1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in Nontyphoidal

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Patrick F. McDermott1, Shaohua Zhao2, Heather Tate3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: U.S. Food & Drug Administration, Center for Veterinary Medicine, Office of Research Laurel, MD 20708; 2: U.S. Food & Drug Administration, Center for Veterinary Medicine, Office of Research Laurel, MD 20708; 3: U.S. Food & Drug Administration, Center for Veterinary Medicine, Office of Research Laurel, MD 20708; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
  • Received 06 March 2017 Accepted 07 February 2018 Published 19 July 2018
  • Patrick F. McDermott, [email protected]
image of Antimicrobial Resistance in Nontyphoidal <span class="jp-italic">Salmonella</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in Nontyphoidal , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0014-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0014-2017-2.gif
  • Abstract:

    Non-typhoidal is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal arises in large part because of antibiotic use in animal husbandry. Tracking resistance in is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant , the specific types of resistance genes involved, and information on how resistance spreads.

  • Citation: McDermott P, Zhao S, Tate H. 2018. Antimicrobial Resistance in Nontyphoidal . Microbiol Spectrum 6(4):ARBA-0014-2017. doi:10.1128/microbiolspec.ARBA-0014-2017.

References

1. WHO. 2013. Integrated Surveillance of Antimicrobial Resistance: Guidance from a WHO Advisory Group. World Health Organization, Geneva, Switzerland.
2. Hoelzer K, Moreno Switt AI, Wiedmann M. 2011. Animal contact as a source of human non-typhoidal salmonellosis. Vet Res (Faisalabad) 42:34 http://dx.doi.org/10.1186/1297-9716-42-34. [PubMed]
3. Interagency Food Safety Analytics Collaboration (IFSAC). 2015. Foodborne illness source attribution estimates for Salmonella, Escherichia coli O157 (E. coli O157), Listeria monocytogenes (Lm), and Campylobacter using outbreak surveillance data. U.S. Department of Health and Human Services, CDC, FDA, USDA-FSIS.
4. CDC. 2014. National Enteric Disease Surveillance: Salmonella Annual Report, 2014. CDC, Atlanta, GA.
5. Rabsch W, Tschäpe H, Bäumler AJ. 2001. Non-typhoidal salmonellosis: emerging problems. Microbes Infect 3:237–247 http://dx.doi.org/10.1016/S1286-4579(01)01375-2.
6. Patterson SK, Kim HB, Borewicz K, Isaacson RE. 2016. Towards an understanding of Salmonella enterica serovar Typhimurium persistence in swine. Anim Health Res Rev 17:159–168 http://dx.doi.org/10.1017/S1466252316000165. [PubMed]
7. Cobbold RN, Rice DH, Davis MA, Besser TE, Hancock DD. 2006. Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds. J Am Vet Med Assoc 228:585–591 http://dx.doi.org/10.2460/javma.228.4.585. [PubMed]
8. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889 http://dx.doi.org/10.1086/650733. [PubMed]
9. CDC. 2013. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf#page=112.
10. McDermott PF, Zhao S, Wagner DD, Simjee S, Walker RD, White DG. 2002. The food safety perspective of antibiotic resistance. Anim Biotechnol 13:71–84 http://dx.doi.org/10.1081/ABIO-120005771. [PubMed]
11. FDA. 2012. Guidance for Industry No. 209: The judicious use of medically important antimicrobials drugs in food-producing animals. HHS, Food and Drug Administration, Rockville, MD. https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM216936.pdf.
12. Ministry of Agriculture FaF, National Veterinary Assay Laboratory. 2016. JVARM: Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System, 2012–2013. Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan.
13. EMA. 2016. Sales of veterinary antimicrobial agents in 29 European countries in 2014. Sixth ESVAC Report. European Medicines Agency, Agency EM, London, United Kingdom.
