1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Zhangqi Shen1, Yang Wang2, Qijing Zhang3, Jianzhong Shen4
  • Editors: Frank Møller Aarestrup5, Stefan Schwarz6, Jianzhong Shen7, Lina Cavaco8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 2: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 3: Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011; 4: Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; 5: Technical University of Denmark, Lyngby, Denmark; 6: Freie Universität Berlin, Berlin, Germany; 7: China Agricultural University, Beijing, China; 8: Statens Serum Institute, Copenhagen, Denmark.
  • Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0013-2017
  • Received 24 February 2017 Accepted 06 November 2017 Published 06 April 2018
  • Jianzhong Shen, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Campylobacter</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0013-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/2/ARBA-0013-2017-2.gif
  • Abstract:

    is a major foodborne pathogen and has become increasingly resistant to clinically important antimicrobials. To cope with the selection pressure from antimicrobial use in both veterinary and human medicine, has developed multiple mechanisms for antibiotic resistance, including modification or mutation of antimicrobial targets, modification or inactivation of antibiotics, and reduced drug accumulation by drug efflux pumps. Some of these mechanisms confer resistance to a specific class of antimicrobials, while others give rise to multidrug resistance. Notably, new antibiotic resistance mechanisms continuously emerge in , and some examples include the recently discovered multidrug resistance genomic islands harboring multiple genes involved in the resistance to aminoglycosides and macrolides, a novel Cfr(C) conferring resistance to phenicols and other drugs, and a potent multidrug efflux pump CmeABC variant (RE-CmeABC) that shows a significantly enhanced function in multidrug resistance and is associated with exceedingly high-level resistance to fluoroquinolones. These newly emerged resistance mechanisms are horizontally transferable and greatly facilitate the adaptation of in the food-producing environments where antibiotics are frequently used. In this article, we will discuss how resists the action of various classes of antimicrobials, with an emphasis on newly discovered mechanisms.

  • Citation: Shen Z, Wang Y, Zhang Q, Shen J. 2018. Antimicrobial Resistance in spp.. Microbiol Spectrum 6(2):ARBA-0013-2017. doi:10.1128/microbiolspec.ARBA-0013-2017.

References

1. WHO. 2013. The global view of campylobacteriosis. Report of an expert consultation. World Health Organization, Utrecht, The Netherlands, 9–11 July 2012. [PubMed]
2. Allos BM. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32:1201–1206 http://dx.doi.org/10.1086/319760.
3. Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. 2001. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis 7:24–34 http://dx.doi.org/10.3201/eid0701.010104. [PubMed]
4. Payot S, Bolla JM, Corcoran D, Fanning S, Mégraud F, Zhang Q. 2006. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect 8:1967–1971 http://dx.doi.org/10.1016/j.micinf.2005.12.032. [PubMed]
5. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q. 2009. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 4:189–200 http://dx.doi.org/10.2217/17460913.4.2.189. [PubMed]
6. Blaser M, Engberg J. 2008. Clinical aspects of Campylobacter jejuni and Campylobacter coli infections, p 99–121. In Nachamkin I, Szymanski CM, Blaser MJ (eds), Campylobacter, 3rd ed. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555815554.ch6
7. Altekruse SF, Tollefson LK. 2003. Human campylobacteriosis: a challenge for the veterinary profession. J Am Vet Med Assoc 223:445–452 http://dx.doi.org/10.2460/javma.2003.223.445. [PubMed]
8. Wieczorek K, Denis E, Lynch O, Osek J. 2013. Molecular characterization and antibiotic resistance profiling of Campylobacter isolated from cattle in Polish slaughterhouses. Food Microbiol 34:130–136 http://dx.doi.org/10.1016/j.fm.2012.12.003. [PubMed]
9. Sanad YM, Closs G Jr, Kumar A, LeJeune JT, Rajashekara G. 2013. Molecular epidemiology and public health relevance of Campylobacter isolated from dairy cattle and European starlings in Ohio, USA. Foodborne Pathog Dis 10:229–236 http://dx.doi.org/10.1089/fpd.2012.1293. [PubMed]
10. Châtre P, Haenni M, Meunier D, Botrel MA, Calavas D, Madec JY. 2010. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from cattle between 2002 and 2006 inFrance. J Food Prot 73:825–831 http://dx.doi.org/10.4315/0362-028X-73.5.825. [PubMed]
11. Hakkinen M, Heiska H, Hänninen ML. 2007. Prevalence of Campylobacter spp. in cattle in Finland and antimicrobial susceptibilities of bovine Campylobacter jejuni strains. Appl Environ Microbiol 73:3232–3238 http://dx.doi.org/10.1128/AEM.02579-06. [PubMed]
12. Englen MD, Hill AE, Dargatz DA, Ladely SR, Fedorka-Cray PJ. 2007. Prevalence and antimicrobial resistance of Campylobacter in US dairy cattle. J Appl Microbiol 102:1570–1577 http://dx.doi.org/10.1111/j.1365-2672.2006.03189.x. [PubMed]
13. Jesse TW, Englen MD, Pittenger-Alley LG, Fedorka-Cray PJ. 2006. Two distinct mutations in gyrA lead to ciprofloxacin and nalidixic acid resistance in Campylobacter coli and Campylobacter jejuni isolated from chickens and beef cattle. J Appl Microbiol 100:682–688 http://dx.doi.org/10.1111/j.1365-2672.2005.02796.x. [PubMed]
14. Inglis GD, Morck DW, McAllister TA, Entz T, Olson ME, Yanke LJ, Read RR. 2006. Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. Appl Environ Microbiol 72:4088–4095 http://dx.doi.org/10.1128/AEM.02830-05. [PubMed]
15. Bae W, Kaya KN, Hancock DD, Call DR, Park YH, Besser TE. 2005. Prevalence and antimicrobial resistance of thermophilic Campylobacter spp. from cattle farms in Washington State. Appl Environ Microbiol 71:169–174 http://dx.doi.org/10.1128/AEM.71.1.169-174.2005. [PubMed]
16. Iovine NM. 2013. Resistance mechanisms in Campylobacter jejuni. Virulence 4:230–240 http://dx.doi.org/10.4161/viru.23753. [PubMed]
17. Wieczorek K, Osek J. 2013. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res Int 2013:1 http://dx.doi.org/10.1155/2013/340605.
