111/j.1574-6976.1996.tb00251.x.
112. Schwarz S, Roberts MC, Werckenthin C, Pang Y, Lange C. 1998. Tetracycline resistance in Staphylococcus spp. from domestic animals. Vet Microbiol 63:217–227 http://dx.doi.org/10.1016/S0378-1135(98)00234-X.
113. Khan SA, Novick RP. 1983. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259 http://dx.doi.org/10.1016/0147-619X(83)90039-2.
114. Schwarz S, Shen J, Wendlandt S, Feßler AT, Wang Y, Kadlec K, Wu CM. 2014. Plasmid-mediated antimicrobial resistance in staphylococci and other firmicutes. Microbiol Spectr 2: 10.1128/microbiolspec.PLAS-0020-2014.
115. Schwarz S, Blobel H. 1990. Isolation and restriction endonuclease analysis of a tetracycline resistance plasmid from Staphylococcus hyicus. Vet Microbiol 24:113–122 http://dx.doi.org/10.1016/0378-1135(90)90058-4.
116. Schwarz S, Cardoso M, Grölz-Krug S, Blobel H. 1990. Common antibiotic resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis from human and canine infections. Zentralbl Bakteriol 273:369–377 http://dx.doi.org/10.1016/S0934-8840(11)80440-8.
117. Greene RT, Schwarz S. 1992. Small antibiotic resistance plasmids in Staphylococcus intermedius. Zentralbl Bakteriol 276:380–389 http://dx.doi.org/10.1016/S0934-8840(11)80545-1.
118. Schwarz S, Noble WC. 1994. Tetracycline resistance genes in staphylococci from the skin of pigs. J Appl Bacteriol 76:320–326 http://dx.doi.org/10.1111/j.1365-2672.1994.tb01635.x. [PubMed]
119. Hauschild T, Kehrenberg C, Schwarz S. 2003. Tetracycline resistance in staphylococci from free-living rodents and insectivores. J Vet Med B Infect Dis Vet Public Health 50:443–446 http://dx.doi.org/10.1046/j.0931-1793.2003.00706.x. [PubMed]
120. Hauschild T, Stepanović S, Dakić I, Djukić S, Ranin L, Jezek P, Schwarz S. 2007. Tetracycline resistance and distribution of tet genes in members of the Staphylococcus sciuri group isolated from humans, animals and different environmental sources. Int J Antimicrob Agents 29:356–358 http://dx.doi.org/10.1016/j.ijantimicag.2006.10.002. [PubMed]
121. Larsen J, Clasen J, Hansen JE, Paulander W, Petersen A, Larsen AR, Frees D. 2016. Copresence of tet(K) and tet(M) in livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob Agents Chemother 60:4401–4403 http://dx.doi.org/10.1128/AAC.00426-16. [PubMed]
122. Hauschild T, Lüthje P, Schwarz S. 2005. Staphylococcal tetracycline-MLSB resistance plasmid pSTE2 is the product of an RSA-mediated in vivo recombination. J Antimicrob Chemother 56:399–402 http://dx.doi.org/10.1093/jac/dki207. [PubMed]
123. Kadlec K, Schwarz S. 2009. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 53:776–778 http://dx.doi.org/10.1128/AAC.01128-08. [PubMed]
124. Kadlec K, Schwarz S. 2009. Novel ABC transporter gene, vga(C), located on a multiresistance plasmid from a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 53:3589–3591 http://dx.doi.org/10.1128/AAC.00570-09. [PubMed]
125. Kadlec K, Schwarz S. 2010. Identification of a plasmid-borne resistance gene cluster comprising the resistance genes erm(T), dfrK, and tet(L) in a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:915–918 http://dx.doi.org/10.1128/AAC.01091-09. [PubMed]
126. Feßler AT, Zhao Q, Schoenfelder S, Kadlec K, Brenner Michael G, Wang Y, Ziebuhr W, Shen J, Schwarz S. 2017. Complete sequence of a plasmid from a bovine methicillin-resistant Staphylococcus aureus harbouring a novel ica-like gene cluster in addition to antimicrobial and heavy metal resistance genes. Vet Microbiol 200:95–100 http://dx.doi.org/10.1016/j.vetmic.2016.07.010. [PubMed]
127. Schwarz S, Cardoso M, Wegener HC. 1992. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother 36:580–588 http://dx.doi.org/10.1128/AAC.36.3.580. [PubMed]
128. Schwarz S, Gregory PD, Werckenthin C, Curnock S, Dyke KG. 1996. A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. J Med Microbiol 45:57–63 http://dx.doi.org/10.1099/00222615-45-1-57. [PubMed]
129. Schwarz S, Wang Z. 1993. Tetracycline resistance in Staphylococcus intermedius. Lett Appl Microbiol 17:88–91 http://dx.doi.org/10.1111/j.1472-765X.1993.tb00378.x.
130. Weiß S, Kadlec K, Feßler AT, Schwarz S. 2014. Complete sequence of a multiresistance plasmid from a methicillin-resistant Staphylococcus epidermidis ST5 isolated in a small animal clinic. J Antimicrob Chemother 69:847–859 http://dx.doi.org/10.1093/jac/dkt399. [PubMed]
131. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542 http://dx.doi.org/10.1016/j.femsre.2004.04.001. [PubMed]
132. Horinouchi S, Weisblum B. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825. [PubMed]
133. Brenner DG, Shaw WV. 1985. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. EMBO J 4:561–568. [PubMed]
134. Projan SJ, Kornblum J, Moghazeh SL, Edelman I, Gennaro ML, Novick RP. 1985. Comparative sequence and functional analysis of pT181 and pC221, cognate plasmid replicons from Staphylococcus aureus. Mol Gen Genet 199:452–464 http://dx.doi.org/10.1007/BF00330758. [PubMed]
135. Smith MC, Thomas CD. 2004. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol 186:3363–3373 http://dx.doi.org/10.1128/JB.186.11.3363-3373.2004. [PubMed]
136. Cardoso M, Schwarz S. 1992. Chloramphenicol resistance plasmids in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Microbiol 30:223–232 http://dx.doi.org/10.1016/0378-1135(92)90116-B.