14. Bondt N, Jensen VF, Puister-Jansen LF, van Geijlswijk IM. 2013. Comparing antimicrobial exposure based on sales data. Prev Vet Med 108:10–20 http://dx.doi.org/10.1016/j.prevetmed.2012.07.009. [PubMed]
15. Federal Register. 2016. Antimicrobial animal drug sales and distribution reporting. Docket no. FDA-2012-N-0447.
16. WHO. 2014. Antimicrobial Resistance Global Report on Surveillance. WHO, Geneva, Switzerland. [PubMed]
17. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, Speybroeck N, Cawthorne A, Mathers C, Stein C, Angulo FJ, Devleesschauwer B, World Health Organization Foodborne Disease Burden Epidemiology Reference Group. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 12:e1001923 http://dx.doi.org/10.1371/journal.pmed.1001923. [PubMed]
18. CDC. 2014. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2014 (Final Report). U.S. Department of Health and Human Services, CDC, Atlanta, GA.
19. Reddy EA, Shaw AV, Crump JA. 2010. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 10:417–432 http://dx.doi.org/10.1016/S1473-3099(10)70072-4.
20. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. 2015. Global burden of invasive nontyphoidal Salmonella disease, 2010(1). Emerg Infect Dis 21:21 http://dx.doi.org/10.3201/eid2106.140999. [PubMed]
21. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, Wigley P, Barquist L, Langridge GC, Feltwell T, Harris SR, Mather AE, Fookes M, Aslett M, Msefula C, Kariuki S, Maclennan CA, Onsare RS, Weill FX, Le Hello S, Smith AM, McClelland M, Desai P, Parry CM, Cheesbrough J, French N, Campos J, Chabalgoity JA, Betancor L, Hopkins KL, Nair S, Humphrey TJ, Lunguya O, Cogan TA, Tapia MD, Sow SO, Tennant SM, Bornstein K, Levine MM, Lacharme-Lora L, Everett DB, Kingsley RA, Parkhill J, Heyderman RS, Dougan G, Gordon MA, Thomson NR. 2016. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 48:1211–1217 http://dx.doi.org/10.1038/ng.3644. [PubMed]
22. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heyderman RS, Dougan G. 2009. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19:2279–2287 http://dx.doi.org/10.1101/gr.091017.109. [PubMed]
23. Le Hello S, Bekhit A, Granier SA, Barua H, Beutlich J, Zając M, Münch S, Sintchenko V, Bouchrif B, Fashae K, Pinsard JL, Sontag L, Fabre L, Garnier M, Guibert V, Howard P, Hendriksen RS, Christensen JP, Biswas PK, Cloeckaert A, Rabsch W, Wasyl D, Doublet B, Weill FX. 2013. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front Microbiol 4:395 http://dx.doi.org/10.3389/fmicb.2013.00395. [PubMed]
24. Kariuki S, Gordon MA, Feasey N, Parry CM. 2015. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33(Suppl 3):C21–C29 http://dx.doi.org/10.1016/j.vaccine.2015.03.102. [PubMed]
25. Marder EPC, Cieslak PR, Cronquist AB, Dunn J, Lathrop S, Rabatsky-Ehr T, Ryan P, Smith K, Tobin-D’Angelo M, Vugia DJ, Zansky S, Holt KG, Wolpert BJ, Lynch M, Tauxe R, Geissler AL. 2017. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance: Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2013–2016. MMWR Morb Mortal Wkly Rep 66:397–403 http://dx.doi.org/10.15585/mmwr.mm6615a1. [PubMed]
26. EFSA-ECDC. 2016. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2016. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals, and food in 2014. EFSA J 14:207.
27. FDA. 2016. National Antimicrobial Resistance Monitoring System - Enteric Bacteria (NARMS): NARMS Integrated Report 2014. U.S. Department of Health and Human Services, Food & Drug Administration, Rockville, MD. http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm.
28. Anderson AD, Nelson JM, Rossiter S, Angulo FJ. 2003. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb Drug Resist 9:373–379 http://dx.doi.org/10.1089/107662903322762815. [PubMed]
29. CIPARS. 2016. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), Annual Report, 2014.
30. DANMAP. 2015. DANMAP 2015: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, foods and humans in Denmark. http://www.danmap.org.