18. Zhang Q, Plummer P. 2008. Mechanisms of antibiotic resistance in Campylobacter, p 263–276. In Nachamkin I, Szymanski CM, Blaser MJ (eds), Campylobacter, 3rd ed. ASM Press, Washington, DC.
19. Shen Z, Su C, Yu E, Zhang Q. 2013. Multidrug efflux transporters in Campylobacter, p 223–235. In Yu EW, Zhang Q, Brown MH (eds), Microbial Efflux Pumps: Current Research. Caister Academic Press, Norfolk, United Kingdom.
20. Appelbaum PC, Hunter PA. 2000. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15 http://dx.doi.org/10.1016/S0924-8579(00)00192-8. [PubMed]
21. Hooper DC. 1998. Clinical applications of quinolones. Biochim Biophys Acta 1400:45–61 http://dx.doi.org/10.1016/S0167-4781(98)00127-4. [PubMed]
22. Martinez M, McDermott P, Walker R. 2006. Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. Vet J 172:10–28 http://dx.doi.org/10.1016/j.tvjl.2005.07.010. [PubMed]
23. Oliphant CM, Green GM. 2002. Quinolones: a comprehensive review. Am Fam Physician 65:455–464. [PubMed]
24. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445 http://dx.doi.org/10.1016/j.tim.2014.04.007. [PubMed]
25. Hooper DC. 1999. Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55 http://dx.doi.org/10.1054/drup.1998.0068. [PubMed]
26. Hooper DC. 2001. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7:337–341 http://dx.doi.org/10.3201/eid0702.010239. [PubMed]
27. Payot S, Cloeckaert A, Chaslus-Dancla E. 2002. Selection and characterization of fluoroquinolone-resistant mutants of Campylobacter jejuni using enrofloxacin. Microb Drug Resist 8:335–343 http://dx.doi.org/10.1089/10766290260469606. [PubMed]
28. Piddock LJ, Ricci V, Pumbwe L, Everett MJ, Griggs DJ. 2003. Fluoroquinolone resistance in Campylobacter species from man and animals: detection of mutations in topoisomerase genes. J Antimicrob Chemother 51:19–26 http://dx.doi.org/10.1093/jac/dkg033. [PubMed]
29. Bachoual R, Ouabdesselam S, Mory F, Lascols C, Soussy CJ, Tankovic J. 2001. Single or double mutational alterations of gyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Microb Drug Resist 7:257–261 http://dx.doi.org/10.1089/10766290152652800. [PubMed]
30. Luo N, Sahin O, Lin J, Michel LO, Zhang Q. 2003. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother 47:390–394 http://dx.doi.org/10.1128/AAC.47.1.390-394.2003. [PubMed]
31. Cooper R, Segal H, Lastovica AJ, Elisha BG. 2002. Genetic basis of quinolone resistance and epidemiology of resistant and susceptible isolates of porcine Campylobacter coli strains. J Appl Microbiol 93:241–249 http://dx.doi.org/10.1046/j.1365-2672.2002.01650.x. [PubMed]
32. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, Jagels K, Karlyshev AV, Moule S, Pallen MJ, Penn CW, Quail MA, Rajandream MA, Rutherford KM, van Vliet AH, Whitehead S, Barrell BG. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 http://dx.doi.org/10.1038/35001088. [PubMed]
33. Ge B, McDermott PF, White DG, Meng J. 2005. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 49:3347–3354 http://dx.doi.org/10.1128/AAC.49.8.3347-3354.2005. [PubMed]
34. Zhang Q, Lin J, Pereira S. 2003. Fluoroquinolone-resistant Campylobacter in animal reservoirs: dynamics of development, resistance mechanisms and ecological fitness. Anim Health Res Rev 4:63–71 http://dx.doi.org/10.1079/AHR200356. [PubMed]
35. Hänninen ML, Hannula M. 2007. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 60:1251–1257 http://dx.doi.org/10.1093/jac/dkm345. [PubMed]
36. Smith JL, Fratamico PM. 2010. Fluoroquinolone resistance in campylobacter. J Food Prot 73:1141–1152 http://dx.doi.org/10.4315/0362-028X-73.6.1141. [PubMed]
37. Chu DT. 1999. Recent developments in macrolides and ketolides. Curr Opin Microbiol 2:467–474 http://dx.doi.org/10.1016/S1369-5274(99)00002-8.