137. Cardoso M, Schwarz S. 1992. Nucleotide sequence and structural relationships of a chloramphenicol acetyltransferase encoded by the plasmid pSCS6 from Staphylococcus aureus. J Appl Bacteriol 72:289–293 http://dx.doi.org/10.1111/j.1365-2672.1992.tb01837.x. [PubMed]
138. Schwarz S, Spies U, Cardoso M. 1991. Cloning and sequence analysis of a plasmid-encoded chloramphenicol acetyltransferase gene from Staphylococcus intermedius. J Gen Microbiol 137:977–981 http://dx.doi.org/10.1099/00221287-137-4-977. [PubMed]
139. Schwarz S, Werckenthin C, Pinter L, Kent LE, Noble WC. 1995. Chloramphenicol resistance in Staphylococcus intermedius from a single veterinary centre: evidence for plasmid and chromosomal location of the resistance genes. Vet Microbiol 43:151–159 http://dx.doi.org/10.1016/0378-1135(94)00092-B.
140. Schwarz S, Cardoso M, Blobel H. 1989. Plasmid-mediated chloramphenicol resistance in Staphylococcus hyicus. J Gen Microbiol 135:3329–3336.
141. Schwarz S, Noble WC. 1994. Structure and putative origin of a plasmid from Staphylococcus hyicus that mediates chloramphenicol and streptomycin resistance. Lett Appl Microbiol 18:281–284 http://dx.doi.org/10.1111/j.1472-765X.1994.tb00869.x. [PubMed]
142. Schwarz S, Cardoso M, Blobel H. 1990. Detection of a novel chloramphenicol resistance plasmid from “equine” Staphylococcus sciuri. Zentralbl Veterinarmed B 37:674–679.
143. Hauschild T, Stepanović S, Vuković D, Dakić I, Schwarz S. 2009. Occurrence of chloramphenicol resistance and corresponding resistance genes in members of the Staphylococcus sciuri group. Int J Antimicrob Agents 33:383–384 http://dx.doi.org/10.1016/j.ijantimicag.2008.09.020. [PubMed]
144. Schwarz S, Grölz-Krug S. 1991. A chloramphenicol-streptomycin-resistance plasmid from a clinical strain of Staphylococcus sciuri and its structural relationships to other staphylococcal resistance plasmids. FEMS Microbiol Lett 66:319–322 http://dx.doi.org/10.1111/j.1574-6968.1991.tb04902.x. [PubMed]
145. Schwarz S. 1994. Emerging chloramphenicol resistance in Staphylococcus lentus from mink following chloramphenicol treatment: characterisation of the resistance genes. Vet Microbiol 41:51–61 http://dx.doi.org/10.1016/0378-1135(94)90135-X.
146. Schwarz S, Cardoso M. 1991. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus. Antimicrob Agents Chemother 35:1277–1283 http://dx.doi.org/10.1128/AAC.35.7.1277. [PubMed]
147. Wendlandt S, Kadlec K, Schwarz S. 2015. Four novel plasmids from Staphylococcus hyicus and CoNS that carry a variant of the spectinomycin resistance gene spd. J Antimicrob Chemother 70:948–949 http://dx.doi.org/10.1093/jac/dku461. [PubMed]
148. Kehrenberg C, Schwarz S. 2004. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 48:615–618 http://dx.doi.org/10.1128/AAC.48.2.615-618.2004. [PubMed]
149. Kehrenberg C, Schwarz S. 2005. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob Agents Chemother 49:813–815 http://dx.doi.org/10.1128/AAC.49.2.813-815.2005. [PubMed]
150. Kehrenberg C, Cuny C, Strommenger B, Schwarz S, Witte W. 2009. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob Agents Chemother 53:779–781 http://dx.doi.org/10.1128/AAC.01376-08. [PubMed]
151. Wang Y, Zhang W, Wang J, Wu C, Shen Z, Fu X, Yan Y, Zhang Q, Schwarz S, Shen J. 2012. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China. Antimicrob Agents Chemother 56:1485–1490 http://dx.doi.org/10.1128/AAC.05827-11. [PubMed]
152. Kehrenberg C, Schwarz S. 2006. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50:1156–1163 http://dx.doi.org/10.1128/AAC.50.4.1156-1163.2006. [PubMed]
153. Kehrenberg C, Aarestrup FM, Schwarz S. 2007. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob Agents Chemother 51:483–487 http://dx.doi.org/10.1128/AAC.01340-06. [PubMed]
154. Gómez-Sanz E, Kadlec K, Feßler AT, Zarazaga M, Torres C, Schwarz S. 2013. A novel fexA variant from a canine Staphylococcus pseudintermedius isolate that does not confer florfenicol resistance. Antimicrob Agents Chemother 57:5763–5766 http://dx.doi.org/10.1128/AAC.00948-13. [PubMed]
155. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171 http://dx.doi.org/10.1016/j.drup.2010.08.003. [PubMed]
156. Ferretti JJ, Gilmore KS, Courvalin P. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638 http://dx.doi.org/10.1128/jb.167.2.631-638.1986. [PubMed]
157. Rouch DA, Byrne ME, Kong YC, Skurray RA. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052. [PubMed]
158. Byrne ME, Rouch DA, Skurray RA. 1989. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene 81:361–367 http://dx.doi.org/10.1016/0378-1119(89)90197-2.