31. FDA. 2017. The 2015 NARMS Integrated Report. U.S. Department of Health and Human Services, FDA, Rockville, MD.
32. Miriagou V, Carattoli A, Fanning S. 2006. Antimicrobial resistance islands: resistance gene clusters in Salmonella chromosome and plasmids. Microbes Infect 8:1923–1930 http://dx.doi.org/10.1016/j.micinf.2005.12.027. [PubMed]
33. WHO. 2017. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. World Health Organization, Geneva, Switzerland. [PubMed]
34. Karp BE, Tate H, Plumblee JR, Dessai U, Whichard JM, Thacker EL, Hale KR, Wilson W, Friedman CR, Griffin PM, McDermott PF. 2017. National Antimicrobial Resistance Monitoring System: two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog Dis 14:545–557 http://dx.doi.org/10.1089/fpd.2017.2283. [PubMed]
36. Tadesse DA, Singh A, Zhao S, Bartholomew M, Womack N, Ayers S, Fields PI, McDermott PF. 2016. Antimicrobial resistance in Salmonella in the United States from 1948 to 1995. Antimicrob Agents Chemother 60:2567–2571 http://dx.doi.org/10.1128/AAC.02536-15. [PubMed]
37. EUCAST. European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org. Accessed 25 January 2017.
38. Bjork KE, Kopral CA, Wagner BA, Dargatz DA. 2015. Comparison of mixed effects models of antimicrobial resistance metrics of livestock and poultry Salmonella isolates from a national monitoring system. Prev Vet Med 122:265–272 http://dx.doi.org/10.1016/j.prevetmed.2015.10.010. [PubMed]
39. Billy TJ, Wachsmuth IK. 1997. Hazard analysis and critical control point systems in the United States Department of Agriculture regulatory policy. Rev Sci Tech 16:342–348 http://dx.doi.org/10.20506/rst.16.2.1029. [PubMed]
40. Hong S, Rovira A, Davies P, Ahlstrom C, Muellner P, Rendahl A, Olsen K, Bender JB, Wells S, Perez A, Alvarez J. 2016. Serotypes and antimicrobial resistance in Salmonella enterica recovered from clinical samples from cattle and swine in Minnesota, 2006 to 2015. PLoS One 11:e0168016 http://dx.doi.org/10.1371/journal.pone.0168016. [PubMed]
41. Medalla F, Hoekstra RM, Whichard JM, Barzilay EJ, Chiller TM, Joyce K, Rickert R, Krueger A, Stuart A, Griffin PM. 2013. Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug resistance among Salmonella strains, United States, 1996–2009. Foodborne Pathog Dis 10:302–309 http://dx.doi.org/10.1089/fpd.2012.1336. [PubMed]
42. Kawakami VM, Bottichio L, Angelo K, Linton N, Kissler B, Basler C, Lloyd J, Inouye W, Gonzales E, Rietberg K, Melius B, Oltean H, Wise M, Sinatra J, Marsland P, Li Z, Meek R, Kay M, Duchin J, Lindquist S. 2016. Notes from the field: outbreak of multidrug-resistant Salmonella infections linked to pork--Washington, 2015. MMWR Morb Mortal Wkly Rep 65:379–381 http://dx.doi.org/10.15585/mmwr.mm6514a4. [PubMed]
43. Folster JP, Grass JE, Bicknese A, Taylor J, Friedman CR, Whichard JM. 2016. Characterization of resistance genes and plasmids from outbreaks and illness clusters caused by Salmonella resistant to ceftriaxone in the United States, 2011–2012. Microb Drug Resist. doi:10.1089/mdr.2016.0080. [PubMed]
44. O’Donnell AT, Vieira AR, Huang JY, Whichard J, Cole D, Karp BE. 2014. Quinolone-resistant Salmonella enterica serotype Enteritidis infections associated with international travel. Clin Infect Dis 59:e139–e141 http://dx.doi.org/10.1093/cid/ciu505. [PubMed]
45. Smith AB, Renter DG, Cernicchiaro N, Shi X, Nagaraja TG. 2016. Prevalence and quinolone susceptibilities of Salmonella isolated from the feces of preharvest cattle within feedlots that used a fluoroquinolone to treat bovine respiratory disease. Foodborne Pathog Dis 13:303–308 http://dx.doi.org/10.1089/fpd.2015.2081. [PubMed]
46. Valenzuela JR, Sethi AK, Aulik NA, Poulsen KP. 2017. Antimicrobial resistance patterns of bovine Salmonella enterica isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2006–2015. J Dairy Sci 100:1319–1330 http://dx.doi.org/10.3168/jds.2016-11419. [PubMed]
47. Government of Canada. 2016. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2014 Annual Report Summary. Public Health Agency of Canada, Guelph, ON.