38. McEwen SA, Fedorka-Cray PJ. 2002. Antimicrobial use and resistance in animals. Clin Infect Dis 34(Suppl 3):S93–S106 http://dx.doi.org/10.1086/340246. [PubMed]
39. Brisson-Noel A, Trieu-Cuot P, Courvalin P. 1988. Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother 22(Suppl B):13–23. [PubMed]
40. Poehlsgaard J, Douthwaite S. 2005. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3:870–881 http://dx.doi.org/10.1038/nrmicro1265. [PubMed]
41. Gibreel A, Taylor DE. 2006. Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 58:243–255 http://dx.doi.org/10.1093/jac/dkl210. [PubMed]
42. Roe DE, Weinberg A, Roberts MC. 1995. Mobile rRNA methylase genes in Campylobacter (Wolinella) rectus. J Antimicrob Chemother 36:738–740 http://dx.doi.org/10.1093/jac/36.4.738. [PubMed]
43. Wang Y, Zhang M, Deng F, Shen Z, Wu C, Zhang J, Zhang Q, Shen J. 2014. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob Agents Chemother 58:5405–5412 http://dx.doi.org/10.1128/AAC.03039-14. [PubMed]
44. Qin S, Wang Y, Zhang Q, Zhang M, Deng F, Shen Z, Wu C, Wang S, Zhang J, Shen J. 2014. Report of ribosomal RNA methylase gene erm(B) in multidrug-resistant Campylobacter coli. J Antimicrob Chemother 69:964–968 http://dx.doi.org/10.1093/jac/dkt492. [PubMed]
45. Deng F, Wang Y, Zhang Y, Shen Z. 2015. Characterization of the genetic environment of the ribosomal RNA methylase gene erm(B) in Campylobacter jejuni. J Antimicrob Chemother 70:613–615 http://dx.doi.org/10.1093/jac/dku418. [PubMed]
46. Corcoran D, Quinn T, Cotter L, Fanning S. 2006. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents 27:40–45 http://dx.doi.org/10.1016/j.ijantimicag.2005.08.019. [PubMed]
47. Gibreel A, Kos VN, Keelan M, Trieber CA, Levesque S, Michaud S, Taylor DE. 2005. Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecular mechanism and stability of the resistance phenotype. Antimicrob Agents Chemother 49:2753–2759 http://dx.doi.org/10.1128/AAC.49.7.2753-2759.2005. [PubMed]
48. Lin J, Yan M, Sahin O, Pereira S, Chang YJ, Zhang Q. 2007. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 51:1678–1686 http://dx.doi.org/10.1128/AAC.01411-06. [PubMed]
49. Mamelli L, Prouzet-Mauléon V, Pagès JM, Mégraud F, Bolla JM. 2005. Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. J Antimicrob Chemother 56:491–497 http://dx.doi.org/10.1093/jac/dki253. [PubMed]
50. Caldwell DB, Wang Y, Lin J. 2008. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother 52:3947–3954 http://dx.doi.org/10.1128/AAC.00450-08. [PubMed]
51. Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, Nelson KE. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol 3:e15 http://dx.doi.org/10.1371/journal.pbio.0030015. [PubMed]
52. Vacher S, Menard A, Bernard E, Santos A, Megraud F. 2005. Detection of mutations associated with macrolide resistance in thermophilic Campylobacter spp. by real-time PCR. Microb Drug Resist 11:40–47 http://dx.doi.org/10.1089/mdr.2005.11.40. [PubMed]
53. Cagliero C, Mouline C, Cloeckaert A, Payot S. 2006. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 50:3893–3896 http://dx.doi.org/10.1128/AAC.00616-06. [PubMed]
54. Kurincic M, Botteldoorn N, Herman L, Smole Mozina S. 2007. Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. Int J Food Microbiol 120:186–190 http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.012. [PubMed]
55. Gibreel A, Wetsch NM, Taylor DE. 2007. Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 51:3212–3216 http://dx.doi.org/10.1128/AAC.01592-06. [PubMed]
56. Payot S, Avrain L, Magras C, Praud K, Cloeckaert A, Chaslus-Dancla E. 2004. Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance, in French poultry and pig isolates of Campylobacter coli. Int J Antimicrob Agents 23:468–472 http://dx.doi.org/10.1016/j.ijantimicag.2003.12.008. [PubMed]
57. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
58. Epe B, Woolley P, Hornig H. 1987. Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli. FEBS Lett 213:443–447 http://dx.doi.org/10.1016/0014-5793(87)81539-9.
59. Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Chan KY, Tenson T, Schulten K, Wilson KS, Hauryliuk V, Frank J. 2013. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat Commun 4:1477 http://dx.doi.org/10.1038/ncomms2470. [PubMed]
60. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47:3675–3681 http://dx.doi.org/10.1128/AAC.47.12.3675-3681.2003. [PubMed]
61. Roberts MC. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203 http://dx.doi.org/10.1016/j.femsle.2005.02.034. [PubMed]
62. Dönhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN. 2012. Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci USA 109:16900–16905 http://dx.doi.org/10.1073/pnas.1208037109. [PubMed]
63. Margus T, Remm M, Tenson T. 2007. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 8:15 http://dx.doi.org/10.1186/1471-2164-8-15. [PubMed]
64. Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH. 2003. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J 22:945–953 http://dx.doi.org/10.1093/emboj/cdg093. [PubMed]
65. Taylor DE, Courvalin P. 1988. Mechanisms of antibiotic resistance in Campylobacter species. Antimicrob Agents Chemother 32:1107–1112 http://dx.doi.org/10.1128/AAC.32.8.1107. [PubMed]
66. Taylor DE, Garner RS, Allan BJ. 1983. Characterization of tetracycline resistance plasmids from Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 24:930–935 http://dx.doi.org/10.1128/AAC.24.6.930. [PubMed]
67. Taylor DE. 1986. Plasmid-mediated tetracycline resistance in Campylobacter jejuni: expression in Escherichia coli and identification of homology with streptococcal class M determinant. J Bacteriol 165:1037–1039 http://dx.doi.org/10.1128/jb.165.3.1037-1039.1986. [PubMed]
68. Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM. 2004. Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology 150:3507–3517 http://dx.doi.org/10.1099/mic.0.27112-0. [PubMed]
69. Sahin O, Plummer PJ, Jordan DM, Sulaj K, Pereira S, Robbe-Austerman S, Wang L, Yaeger MJ, Hoffman LJ, Zhang Q. 2008. Emergence of a tetracycline-resistant Campylobacter jejuni clone associated with outbreaks of ovine abortion in the United States. J Clin Microbiol 46:1663–1671 http://dx.doi.org/10.1128/JCM.00031-08. [PubMed]
70. Lin J, Michel LO, Zhang Q. 2002. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 46:2124–2131 http://dx.doi.org/10.1128/AAC.46.7.2124-2131.2002. [PubMed]
71. Pumbwe L, Piddock LJ. 2002. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol Lett 206:185–189 http://dx.doi.org/10.1111/j.1574-6968.2002.tb11007.x. [PubMed]
72. Jeon B, Wang Y, Hao H, Barton YW, Zhang Q. 2011. Contribution of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni. J Antimicrob Chemother 66:79–85 http://dx.doi.org/10.1093/jac/dkq418. [PubMed]
73. Spahn CM, Schäfer MA, Krayevsky AA, Nierhaus KH. 1996. Conserved nucleotides of 23 S rRNA located at the ribosomal peptidyltransferase center. J Biol Chem 271:32857–32862 http://dx.doi.org/10.1074/jbc.271.51.32857. [PubMed]
74. Jana S, Deb JK. 2006. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 70:140–150 http://dx.doi.org/10.1007/s00253-005-0279-0. [PubMed]
75. Magnet S, Blanchard JS. 2005. Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498 http://dx.doi.org/10.1021/cr0301088. [PubMed]
76. Smith CA, Baker EN. 2002. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord 2:143–160 http://dx.doi.org/10.2174/1568005023342533. [PubMed]
77. Lawrence PK, Kittichotirat W, McDermott JE, Bumgarner RE. 2010. A three-way comparative genomic analysis of Mannheimia haemolytica isolates. BMC Genomics 11:535 http://dx.doi.org/10.1186/1471-2164-11-535. [PubMed]
78. Vakulenko SB, Mobashery S. 2003. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450 http://dx.doi.org/10.1128/CMR.16.3.430-450.2003. [PubMed]
79. Tenover FC, Elvrum PM. 1988. Detection of two different kanamycin resistance genes in naturally occurring isolates of Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 32:1170–1173 http://dx.doi.org/10.1128/AAC.32.8.1170. [PubMed]
80. Gibreel A, Sköld O, Taylor DE. 2004. Characterization of plasmid-mediated aphA-3 kanamycin resistance in Campylobacter jejuni. Microb Drug Resist 10:98–105 http://dx.doi.org/10.1089/1076629041310127. [PubMed]
81. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171 http://dx.doi.org/10.1016/j.drup.2010.08.003. [PubMed]
82. Doi Y, Arakawa Y. 2007. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45:88–94 http://dx.doi.org/10.1086/518605. [PubMed]
83. Overhage J, Bains M, Brazas MD, Hancock RE. 2008. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679 http://dx.doi.org/10.1128/JB.01659-07. [PubMed]
84. Lambert T, Gerbaud G, Trieu-Cuot P, Courvalin P. 1985. Structural relationship between the genes encoding 3′-aminoglycoside phosphotransferases in Campylobacter and in Gram-positive cocci. Ann Inst Pasteur Microbiol 1985 136B:135–150 http://dx.doi.org/10.1016/S0769-2609(85)80040-5.