159. Lange CC, Werckenthin C, Schwarz S. 2003. Molecular analysis of the plasmid-borne aacA/aphD resistance gene region of coagulase-negative staphylococci from chickens. J Antimicrob Chemother 51:1397–1401 http://dx.doi.org/10.1093/jac/dkg257. [PubMed]
160. Schwarz S, Kadlec K, Strommenger B. 2008. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius detected in the BfT-GermVet monitoring programme 2004–2006 in Germany. J Antimicrob Chemother 61:282–285 http://dx.doi.org/10.1093/jac/dkm487. [PubMed]
161. Wendlandt S, Li B, Ma Z, Schwarz S. 2013. Complete sequence of the multi-resistance plasmid pV7037 from a porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 166:650–654 http://dx.doi.org/10.1016/j.vetmic.2013.07.017. [PubMed]
162. Li B, Wendlandt S, Yao J, Liu Y, Zhang Q, Shi Z, Wei J, Shao D, Schwarz S, Wang S, Ma Z. 2013. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J Antimicrob Chemother 68:1251–1255 http://dx.doi.org/10.1093/jac/dkt015. [PubMed]
163. Turutoglu H, Hasoksuz M, Ozturk D, Yildirim M, Sagnak S. 2009. Methicillin and aminoglycoside resistance in Staphylococcus aureus isolates from bovine mastitis and sequence analysis of their mecA genes. Vet Res Commun 33:945–956 http://dx.doi.org/10.1007/s11259-009-9313-5. [PubMed]
164. Argudín MA, Vanderhaeghen W, Butaye P. 2015. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves. Res Vet Sci 99:10–16 http://dx.doi.org/10.1016/j.rvsc.2015.01.004. [PubMed]
165. Cuny C, Kuemmerle J, Stanek C, Willey B, Strommenger B, Witte W. 2006. Emergence of MRSA infections in horses in a veterinary hospital: strain characterisation and comparison with MRSA from humans. Euro Surveill 11:44–47 http://dx.doi.org/10.2807/esm.11.01.00595-en. [PubMed]
166. Sidhu MS, Oppegaard H, Devor TP, Sørum H. 2007. Persistence of multidrug-resistant Staphylococcus haemolyticus in an animal veterinary teaching hospital clinic. Microb Drug Resist 13:271–280 http://dx.doi.org/10.1089/mdr.2007.756. [PubMed]
167. He T, Wang Y, Schwarz S, Zhao Q, Shen J, Wu C. 2014. Genetic environment of the multi-resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int J Med Microbiol 304:257–261 http://dx.doi.org/10.1016/j.ijmm.2013.10.005.
168. McKenzie T, Hoshino T, Tanaka T, Sueoka N. 1987. Correction. A revision of the nucleotide sequence and functional map of pUB110. Plasmid 17:83–85 http://dx.doi.org/10.1016/0147-619X(87)90015-1.
169. Hauschild T, Vuković D, Dakić I, Jezek P, Djukić S, Dimitrijević V, Stepanović S, Schwarz S. 2007. Aminoglycoside resistance in members of the Staphylococcus sciuri group. Microb Drug Resist 13:77–84 http://dx.doi.org/10.1089/mdr.2007.713. [PubMed]
170. Derbise A, Dyke KG, el Solh N. 1996. Characterization of a Staphylococcus aureus transposon, Tn5405, located within Tn5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 35:174–188 http://dx.doi.org/10.1006/plas.1996.0020. [PubMed]
171. Boerlin P, Burnens AP, Frey J, Kuhnert P, Nicolet J. 2001. Molecular epidemiology and genetic linkage of macrolide and aminoglycoside resistance in Staphylococcus intermedius of canine origin. Vet Microbiol 79:155–169 http://dx.doi.org/10.1016/S0378-1135(00)00347-3.
172. Ben Zakour NL, Bannoehr J, van den Broek AH, Thoday KL, Fitzgerald JR. 2011. Complete genome sequence of the canine pathogen Staphylococcus pseudintermedius. J Bacteriol 193:2363–2364 http://dx.doi.org/10.1128/JB.00137-11. [PubMed]
173. Wendlandt S, Lozano C, Kadlec K, Gómez-Sanz E, Zarazaga M, Torres C, Schwarz S. 2013. The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 68:473–475 http://dx.doi.org/10.1093/jac/dks398. [PubMed]
174. Wendlandt S, Li J, Ho J, Porta MA, Feßler AT, Wang Y, Kadlec K, Monecke S, Ehricht R, Boost M, Schwarz S. 2014. Enterococcal multiresistance gene cluster in methicillin-resistant Staphylococcus aureus from various origins and geographical locations. J Antimicrob Chemother 69:2573–2575 http://dx.doi.org/10.1093/jac/dku137. [PubMed]
175. Projan SJ, Moghazeh S, Novick RP. 1988. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. Nucleic Acids Res 16:2179–2187 http://dx.doi.org/10.1093/nar/16.5.2179. [PubMed]
176. Schwarz S, Blobel H. 1990. A new streptomycin-resistance plasmid from Staphylococcus hyicus and its structural relationship to other staphylococcal resistance plasmids. J Med Microbiol 32:201–205 http://dx.doi.org/10.1099/00222615-32-3-201. [PubMed]
177. Stegmann R, Perreten V. 2010. Antibiotic resistance profile of Staphylococcus rostri, a new species isolated from healthy pigs. Vet Microbiol 145:165–171 http://dx.doi.org/10.1016/j.vetmic.2010.03.015. [PubMed]
178. Murphy E. 1985. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9). Mol Gen Genet 200:33–39 http://dx.doi.org/10.1007/BF00383309. [PubMed]
179. Feßler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S, Schwarz S. 2011. Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microbiol 77:7151–7157 http://dx.doi.org/10.1128/AEM.00561-11. [PubMed]
180. Kehrenberg C, Ojo KK, Schwarz S. 2004. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. J Antimicrob Chemother 54:936–939 http://dx.doi.org/10.1093/jac/dkh457. [PubMed]
181. Wendlandt S, Li B, Lozano C, Ma Z, Torres C, Schwarz S. 2013. Identification of the novel spectinomycin resistance gene spw in methicillin-resistant and methicillin-susceptible Staphylococcus aureus of human and animal origin. J Antimicrob Chemother 68:1679–1680 http://dx.doi.org/10.1093/jac/dkt081. [PubMed]
182. Jamrozy DM, Coldham NG, Butaye P, Fielder MD. 2014. Identification of a novel plasmid-associated spectinomycin adenyltransferase gene spd in methicillin-resistant Staphylococcus aureus ST398 isolated from animal and human sources. J Antimicrob Chemother 69:1193–1196 http://dx.doi.org/10.1093/jac/dkt510. [PubMed]
183. Wendlandt S, Feßler AT, Kadlec K, van Duijkeren E, Schwarz S. 2014. Identification of the novel spectinomycin resistance gene spd in a different plasmid background among methicillin-resistant Staphylococcus aureus CC398 and methicillin-susceptible S. aureus ST433. J Antimicrob Chemother 69:2000–2003 http://dx.doi.org/10.1093/jac/dku067. [PubMed]
184. Feßler AT, Kadlec K, Schwarz S. 2011. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob Agents Chemother 55:373–375 http://dx.doi.org/10.1128/AAC.01124-10. [PubMed]
185. Kadlec K, Feßler AT, Couto N, Pomba CF, Schwarz S. 2012. Unusual small plasmids carrying the novel resistance genes dfrK or apmA isolated from methicillin-resistant or -susceptible staphylococci. J Antimicrob Chemother 67:2342–2345 http://dx.doi.org/10.1093/jac/dks235. [PubMed]
186. Aarestrup FM, Agersø Y, Ahrens P, Jørgensen JC, Madsen M, Jensen LB. 2000. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet Microbiol 74:353–364 http://dx.doi.org/10.1016/S0378-1135(00)00197-8.