48. Federal Register. 2008. Cephalosporin Drugs; Extralabel Animal Drug Use; Order of Prohibition. https://www.federalregister.gov/documents/2012/01/06/2012-35/new-animal-drugs-cephalosporin-drugs-extralabel-animal-drug-use-order-of-prohibition
49. Khaitsa ML, Kegode RB, Bauer ML, Gibbs PS, Lardy GP, Doetkott DK. 2007. A longitudinal study of Salmonella shedding and antimicrobial resistance patterns in North Dakota feedlot cattle. J Food Prot 70:476–481 http://dx.doi.org/10.4315/0362-028X-70.2.476. [PubMed]
50. Sjölund-Karlsson M, Howie RL, Blickenstaff K, Boerlin P, Ball T, Chalmers G, Duval B, Haro J, Rickert R, Zhao S, Fedorka-Cray PJ, Whichard JM. 2013. Occurrence of β-lactamase genes among non-Typhi Salmonella enterica isolated from humans, food animals, and retail meats in the United States and Canada. Microb Drug Resist 19:191–197 http://dx.doi.org/10.1089/mdr.2012.0178. [PubMed]
51. Tate H, Folster JP, Hsu CH, Chen J, Hoffmann M, Li C, Morales C, Tyson GH, Mukherjee S, Brown AC, Green A, Wilson W, Dessai U, Abbott J, Joseph L, Haro J, Ayers S, McDermott PF, Zhao S. 2017. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00488-17. [PubMed]
52. Helke KL, McCrackin MA, Galloway AM, Poole AZ, Salgado CD, Marriott BP. 2017. Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: a systematic literature review. Crit Rev Food Sci Nutr 57:472–488 http://dx.doi.org/10.1080/10408398.2016.1230088. [PubMed]
53. Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, Tolli R, D’Incau M, Staffolani M, Di Giannatale E, Hendriksen RS, Battisti A. 2015. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS One 10:e0144802 http://dx.doi.org/10.1371/journal.pone.0144802. [PubMed]
54. Rickert-Hartman R, Folster JP. 2014. Ciprofloxacin-resistant Salmonella enterica serotype Kentucky sequence type 198. Emerg Infect Dis 20:910–911 http://dx.doi.org/10.3201/eid2005.131575. [PubMed]
55. Jacoby GA, Strahilevitz J, Hooper DC. 2014. Plasmid-mediated quinolone resistance. Microbiol Spectr 2:PLAS-0006-2013.
56. Cantón R, González-Alba JM, Galán JC. 2012. CTX-M enzymes: origin and diffusion. Front Microbiol 3:110 http://dx.doi.org/10.3389/fmicb.2012.00110. [PubMed]
57. Fey PD, Safranek TJ, Rupp ME, Dunne EF, Ribot E, Iwen PC, Bradford PA, Angulo FJ, Hinrichs SH. 2000. Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. N Engl J Med 342:1242–1249 http://dx.doi.org/10.1056/NEJM200004273421703. [PubMed]
58. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168 http://dx.doi.org/10.1016/S1473-3099(15)00424-7.