85. Ouellette M, Gerbaud G, Lambert T, Courvalin P. 1987. Acquisition by a Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from members of the family Enterobacteriaceae. Antimicrob Agents Chemother 31:1021–1026 http://dx.doi.org/10.1128/AAC.31.7.1021. [PubMed]
86. Gibreel A, Tracz DM, Nonaka L, Ngo TM, Connell SR, Taylor DE. 2004. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance. Antimicrob Agents Chemother 48:3442–3450 http://dx.doi.org/10.1128/AAC.48.9.3442-3450.2004. [PubMed]
87. Qin S, Wang Y, Zhang Q, Chen X, Shen Z, Deng F, Wu C, Shen J. 2012. Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob Agents Chemother 56:5332–5339 http://dx.doi.org/10.1128/AAC.00809-12. [PubMed]
88. Tenover FC, Gilbert T, O’Hara P. 1989. Nucleotide sequence of a novel kanamycin resistance gene, aphA-7, from Campylobacter jejuni and comparison to other kanamycin phosphotransferase genes. Plasmid 22:52–58 http://dx.doi.org/10.1016/0147-619X(89)90035-8.
89. Tenover FC, Fennell CL, Lee L, LeBlanc DJ. 1992. Characterization of two plasmids from Campylobacter jejuni isolates that carry the aphA-7 kanamycin resistance determinant. Antimicrob Agents Chemother 36:712–716 http://dx.doi.org/10.1128/AAC.36.4.712. [PubMed]
90. Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ. 1992. Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6′-N-acetyltransferase Ib and IIa proteins. J Bacteriol 174:3196–3203 http://dx.doi.org/10.1128/jb.174.10.3196-3203.1992. [PubMed]
91. Lee MD, Sanchez S, Zimmer M, Idris U, Berrang ME, McDermott PF. 2002. Class 1 integron-associated tobramycin-gentamicin resistance in Campylobacter jejuni isolated from the broiler chicken house environment. Antimicrob Agents Chemother 46:3660–3664 http://dx.doi.org/10.1128/AAC.46.11.3660-3664.2002. [PubMed]
92. Toth M, Frase H, Antunes NT, Vakulenko SB. 2013. Novel aminoglycoside 2″phosphotransferase identified in a Gram-negative pathogen. Antimicrob Agents Chemother 57:452–457 http://dx.doi.org/10.1128/AAC.02049-12. [PubMed]
93. Chen Y, Mukherjee S, Hoffmann M, Kotewicz ML, Young S, Abbott J, Luo Y, Davidson MK, Allard M, McDermott P, Zhao S. 2013. Whole-genome sequencing of gentamicin-resistant Campylobacter coli isolated from U.S. retail meats reveals novel plasmid-mediated aminoglycoside resistance genes. Antimicrob Agents Chemother 57:5398–5405 http://dx.doi.org/10.1128/AAC.00669-13. [PubMed]
94. Zhao S, Mukherjee S, Chen Y, Li C, Young S, Warren M, Abbott J, Friedman S, Kabera C, Karlsson M, McDermott PF. 2015. Novel gentamicin resistance genes in Campylobacter isolated from humans and retail meats in the USA. J Antimicrob Chemother 70:1314–1321 http://dx.doi.org/10.1093/jac/dkv001. [PubMed]
95. Nirdnoy W, Mason CJ, Guerry P. 2005. Mosaic structure of a multiple-drug-resistant, conjugative plasmid from Campylobacter jejuni. Antimicrob Agents Chemother 49:2454–2459 http://dx.doi.org/10.1128/AAC.49.6.2454-2459.2005. [PubMed]
96. Abril C, Brodard I, Perreten V. 2010. Two novel antibiotic resistance genes, tet(44) and ant(6)-Ib, are located within a transferable pathogenicity island in Campylobacter fetus subsp. fetus. Antimicrob Agents Chemother 54:3052–3055 http://dx.doi.org/10.1128/AAC.00304-10. [PubMed]
97. Olkkola S, Culebro A, Juntunen P, Hänninen ML, Rossi M. 2016. Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Microbiology 162:1157–1166 http://dx.doi.org/10.1099/mic.0.000304 [PubMed]
98. Hamad B. 2010. The antibiotics market. Nat Rev Drug Discov 9:675–676 http://dx.doi.org/10.1038/nrd3267. [PubMed]
99. Wise R. 2002. Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49:585–586 http://dx.doi.org/10.1093/jac/49.4.585. [PubMed]
100. Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J. 2010. β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28:596–604 http://dx.doi.org/10.1016/j.tibtech.2010.09.004. [PubMed]
101. Lachance N, Gaudreau C, Lamothe F, Larivière LA. 1991. Role of the beta-lactamase of Campylobacter jejuni in resistance to beta-lactam agents. Antimicrob Agents Chemother 35:813–818 http://dx.doi.org/10.1128/AAC.35.5.813. [PubMed]