187. Lüthje P, Schwarz S. 2007. Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int J Antimicrob Agents 29:528–535 http://dx.doi.org/10.1016/j.ijantimicag.2006.12.016. [PubMed]
188. Eady EA, Ross JI, Tipper JL, Walters CE, Cove JH, Noble WC. 1993. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother 31:211–217 http://dx.doi.org/10.1093/jac/31.2.211. [PubMed]
189. Werckenthin C, Schwarz S. 2000. Molecular analysis of the translational attenuator of a constitutively expressed erm(A) gene from Staphylococcus intermedius. J Antimicrob Chemother 46:785–788 http://dx.doi.org/10.1093/jac/46.5.785. [PubMed]
190. Nawaz MS, Khan SA, Khan AA, Khambaty FM, Cerniglia CE. 2000. Comparative molecular analysis of erythromycin-resistance determinants in staphylococcal isolates of poultry and human origin. Mol Cell Probes 14:311–319 http://dx.doi.org/10.1006/mcpr.2000.0320. [PubMed]
191. Jaglic Z, Vlkova H, Bardon J, Michu E, Cervinkova D, Babak V. 2012. Distribution, characterization and genetic bases of erythromycin resistance in staphylococci and enterococci originating from livestock. Zoonoses Public Health 59:202–211 http://dx.doi.org/10.1111/j.1863-2378.2011.01434.x. [PubMed]
192. Werckenthin C, Schwarz S, Dyke K. 1996. Macrolide-lincosamide-streptogramin B resistance in Staphylococcus lentus results from the integration of part of a transposon into a small plasmid. Antimicrob Agents Chemother 40:2224–2225. [PubMed]
193. Lüthje P, Schwarz S. 2006. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide-lincosamide resistance phenotypes and genotypes. J Antimicrob Chemother 57:966–969 http://dx.doi.org/10.1093/jac/dkl061. [PubMed]
194. Li L, Feng W, Zhang Z, Xue H, Zhao X. 2015. Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis. BMC Vet Res 11:168 http://dx.doi.org/10.1186/s12917-015-0492-8. [PubMed]
195. Lodder G, Werckenthin C, Schwarz S, Dyke K. 1997. Molecular analysis of naturally occuring ermC-encoding plasmids in staphylococci isolated from animals with and without previous contact with macrolide/lincosamide antibiotics. FEMS Immunol Med Microbiol 18:7–15 http://dx.doi.org/10.1111/j.1574-695X.1997.tb01022.x. [PubMed]
196. Strommenger B, Kehrenberg C, Kettlitz C, Cuny C, Verspohl J, Witte W, Schwarz S. 2006. Molecular characterization of methicillin-resistant Staphylococcus aureus strains from pet animals and their relationship to human isolates. J Antimicrob Chemother 57:461–465 http://dx.doi.org/10.1093/jac/dki471. [PubMed]
197. Wendlandt S, Kadlec K, Feßler AT, van Duijkeren E, Schwarz S. 2014. Two different erm(C)-carrying plasmids in the same methicillin-resistant Staphylococcus aureus CC398 isolate from a broiler farm. Vet Microbiol 171:382–387 http://dx.doi.org/10.1016/j.vetmic.2014.01.009. [PubMed]
198. Vancraeynest D, Hermans K, Martel A, Vaneechoutte M, Devriese LA, Haesebrouck F. 2004. Antimicrobial resistance and resistance genes in Staphylococcus aureus strains from rabbits. Vet Microbiol 101:245–251 http://dx.doi.org/10.1016/j.vetmic.2004.03.021. [PubMed]
199. Schwarz S, Wegener H, Blobel H. 1990. Plasmid-encoded resistance to macrolides and lincosamides in Staphylococcus hyicus. J Appl Bacteriol 69:845–849 http://dx.doi.org/10.1111/j.1365-2672.1990.tb01582.x. [PubMed]
200. Schwarz S, Lange C, Werckenthin C. 1998. Molecular analysis of the macrolide-lincosamide resistance gene region of a novel plasmid from Staphylococcus hyicus. J Med Microbiol 47:63–70 http://dx.doi.org/10.1099/00222615-47-1-63. [PubMed]
201. Hauschild T, Lüthje P, Schwarz S. 2006. Characterization of a novel type of MLSB resistance plasmid from Staphylococcus saprophyticus carrying a constitutively expressed erm(C) gene. Vet Microbiol 115:258–263 http://dx.doi.org/10.1016/j.vetmic.2006.01.007. [PubMed]
202. Hauschild T, Schwarz S. 2010. Macrolide resistance in Staphylococcus spp. from free-living small mammals. Vet Microbiol 144:530–531 http://dx.doi.org/10.1016/j.vetmic.2010.06.017. [PubMed]
203. Schwarz S, Blobel H. 1990. Isolation of a plasmid from “canine” Staphylococcus epidermidis mediating constitutive resistance to macrolides and lincosamides. Comp Immunol Microbiol Infect Dis 13:209–216 http://dx.doi.org/10.1016/0147-9571(90)90090-G.