59. Liakopoulos A, Mevius DJ, Olsen B, Bonnedahl J. 2016. The colistin resistance mcr-1 gene is going wild. J Antimicrob Chemother 71:2335–2336 http://dx.doi.org/10.1093/jac/dkw262. [PubMed]
60. Arcilla MS, van Hattem JM, Matamoros S, Melles DC, Penders J, de Jong MD, Schultsz C, COMBAT Consortium. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:147–149 http://dx.doi.org/10.1016/S1473-3099(15)00541-1. [PubMed]
61. Olaitan AO, Chabou S, Okdah L, Morand S, Rolain JM. 2016. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 16:147 http://dx.doi.org/10.1016/S1473-3099(15)00540-X. [PubMed]
62. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Zankari E, Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov RL. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20:pii=30085 http://dx.doi.org/10.2807/1560-7917.ES.2015.20.49.30085. [PubMed]
63. Watkins LF, Folster J, Chen J, Karlsson MS, Boyd S, Leung V, McNutt A, Medus C, Wang X, Hanna S, Smith N, Colón A, Barringer A, Dunbar-Manley C, Balk J, Friedman C. 2017. Emergence of mcr-1 among nontyphoidal Salmonella isolates in the United States. Open Forum Infect Dis 4(suppl_1):S129–S130 http://dx.doi.org/10.1093/ofid/ofx163.182.
64. Anjum MF, Duggett NA, AbuOun M, Randall L, Nunez-Garcia J, Ellis RJ, Rogers J, Horton R, Brena C, Williamson S, Martelli F, Davies R, Teale C. 2016. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J Antimicrob Chemother 71:2306–2313 http://dx.doi.org/10.1093/jac/dkw149. [PubMed]
65. CDC. 2016. Newly reported gene, mcr -1, threatens last-resort antibiotics. https://www.cdc.gov/drugresistance/mcr1.html.
66. Savard P, Gopinath R, Zhu W, Kitchel B, Rasheed JK, Tekle T, Roberts A, Ross T, Razeq J, Landrum BM, Wilson LE, Limbago B, Perl TM, Carroll KC. 2011. First NDM-positive Salmonella sp. strain identified in the United States. Antimicrob Agents Chemother 55:5957–5958 http://dx.doi.org/10.1128/AAC.05719-11. [PubMed]
67. Rasheed JK, Kitchel B, Zhu W, Anderson KF, Clark NC, Ferraro MJ, Savard P, Humphries RM, Kallen AJ, Limbago BM. 2013. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg Infect Dis 19:870–878 http://dx.doi.org/10.3201/eid1906.121515. [PubMed]
68. Day MR, Meunier D, Doumith M, de Pinna E, Woodford N, Hopkins KL. 2015. Carbapenemase-producing Salmonella enterica isolates in the UK. J Antimicrob Chemother 70:2165–2167.
69. Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM. 2003. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother 47:1297–1300 http://dx.doi.org/10.1128/AAC.47.4.1297-1300.2003. [PubMed]
70. Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum TE. 2016. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother AAC.01298-16 http://dx.doi.org/10.1128/AAC.01298-16.
71. Woodford N, Wareham DW, Guerra B, Teale C. 2014. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother 69:287–291 http://dx.doi.org/10.1093/jac/dkt392. [PubMed]
72. Donado-Godoy P, Castellanos R, León M, Arevalo A, Clavijo V, Bernal J, León D, Tafur MA, Byrne BA, Smith WA, Perez-Gutierrez E. 2015. The establishment of the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS): a pilot project on poultry farms, slaughterhouses and retail market. Zoonoses Public Health 62(Suppl 1):58–69 http://dx.doi.org/10.1111/zph.12192. [PubMed]
73. Ministry of Agriculture, Forestry and Fisheries, National Veterinary Assay Laboratory. 2013. JVARM: A Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System, 2008–2011. Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
74. Wu H, Xia X, Cui Y, Hu Y, Xi M, Wang X, Shi X, Wang D, Meng J, Yang B. 2013. Prevalence of extended-spectrum β-lactamase-producing Salmonella on retail chicken in six provinces and two national cities in the People’s Republic of China. J Food Prot 76:2040–2044 http://dx.doi.org/10.4315/0362-028X.JFP-13-224. [PubMed]
75. Wang S, Duan H, Zhang W, Li JW. 2007. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol Med Microbiol 51:8–13 http://dx.doi.org/10.1111/j.1574-695X.2007.00305.x. [PubMed]
76. Yan H, Li L, Alam MJ, Shinoda S, Miyoshi S, Shi L. 2010. Prevalence and antimicrobial resistance of Salmonella in retail foods in northern China. Int J Food Microbiol 143:230–234 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.034. [PubMed]
77. Yang B, Qu D, Zhang X, Shen J, Cui S, Shi Y, Xi M, Sheng M, Zhi S, Meng J. 2010. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China. Int J Food Microbiol 141:63–72 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.04.015. [PubMed]
78. Bai L, Lan R, Zhang X, Cui S, Xu J, Guo Y, Li F, Zhang D. 2015. Prevalence of Salmonella isolates from chicken and pig slaughterhouses and emergence of ciprofloxacin and cefotaxime co-resistant S. enterica serovar Indiana in Henan, China. PLoS One 10:e0144532 http://dx.doi.org/10.1371/journal.pone.0144532.