102. Griggs DJ, Peake L, Johnson MM, Ghori S, Mott A, Piddock LJ. 2009. Beta-lactamase-mediated beta-lactam resistance in Campylobacter species: prevalence of Cj0299 (bla OXA-61) and evidence for a novel beta-lactamase in C. jejuni. Antimicrob Agents Chemother 53:3357–3364 http://dx.doi.org/10.1128/AAC.01655-08. [PubMed]
103. Alfredson DA, Korolik V. 2005. Isolation and expression of a novel molecular class D beta-lactamase, OXA-61, from Campylobacter jejuni. Antimicrob Agents Chemother 49:2515–2518 http://dx.doi.org/10.1128/AAC.49.6.2515-2518.2005. [PubMed]
104. Zeng X, Brown S, Gillespie B, Lin J. 2014. A single nucleotide in the promoter region modulates the expression of the β-lactamase OXA-61 in Campylobacter jejuni. J Antimicrob Chemother 69:1215–1223 http://dx.doi.org/10.1093/jac/dkt515. [PubMed]
105. Page WJ, Huyer G, Huyer M, Worobec EA. 1989. Characterization of the porins of Campylobacter jejuni and Campylobacter coli and implications for antibiotic susceptibility. Antimicrob Agents Chemother 33:297–303 http://dx.doi.org/10.1128/AAC.33.3.297. [PubMed]
106. Pumbwe L, Randall LP, Woodward MJ, Piddock LJ. 2004. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemother 54:341–347 http://dx.doi.org/10.1093/jac/dkh331. [PubMed]
107. Akiba M, Lin J, Barton YW, Zhang Q. 2006. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57:52–60 http://dx.doi.org/10.1093/jac/dki419. [PubMed]
108. Wang Y, Taylor DE. 1990. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94:23–28 http://dx.doi.org/10.1016/0378-1119(90)90463-2.
109. Ma L, Shen Z, Naren G, Li H, Xia X, Wu C, Shen J, Zhang Q, Wang Y. 2014. Identification of a novel G2073A mutation in 23S rRNA in amphenicol-selected mutants of Campylobacter jejuni. PLoS One 9:e94503 http://dx.doi.org/10.1371/journal.pone.0094503. [PubMed]
110. Schwarz S, Werckenthin C, Kehrenberg C. 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 44:2530–2533 http://dx.doi.org/10.1128/AAC.44.9.2530-2533.2000. [PubMed]
111. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. 2006. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505 http://dx.doi.org/10.1128/AAC.00131-06. [PubMed]
112. Liu Y, Wang Y, Schwarz S, Li Y, Shen Z, Zhang Q, Wu C, Shen J. 2013. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother 57:42–48 http://dx.doi.org/10.1128/AAC.01605-12. [PubMed]
113. Dai L, Wu CM, Wang MG, Wang Y, Wang Y, Huang SY, Xia LN, Li BB, Shen JZ. 2010. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrob Agents Chemother 54:3953–3955 http://dx.doi.org/10.1128/AAC.00169-10. [PubMed]
114. Wang Y, Wang Y, Schwarz S, Shen Z, Zhou N, Lin J, Wu C, Shen J. 2012. Detection of the staphylococcal multiresistance gene cfr in Macrococcus caseolyticus and Jeotgalicoccus pinnipedialis. J Antimicrob Chemother 67:1824–1827 http://dx.doi.org/10.1093/jac/dks163. [PubMed]
115. Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Wang Y, Ma L, Zhang Q, Shen J. 2012. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother 67:1094–1098 http://dx.doi.org/10.1093/jac/dks020. [PubMed]
116. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
117. Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. 2017. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother 72:1581–1588 http://dx.doi.org/10.1093/jac/dkx023. [PubMed]
118. Yao H, Shen Z, Wang Y, Deng F, Liu D, Naren G, Dai L, Su CC, Wang B, Wang S, Wu C, Yu EW, Zhang Q, Shen J. 2016. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. MBio 7:e01543–e16 http://dx.doi.org/10.1128/mBio.01543-16. [PubMed]
119. Forsgren A, Walder M. 1983. Antimicrobial activity of fosfomycin in vitro. J Antimicrob Chemother 11:467–471 http://dx.doi.org/10.1093/jac/11.5.467. [PubMed]
120. Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN. 2003. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125:15730–15731 http://dx.doi.org/10.1021/ja039307z. [PubMed]
121. Schwaiger K, Schmied EM, Bauer J. 2008. Comparative analysis of antibiotic resistance characteristics of Gram-negative bacteria isolated from laying hens and eggs in conventional and organic keeping systems in Bavaria, Germany. Zoonoses Public Health 55:331–341 http://dx.doi.org/10.1111/j.1863-2378.2008.01151.x.