204. Lodder G, Schwarz S, Gregory P, Dyke K. 1996. Tandem duplication in ermC translational attenuator of the macrolide-lincosamide-streptogramin B resistance plasmid pSES6 from Staphylococcus equorum. Antimicrob Agents Chemother 40:215–217. [PubMed]
205. Chung WO, Werckenthin C, Schwarz S, Roberts MC. 1999. Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother 43:5–14 http://dx.doi.org/10.1093/jac/43.1.5. [PubMed]
206. Schwarz S, Kehrenberg C, Ojo KK. 2002. Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob Agents Chemother 46:3621–3623 http://dx.doi.org/10.1128/AAC.46.11.3621-3623.2002. [PubMed]
207. Li D, Wu C, Wang Y, Fan R, Schwarz S, Zhang S. 2015. Identification of multiresistance gene cfr in methicillin-resistant Staphylococcus aureus from pigs: plasmid location and integration into a staphylococcal cassette chromosome mec complex. Antimicrob Agents Chemother 59:3641–3644 http://dx.doi.org/10.1128/AAC.00500-15. [PubMed]
208. Schwendener S, Perreten V. 2012. New MLSB resistance gene erm(43) in Staphylococcus lentus. Antimicrob Agents Chemother 56:4746–4752 http://dx.doi.org/10.1128/AAC.00627-12. [PubMed]
209. Wipf JR, Schwendener S, Perreten V. 2014. The novel macrolide-lincosamide-streptogramin B resistance gene erm(44) is associated with a prophage in Staphylococcus xylosus. Antimicrob Agents Chemother 58:6133–6138 http://dx.doi.org/10.1128/AAC.02949-14. [PubMed]
210. Wendlandt S, Heß S, Li J, Feßler AT, Wang Y, Kadlec K, Gallert C, Schwarz S. 2015. Detection of the macrolide-lincosamide-streptogramin B resistance gene erm(44) and a novel erm(44) variant in staphylococci from aquatic environments. FEMS Microbiol Ecol 91:fiv090 http://dx.doi.org/10.1093/femsec/fiv090.
211. Wipf JR, Schwendener S, Nielsen JB, Westh H, Perreten V. 2015. The new macrolide-lincosamide-streptogramin B resistance gene erm(45) is located within a genomic island in Staphylococcus fleurettii. Antimicrob Agents Chemother 59:3578–3581 http://dx.doi.org/10.1128/AAC.00369-15. [PubMed]
212. Wipf JRK, Riley MC, Kania SA, Bemis DA, Andreis S, Schwendener S, Perreten V. 2017. New macrolide-lincosamide-streptogramin B resistance gene erm(48) on the novel plasmid pJW2311 in Staphylococcus xylosus. Antimicrob Agents Chemother 61:e00066–e17 http://dx.doi.org/10.1128/AAC.00066-17. [PubMed]
213. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4:1207–1214 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00696.x. [PubMed]
214. Sharkey LK, Edwards TA, O’Neill AJ. 2016. ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio 7:e01975 http://dx.doi.org/10.1128/mBio.01975-15. [PubMed]
215. Matsuoka M, Endou K, Kobayashi H, Inoue M, Nakajima Y. 1998. A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol Lett 167:221–227 http://dx.doi.org/10.1111/j.1574-6968.1998.tb13232.x. [PubMed]
216. Brisson-Noël A, Courvalin P. 1986. Nucleotide sequence of gene linA encoding resistance to lincosamides in Staphylococcus haemolyticus. Gene 43:247–253 http://dx.doi.org/10.1016/0378-1119(86)90213-1.
217. Loeza-Lara PD, Soto-Huipe M, Baizabal-Aguirre VM, Ochoa-Zarzosa A, Valdez-Alarcón JJ, Cano-Camacho H, López-Meza JE. 2004. pBMSa1, a plasmid from a dairy cow isolate of Staphylococcus aureus, encodes a lincomycin resistance determinant and replicates by the rolling-circle mechanism. Plasmid 52:48–56 http://dx.doi.org/10.1016/j.plasmid.2004.03.001. [PubMed]
218. Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G, Gómez-Sanz E, Ruiz-Larrea F, Zarazaga M, Torres C. 2012. Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. J Antimicrob Chemother 67:2804–2808 http://dx.doi.org/10.1093/jac/dks320. [PubMed]
219. Lozano C, Aspiroz C, Rezusta A, Gómez-Sanz E, Simon C, Gómez P, Ortega C, Revillo MJ, Zarazaga M, Torres C. 2012. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int J Antimicrob Agents 40:306–312 http://dx.doi.org/10.1016/j.ijantimicag.2012.06.009. [PubMed]
220. Lüthje P, von Köckritz-Blickwede M, Schwarz S. 2007. Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A). J Antimicrob Chemother 59:600–606 http://dx.doi.org/10.1093/jac/dkm008. [PubMed]
221. Zhao Q, Wendlandt S, Li H, Li J, Wu C, Shen J, Schwarz S, Wang Y. 2014. Identification of the novel lincosamide resistance gene lnu(E) truncated by ISEnfa5-cfr-ISEnfa5 insertion in Streptococcus suis: de novo synthesis and confirmation of functional activity in Staphylococcus aureus. Antimicrob Agents Chemother 58:1785–1788 http://dx.doi.org/10.1128/AAC.02007-13. [PubMed]
222. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830. [PubMed]
223. Allignet J, El Solh N. 1997. Characterization of a new staphylococcal gene, vgaB, encoding a putative ABC transporter conferring resistance to streptogramin A and related compounds. Gene 202:133–138 http://dx.doi.org/10.1016/S0378-1119(97)00464-2.