79. Lai J, Wu C, Wu C, Qi J, Wang Y, Wang H, Liu Y, Shen J. 2014. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012. Int J Food Microbiol 180:30–38 http://dx.doi.org/10.1016/j.ijfoodmicro.2014.03.030. [PubMed]
80. Xia S, Hendriksen RS, Xie Z, Huang L, Zhang J, Guo W, Xu B, Ran L, Aarestrup FM. 2009. Molecular characterization and antimicrobial susceptibility of Salmonella isolates from infections in humans in Henan Province, China. J Clin Microbiol 47:401–409 http://dx.doi.org/10.1128/JCM.01099-08.
81. Lu Y, Zhao H, Liu Y, Zhou X, Wang J, Liu T, Beier RC, Hou X. 2015. Characterization of quinolone resistance in Salmonella enterica serovar Indiana from chickens in China. Poult Sci 94:454–460 http://dx.doi.org/10.3382/ps/peu133. [PubMed]
82. Zhang WH, Lin XY, Xu L, Gu XX, Yang L, Li W, Ren SQ, Liu YH, Zeng ZL, Jiang HX. 2016. CTX-M-27 producing Salmonella enterica serotypes Typhimurium and Indiana are prevalent among food-producing animals in China. Front Microbiol 7:436 http://dx.doi.org/10.3389/fcimb.2017.00436. [PubMed]
83. Jiang HX, Song L, Liu J, Zhang XH, Ren YN, Zhang WH, Zhang JY, Liu YH, Webber MA, Ogbolu DO, Zeng ZL, Piddock LJ. 2014. Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. Int J Antimicrob Agents 43:242–247 http://dx.doi.org/10.1016/j.ijantimicag.2013.12.005. [PubMed]
84. Li L, Liao XP, Liu ZZ, Huang T, Li X, Sun J, Liu BT, Zhang Q, Liu YH. 2014. Co-spread of oqxAB and blaCTX-M-9G in non-Typhi Salmonella enterica isolates mediated by ST2-IncHI2 plasmids. Int J Antimicrob Agents 44:263–268 http://dx.doi.org/10.1016/j.ijantimicag.2014.05.014. [PubMed]
85. Baggesen DL, Sandvang D, Aarestrup FM. 2000. Characterization of Salmonella enterica serovar Typhimurium DT104 isolated from Denmark and comparison with isolates from Europe and the United States. J Clin Microbiol 38:1581–1586. [PubMed]
86. Davis MA, Hancock DD, Besser TE. 2002. Multiresistant clones of Salmonella enterica: the importance of dissemination. J Lab Clin Med 140:135–141 http://dx.doi.org/10.1067/mlc.2002.126411. [PubMed]
87. Threlfall EJ, Ward LR, Hampton MD, Ridley AM, Rowe B, Roberts D, Gilbert RJ, Van Someren P, Wall PG, Grimont P. 1998. Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol Infect 121:289–293 http://dx.doi.org/10.1017/S0950268898001149. [PubMed]
88. Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill FX, Baggesen DL, Jun SR, Ussery DW, Lund O, Crook DW, Wilson DJ, Aarestrup FM. 2016. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 82:2516–2526 http://dx.doi.org/10.1128/AEM.03821-15. [PubMed]
89. Damborg P, Broens EM, Chomel BB, Guenther S, Pasmans F, Wagenaar JA, Weese JS, Wieler LH, Windahl U, Vanrompay D, Guardabassi L. 2015. Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J Comp Pathol 155(1 Suppl 1):S27–S40. doi:10.1016/j.jcpa.2015.03.004. [PubMed]
90. Rijks JM, Cito F, Cunningham AA, Rantsios AT, Giovannini A. 2015. Disease risk assessments involving companion animals: an overview for 15 selected pathogens taking a European perspective. J Comp Pathol 155(1 Suppl 1):S75–S97. doi:10.1016/j.jcpa.2015.08.003. [PubMed]
91. Jay-Russell MT, Hake AF, Bengson Y, Thiptara A, Nguyen T. 2014. Prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS One 9:e113433 http://dx.doi.org/10.1371/journal.pone.0113433. [PubMed]
92. Lowden P, Wallis C, Gee N, Hilton A. 2015. Investigating the prevalence of Salmonella in dogs within the Midlands region of the United Kingdom. BMC Vet Res 11:239 http://dx.doi.org/10.1186/s12917-015-0553-z. [PubMed]
93. USAHA. 2006. Report of the Committee on Salmonella. http://www.usaha.org/upload/Committee/Salmonella/report-sal-2008.pdf.