122. Gomez-Garces JL, Cogollos R, Alos JL. 1995. Susceptibilities of fluoroquinolone-resistant strains of Campylobacter jejuni to 11 oral antimicrobial agents. Antimicrob Agents Chemother 39:542–544 http://dx.doi.org/10.1128/AAC.39.2.542. [PubMed]
123. Wang Y, Yao H, Deng F, Liu D, Zhang Y, Shen Z. 2015. Identification of a novel fosXCC gene conferring fosfomycin resistance in Campylobacter. J Antimicrob Chemother 70:1261–1263. [PubMed]
124. Sapkota AR, Price LB, Silbergeld EK, Schwab KJ. 2006. Arsenic resistance in Campylobacter spp. isolated from retail poultry products. Appl Environ Microbiol 72:3069–3071 http://dx.doi.org/10.1128/AEM.72.4.3069-3071.2006. [PubMed]
125. Wang L, Jeon B, Sahin O, Zhang Q. 2009. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 75:5064–5073 http://dx.doi.org/10.1128/AEM.00149-09. [PubMed]
126. Shen Z, Han J, Wang Y, Sahin O, Zhang Q. 2013. The contribution of ArsB to arsenic resistance in Campylobacter jejuni. PLoS One 8:e58894 http://dx.doi.org/10.1371/journal.pone.0058894. [PubMed]
127. Shen Z, Luangtongkum T, Qiang Z, Jeon B, Wang L, Zhang Q. 2014. Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni. Antimicrob Agents Chemother 58:2021–2029 http://dx.doi.org/10.1128/AAC.02137-13. [PubMed]
128. Chen J, Madegowda M, Bhattacharjee H, Rosen BP. 2015. ArsP: a methylarsenite efflux permease. Mol Microbiol 98:625–635 http://dx.doi.org/10.1111/mmi.13145. [PubMed]
129. Rosen BP. 1999. Families of arsenic transporters. Trends Microbiol 7:207–212 http://dx.doi.org/10.1016/S0966-842X(99)01494-8. [PubMed]
130. Rosen BP. 2002. Biochemistry of arsenic detoxification. FEBS Lett 529:86–92 http://dx.doi.org/10.1016/S0014-5793(02)03186-1. [PubMed]
131. Indriolo E, Na G, Ellis D, Salt DE, Banks JA. 2010. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057 http://dx.doi.org/10.1105/tpc.109.069773. [PubMed]
132. Fu HL, Meng Y, Ordóñez E, Villadangos AF, Bhattacharjee H, Gil JA, Mateos LM, Rosen BP. 2009. Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. J Biol Chem 284:19887–19895 http://dx.doi.org/10.1074/jbc.M109.011882. [PubMed]
133. Ji G, Silver S. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478 http://dx.doi.org/10.1073/pnas.89.20.9474. [PubMed]
134. Saltikov CW, Cifuentes A, Venkateswaran K, Newman DK. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800–2809 http://dx.doi.org/10.1128/AEM.69.5.2800-2809.2003. [PubMed]
135. Ji G, Silver S. 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694 http://dx.doi.org/10.1128/jb.174.11.3684-3694.1992. [PubMed]
136. Chen CM, Misra TK, Silver S, Rosen BP. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261:15030–15038. [PubMed]
137. San Francisco MJ, Tisa LS, Rosen BP. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol Microbiol 3:15–21 http://dx.doi.org/10.1111/j.1365-2958.1989.tb00098.x. [PubMed]
138. Tisa LS, Rosen BP. 1990. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 265:190–194. [PubMed]
139. Tuffin IM, de Groot P, Deane SM, Rawlings DE. 2005. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151:3027–3039 http://dx.doi.org/10.1099/mic.0.28131-0. [PubMed]
140. Piddock LJ, Griggs D, Johnson MM, Ricci V, Elviss NC, Williams LK, Jørgensen F, Chisholm SA, Lawson AJ, Swift C, Humphrey TJ, Owen RJ. 2008. Persistence of Campylobacter species, strain types, antibiotic resistance and mechanisms of tetracycline resistance in poultry flocks treated with chlortetracycline. J Antimicrob Chemother 62:303–315 http://dx.doi.org/10.1093/jac/dkn190. [PubMed]
141. Cagliero C, Mouline C, Payot S, Cloeckaert A. 2005. Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 56:948–950 http://dx.doi.org/10.1093/jac/dki292. [PubMed]
142. Hoang KV, Stern NJ, Lin J. 2011. Development and stability of bacteriocin resistance in Campylobacter spp. J Appl Microbiol 111:1544–1550 http://dx.doi.org/10.1111/j.1365-2672.2011.05163.x. [PubMed]
143. Hoang KV, Stern NJ, Saxton AM, Xu F, Zeng X, Lin J. 2011. Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter. Appl Environ Microbiol 77:2309–2316 http://dx.doi.org/10.1128/AEM.02094-10. [PubMed]
144. Guo B, Lin J, Reynolds DL, Zhang Q. 2010. Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog Dis 7:77–83 http://dx.doi.org/10.1089/fpd.2009.0354. [PubMed]
145. Lin J, Sahin O, Michel LO, Zhang Q. 2003. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71:4250–4259 http://dx.doi.org/10.1128/IAI.71.8.4250-4259.2003. [PubMed]
146. Olah PA, Doetkott C, Fakhr MK, Logue CM. 2006. Prevalence of the Campylobacter multi-drug efflux pump (CmeABC) in Campylobacter spp. Isolated from freshly processed turkeys. Food Microbiol 23:453–460 http://dx.doi.org/10.1016/j.fm.2005.06.004. [PubMed]
147. Cagliero C, Cloix L, Cloeckaert A, Payot S. 2006. High genetic variation in the multidrug transporter cmeB gene in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 58:168–172 http://dx.doi.org/10.1093/jac/dkl212. [PubMed]