224. Haroche J, Allignet J, Buchrieser C, El Solh N. 2000. Characterization of a variant of vga(A) conferring resistance to streptogramin A and related compounds. Antimicrob Agents Chemother 44:2271–2275 http://dx.doi.org/10.1128/AAC.44.9.2271-2275.2000. [PubMed]
225. Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ. 2008. Genetic characterization of Vga ABC proteins conferring reduced susceptibility of Staphylococcus aureus to pleuromutilins. Antimicrob Agents Chemother 52:4507–4509 http://dx.doi.org/10.1128/AAC.00915-08. [PubMed]
226. Schwendener S, Perreten V. 2011. New transposon Tn6133 in methicillin-resistant Staphylococcus aureus ST398 contains vga(E), a novel streptogramin A, pleuromutilin, and lincosamide resistance gene. Antimicrob Agents Chemother 55:4900–4904 http://dx.doi.org/10.1128/AAC.00528-11. [PubMed]
227. Hauschild T, Feßler AT, Kadlec K, Billerbeck C, Schwarz S. 2012. Detection of the novel vga(E) gene in methicillin-resistant Staphylococcus aureus CC398 isolates from cattle and poultry. J Antimicrob Chemother 67:503–504 http://dx.doi.org/10.1093/jac/dkr446. [PubMed]
228. Kadlec K, Pomba CF, Couto N, Schwarz S. 2010. Small plasmids carrying vga(A) or vga(C) genes mediate resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-resistant Staphylococcus aureus ST398 from swine. J Antimicrob Chemother 65:2692–2693 http://dx.doi.org/10.1093/jac/dkq365. [PubMed]
229. Novotna G, Janata J. 2006. A new evolutionary variant of the streptogramin A resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob Agents Chemother 50:4070–4076 http://dx.doi.org/10.1128/AAC.00799-06. [PubMed]
230. Wendlandt S, Kadlec K, Feßler AT, Schwarz S. 2015. Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. Vet Microbiol 177:353–358 http://dx.doi.org/10.1016/j.vetmic.2015.03.027. [PubMed]
231. Li J, Li B, Wendlandt S, Schwarz S, Wang Y, Wu C, Ma Z, Shen J. 2014. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin. J Antimicrob Chemother 69:919–923 http://dx.doi.org/10.1093/jac/dkt482. [PubMed]
232. Deng F, Wang H, Liao Y, Li J, Feßler AT, Michael GB, Schwarz S, Wang Y. 2017. Detection and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance genes in staphylococci isolated from pets. Front Microbiol 8:234 http://dx.doi.org/10.3389/fmicb.2017.00234. [PubMed]
233. Hot C, Berthet N, Chesneau O. 2014. Characterization of sal(A), a novel gene responsible for lincosamide and streptogramin A resistance in Staphylococcus sciuri. Antimicrob Agents Chemother 58:3335–3341 http://dx.doi.org/10.1128/AAC.02797-13. [PubMed]
234. Schwarz S, Werckenthin C, Kehrenberg C. 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 44:2530–2533 http://dx.doi.org/10.1128/AAC.44.9.2530-2533.2000. [PubMed]
235. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073 http://dx.doi.org/10.1111/j.1365-2958.2005.04754.x. [PubMed]
236. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. 2006. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505 http://dx.doi.org/10.1128/AAC.00131-06. [PubMed]
237. Witte W, Cuny C. 2011. Emergence and spread of cfr-mediated multiresistance in staphylococci: an interdisciplinary challenge. Future Microbiol 6:925–931 http://dx.doi.org/10.2217/fmb.11.69. [PubMed]
238. Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, Kadlec K, Schwarz S. 2015. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 10:427–443 http://dx.doi.org/10.2217/fmb.14.93. [PubMed]
239. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
240. Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J. 2015. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70:2182–2190 http://dx.doi.org/10.1093/jac/dkv116. [PubMed]
241. Li D, Wang Y, Schwarz S, Cai J, Fan R, Li J, Feßler AT, Zhang R, Wu C, Shen J. 2016. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J Antimicrob Chemother 71:1474–1478 http://dx.doi.org/10.1093/jac/dkw040. [PubMed]
242. Fan R, Li D, Wang Y, He T, Feßler AT, Schwarz S, Wu C. 2016. Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrob Agents Chemother 60:7200–7205. [PubMed]
243. Fan R, Li D, Feßler AT, Wu C, Schwarz S, Wang Y. 2017. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Vet Microbiol 210:43–48 http://dx.doi.org/10.1016/j.vetmic.2017.07.030. [PubMed]
244. Sun C, Zhang P, Ji X, Fan R, Chen B, Wang Y, Schwarz S, Wu C. Presence and molecular characteristics of oxazolidinone resistance in staphylococci from household animals in rural China. J Antimicrob Chemother. (Epub ahead of print. doi:10.1093/jac/dky009.)