148. Fakhr MK, Logue CM. 2007. Sequence variation in the outer membrane protein-encoding gene cmeC, conferring multidrug resistance among Campylobacter jejuni and Campylobacter coli strains isolated from different hosts. J Clin Microbiol 45:3381–3383 http://dx.doi.org/10.1128/JCM.01208-07. [PubMed]
149. Lin J, Akiba M, Sahin O, Zhang Q. 2005. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 49:1067–1075 http://dx.doi.org/10.1128/AAC.49.3.1067-1075.2005. [PubMed]
150. Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q. 2005. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 187:7417–7424 http://dx.doi.org/10.1128/JB.187.21.7417-7424.2005. [PubMed]
151. Shen Z, Pu XY, Zhang Q. 2011. Salicylate functions as an efflux pump inducer and promotes the emergence of fluoroquinolone-resistant Campylobacter jejuni mutants. Appl Environ Microbiol 77:7128–7133 http://dx.doi.org/10.1128/AEM.00763-11. [PubMed]
152. Gu R, Su CC, Shi F, Li M, McDermott G, Zhang Q, Yu EW. 2007. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. J Mol Biol 372:583–593 http://dx.doi.org/10.1016/j.jmb.2007.06.072. [PubMed]
153. Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW. 2011. Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Protein Sci 20:712–723 http://dx.doi.org/10.1002/pro.602. [PubMed]
154. Routh MD, Su CC, Zhang Q, Yu EW. 2009. Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators. Biochim Biophys Acta 1794:844–851 http://dx.doi.org/10.1016/j.bbapap.2008.12.001. [PubMed]
155. Pumbwe L, Randall LP, Woodward MJ, Piddock LJ. 2005. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob Agents Chemother 49:1289–1293 http://dx.doi.org/10.1128/AAC.49.4.1289-1293.2005. [PubMed]
156. Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A. 2009. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10:481 http://dx.doi.org/10.1186/1471-2164-10-481. [PubMed]
157. Holmes K, Mulholland F, Pearson BM, Pin C, McNicholl-Kennedy J, Ketley JM, Wells JM. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151:243–257 http://dx.doi.org/10.1099/mic.0.27412-0. [PubMed]
158. Palyada K, Threadgill D, Stintzi A. 2004. Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186:4714–4729 http://dx.doi.org/10.1128/JB.186.14.4714-4729.2004. [PubMed]
159. Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci USA 102:541–546 http://dx.doi.org/10.1073/pnas.0408966102. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0013-2017
2018-04-06
2018-08-19

Abstract:

is a major foodborne pathogen and has become increasingly resistant to clinically important antimicrobials. To cope with the selection pressure from antimicrobial use in both veterinary and human medicine, has developed multiple mechanisms for antibiotic resistance, including modification or mutation of antimicrobial targets, modification or inactivation of antibiotics, and reduced drug accumulation by drug efflux pumps. Some of these mechanisms confer resistance to a specific class of antimicrobials, while others give rise to multidrug resistance. Notably, new antibiotic resistance mechanisms continuously emerge in , and some examples include the recently discovered multidrug resistance genomic islands harboring multiple genes involved in the resistance to aminoglycosides and macrolides, a novel Cfr(C) conferring resistance to phenicols and other drugs, and a potent multidrug efflux pump CmeABC variant (RE-CmeABC) that shows a significantly enhanced function in multidrug resistance and is associated with exceedingly high-level resistance to fluoroquinolones. These newly emerged resistance mechanisms are horizontally transferable and greatly facilitate the adaptation of in the food-producing environments where antibiotics are frequently used. In this article, we will discuss how resists the action of various classes of antimicrobials, with an emphasis on newly discovered mechanisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Chromosomal organization and comparison of seven types (I to VII) of MDRGIs containing the (B) gene (modified from references 43 45 ). (B) is in red, aminoglycoside resistance genes are in yellow, the streptothricin resistance gene () is in blue, the tetracycline resistance gene [(O)] is in purple, genes with predicted functions are in green, and genes coding hypothetical proteins are in white. The (O) gene is intact in types V and VI but is truncated in other types. The border genes of the MDRGIs are depicted by black box arrows. The gray shading indicates regions sharing more than 98% DNA identity. A representative strain for each type of MDRGI is indicated on the right side of the panel.

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.ARBA-0013-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error