245. Kadlec K, Schwarz S. 2010. Identification of the novel dfrK-carrying transposon Tn559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:3475–3477 http://dx.doi.org/10.1128/AAC.00464-10. [PubMed]
246. O’Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737–1740 http://dx.doi.org/10.1128/AAC.01542-06. [PubMed]
247. O’Neill AJ, Chopra I. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664–676 http://dx.doi.org/10.1111/j.1365-2958.2005.04971.x. [PubMed]
248. Yazdankhah SP, Asli AW, Sørum H, Oppegaard H, Sunde M. 2006. Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. J Antimicrob Chemother 58:1254–1256 http://dx.doi.org/10.1093/jac/dkl418. [PubMed]
249. Loeffler A, Baines SJ, Toleman MS, Felmingham D, Milsom SK, Edwards EA, Lloyd DH. 2008. In vitro activity of fusidic acid and mupirocin against coagulase-positive staphylococci from pets. J Antimicrob Chemother 62:1301–1304 http://dx.doi.org/10.1093/jac/dkn398. [PubMed]
250. Hodgson JE, Curnock SP, Dyke KG, Morris R, Sylvester DR, Gross MS. 1994. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob Agents Chemother 38:1205–1208 http://dx.doi.org/10.1128/AAC.38.5.1205. [PubMed]
251. Needham C, Rahman M, Dyke KG, Noble WC. 1994. An investigation of plasmids from Staphylococcus aureus that mediate resistance to mupirocin and tetracycline. Microbiology 140:2577–2583 http://dx.doi.org/10.1099/00221287-140-10-2577. [PubMed]
252. Fulham KS, Lemarie SL, Hosgood G, Dick HL. 2011. In vitro susceptibility testing of meticillin-resistant and meticillin-susceptible staphylococci to mupirocin and novobiocin. Vet Dermatol 22:88–94 http://dx.doi.org/10.1111/j.1365-3164.2010.00921.x. [PubMed]
253. Manian FA. 2003. Asymptomatic nasal carriage of mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clin Infect Dis 36:e26–e28 http://dx.doi.org/10.1086/344772. [PubMed]
254. Matanovic K, Pérez-Roth E, Pintarić S, Šeol Martinec B. 2013. Molecular characterization of high-level mupirocin resistance in Staphylococcus pseudintermedius. J Clin Microbiol 51:1005–1007 http://dx.doi.org/10.1128/JCM.02904-12. [PubMed]
255. Godbeer SM, Gold RM, Lawhon SD. 2014. Prevalence of mupirocin resistance in Staphylococcus pseudintermedius. J Clin Microbiol 52:1250–1252 http://dx.doi.org/10.1128/JCM.03618-13. [PubMed]
256. Wipf JR, Perreten V. 2016. Methicillin-resistant Staphylococcus aureus isolated from dogs and cats in Switzerland. Schweiz Arch Tierheilkd 158:443–450 http://dx.doi.org/10.17236/sat00070. [PubMed]
257. Hauschild T, Feßler AT, Billerbeck C, Wendlandt S, Kaspar H, Mankertz J, Schwarz S, Kadlec K. 2012. Target gene mutations among methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus with elevated MICs of enrofloxacin obtained from diseased food-producing animals or food of animal origin. J Antimicrob Chemother 67:1791–1793 http://dx.doi.org/10.1093/jac/dks104. [PubMed]
258. Li J, Feßler AT, Jiang N, Fan R, Wang Y, Wu C, Shen J, Schwarz S. 2016. Molecular basis of rifampicin resistance in multiresistant porcine livestock-associated MRSA. J Antimicrob Chemother 71:3313–3315 http://dx.doi.org/10.1093/jac/dkw294. [PubMed]
259. Kadlec K, van Duijkeren E, Wagenaar JA, Schwarz S. 2011. Molecular basis of rifampicin resistance in methicillin-resistant Staphylococcus pseudintermedius isolates from dogs. J Antimicrob Chemother 66:1236–1242 http://dx.doi.org/10.1093/jac/dkr118. [PubMed]
260. Kwok GM, O’Donoghue MM, Doddangoudar VC, Ho J, Boost MV. 2013. Reduced vancomycin susceptibility in porcine ST9 MRSA isolates. Front Microbiol 4:316 http://dx.doi.org/10.3389/fmicb.2013.00316. [PubMed]
261. Moreno LZ, Dutra MC, Moreno M, Ferreira TS, Silva GF, Matajira CE, Silva AP, Moreno AM. 2016. Vancomycin-intermediate livestock-associated methicillin-resistant Staphylococcus aureus ST398/t9538 from swine in Brazil. Mem Inst Oswaldo Cruz 111:659–661 http://dx.doi.org/10.1590/0074-02760160276. [PubMed]
262. Rensing C, Moodley A, Cavaco LM, McDevitt SF. 2018. Resistance to metals used in agricultural production. Microbiol Spectr. 6(2). http://dx.doi.org/10.1128/microbiolspec.ARBA-0025-2017. [PubMed]
263. Witte W, Van Dip N, Hummel R. 1980. Resistance against mercury and cadmium by Staphylococcus aureus of diverse ecological origin. Z Allg Mikrobiol 20:517–521 http://dx.doi.org/10.1002/jobm.3630200806. (In German.) [PubMed]
264. Schwarz S, Blobel H. 1989. Plasmids and resistance to antimicrobial agents and heavy metals in Staphylococcus hyicus from pigs and cattle. Zentralbl Veterinarmed B 36:669–673.
265. Aarestrup FM, Cavaco L, Hasman H. 2010. Decreased susceptibility to zinc chloride is associated with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Vet Microbiol 142:455–457 http://dx.doi.org/10.1016/j.vetmic.2009.10.021. [PubMed]
266. Cavaco LM, Hasman H, Stegger M, Andersen PS, Skov R, Fluit AC, Ito T, Aarestrup FM. 2010. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrob Agents Chemother 54:3605–3608 http://dx.doi.org/10.1128/AAC.00058-10. [PubMed]
267. Cavaco LM, Hasman H, Aarestrup FM, Wagenaar JA, Graveland H, Veldman K, Mevius D, Fetsch A, Tenhagen B-A, Concepcion Porrero M, Dominguez L, Granier SA, Jouy E, Butaye P, Kaszanyitzky E, Dán A, Zmudzki J, Battisti A, Franco A, Schwarz S, Gutierrez M, Weese JS, Cui S, Pomba C, Members of MRSA-CG. 2011. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Vet Microbiol 150:344–348 http://dx.doi.org/10.1016/j.vetmic.2011.02.014. [PubMed]
268. Li S, Skov RL, Han X, Larsen AR, Larsen J, Sørum M, Wulf M, Voss A, Hiramatsu K, Ito T. 2011. Novel types of staphylococcal cassette chromosome mec elements identified in clonal complex 398 methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 55:3046–3050 http://dx.doi.org/10.1128/AAC.01475-10. [PubMed]
269. Argudín MA, Lauzat B, Kraushaar B, Alba P, Agerso Y, Cavaco L, Butaye P, Porrero MC, Battisti A, Tenhagen BA, Fetsch A, Guerra B. 2016. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates. Vet Microbiol 191:88–95 http://dx.doi.org/10.1016/j.vetmic.2016.06.004. [PubMed]
270. Argudín MA, Butaye P. 2016. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative staphylococci. Res Vet Sci 105:192–194 http://dx.doi.org/10.1016/j.rvsc.2016.02.009. [PubMed]
271. Gómez-Sanz E, Kadlec K, Feßler AT, Zarazaga M, Torres C, Schwarz S. 2013. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob Agents Chemother 57:3275–3282 http://dx.doi.org/10.1128/AAC.00171-13. [PubMed]
272. Maillard J-Y. 2018. Resistance of bacteria to biocides. Microbiol Spectr. 6(2). http://dx.doi.org/10.1128/microbiolspec.ARBA-0006-2017. [PubMed]
273. Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E. 2005. Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol 43:4363–4368 http://dx.doi.org/10.1128/JCM.43.9.4363-4368.2005. [PubMed]
274. Seier-Petersen MA, Nielsen LN, Ingmer H, Aarestrup FM, Agersø Y. 2015. Biocide susceptibility of Staphylococcus aureus CC398 and CC30 isolates from pigs and identification of the biocide resistance genes, qacG and qacC. Microb Drug Resist 21:527–536 http://dx.doi.org/10.1089/mdr.2014.0215. [PubMed]
275. Couto N, Belas A, Kadlec K, Schwarz S, Pomba C. 2015. Clonal diversity, virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J Antimicrob Chemother 70:2483–2487 http://dx.doi.org/10.1093/jac/dkv141. [PubMed]
276. Slifierz MJ, Friendship RM, Weese JS. 2015. Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Appl Environ Microbiol 81:2690–2695 http://dx.doi.org/10.1128/AEM.00036-15. [PubMed]
277. Couto N, Belas A, Tilley P, Couto I, Gama LT, Kadlec K, Schwarz S, Pomba C. 2013. Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet Microbiol 166:299–303 http://dx.doi.org/10.1016/j.vetmic.2013.05.011. [PubMed]
278. Blodkamp S, Kadlec K, Gutsmann T, Naim HY, von Köckritz-Blickwede M, Schwarz S. 2016. In vitro activity of human and animal cathelicidins against livestock-associated methicillin-resistant Staphylococcus aureus. Vet Microbiol 194:107–111 http://dx.doi.org/10.1016/j.vetmic.2015.09.018. [PubMed]
279. Blodkamp S, Kadlec K, Gutsmann T, Quiblier C, Naim HY, Schwarz S, von Köckritz-Blickwede M. 2017. Effects of SecDF on the antimicrobial functions of cathelicidins against Staphylococcus aureus. Vet Microbiol 200:52–58 http://dx.doi.org/10.1016/j.vetmic.2016.03.021. [PubMed]
280. Watts JL, Sweeney MT, Lubbers BV. 2018. Antimicrobial susceptibility testing of bacteria of veterinary origin. Microbiol Spectr. 6(2). http://dx.doi.org/10.1128/microbiolspec.ARBA-0001-2017. [PubMed]
281. Silley P, Simjee S, Schwarz S. 2012. Surveillance and monitoring of antimicrobial resistance and antibiotic consumption in humans and animals. Rev Sci Tech 31:105–120 http://dx.doi.org/10.20506/rst.31.1.2100. [PubMed]
282. Swedres-Svarm. 2016. Consumption of Antibiotics and Occurrence of Resistance in Sweden. Public Health Agency of Sweden and National Veterinary Institute, Solna/Uppsala, Sweden.
283. BVL. 2017. BVL-Report 11.5; Berichte zu den Resistenzmonitoringstudien 2014 und 2015. https://www.bvl.bund.de/DE/09_Untersuchungen/01_Aufgaben/03_Nationales%20Resistenz-Monitoring/untersuchungen_NatResistenzmonitoring_node.html.
284. Guran HS, Kahya S. 2015. Species diversity and pheno- and genotypic antibiotic resistance patterns of staphylococci isolated from retail ground meats. J Food Sci 80:M1291–M1298 http://dx.doi.org/10.1111/1750-3841.12893. [PubMed]
285. Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. 2005. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 187:2395–2405 http://dx.doi.org/10.1128/JB.187.7.2395-2405.2005. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0010-2017
2018-07-05
2018-07-18

Abstract:

Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Antimicrobial resistance genes present in staphylococci of only human origin (left), only animal origin (right), and both origins (gray-shaded area in the middle). The genes depicted in red are associated with mobile genetic elements. Please see the text for the function of the different resistance genes. It should be noted that the tetracycline resistance genes (S) and (W), both coding for ribosome protective proteins, have recently been identified in staphylococci isolated from retail ground meat ( 284 ), and another gene, (38), coding for an efflux pump of the major facilitator superfamily, was identified in a isolate of not further specified origin ( 285 ). For antimicrobial resistance genes present only in staphylococci of human origin, please see references 1 6 .

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Resistance genes detected in staphylococci of animal origin

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017
Generic image for table
TABLE 2

Examples of the distribution of resistance genes in staphylococci from different animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017
Generic image for table
TABLE 3

Examples for multiresistance plasmids among staphylococci from animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017
Generic image for table
TABLE 4

Resistance rates to selected antimicrobial agents among staphylococci of animal origin

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0010-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error