94. Anholt RM, Berezowski J, Ribble CS, Russell ML, Stephen C. 2014. Using informatics and the electronic medical record to describe antimicrobial use in the clinical management of diarrhea cases at 12 companion animal practices. PLoS One 9:e103190 http://dx.doi.org/10.1371/journal.pone.0103190. [PubMed]
95. Summers JF, Hendricks A, Brodbelt DC. 2014. Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma. BMC Vet Res 10:240 http://dx.doi.org/10.1186/s12917-014-0240-5. [PubMed]
96. Prescott JF, Hanna WJ, Reid-Smith R, Drost K. 2002. Antimicrobial drug use and resistance in dogs. Can Vet J 43:107–116. [PubMed]
97. Hölsö K, Rantala M, Lillas A, Eerikäinen S, Huovinen P, Kaartinen L. 2005. Prescribing antimicrobial agents for dogs and cats via university pharmacies in Finland: patterns and quality of information. Acta Vet Scand 46:87–93 http://dx.doi.org/10.1186/1751-0147-46-87. [PubMed]
98. Guardabassi L, Schwarz S, Lloyd DH. 2004. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332 http://dx.doi.org/10.1093/jac/dkh332. [PubMed]
99. Rzewuska M, Czopowicz M, Kizerwetter-Świda M, Chrobak D, Błaszczak B, Binek M. 2015. Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007–2013). Sci World J 2015:408205 http://dx.doi.org/10.1155/2015/408205. [PubMed]
100. Cummings KJ, Aprea VA, Altier C. 2015. Antimicrobial resistance trends among canine Escherichia coli isolates obtained from clinical samples in the northeastern USA, 2004–2011. Can Vet J 56:393–398. [PubMed]
101. USDA-ARS. NARMS animal arm summary tables and reports. http://www.ars.usda.gov/Main/docs.htm?docid=18034. Accessed 17 October 2017.
102. Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, Piddock LJ. 2004. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 48:4012–4015 http://dx.doi.org/10.1128/AAC.48.10.4012-4015.2004. [PubMed]
103. Leonard EK, Pearl DL, Finley RL, Janecko N, Reid-Smith RJ, Peregrine AS, Weese JS. 2012. Comparison of antimicrobial resistance patterns of Salmonella spp. and Escherichia coli recovered from pet dogs from volunteer households in Ontario (2005–06). J Antimicrob Chemother 67:174–181 http://dx.doi.org/10.1093/jac/dkr430. [PubMed]
104. Van Immerseel F, Pasmans F, De Buck J, Rychlik I, Hradecka H, Collard JM, Wildemauwe C, Heyndrickx M, Ducatelle R, Haesebrouck F. 2004. Cats as a risk for transmission of antimicrobial drug-resistant Salmonella. Emerg Infect Dis 10:2169–2174 http://dx.doi.org/10.3201/eid1012.040904. [PubMed]
105. Poppe C, Smart N, Khakhria R, Johnson W, Spika J, Prescott J. 1998. Salmonella typhimurium DT104: a virulent and drug-resistant pathogen. Can Vet J 39:559–565. [PubMed]
106. Wall PG, Threllfall EJ, Ward LR, Rowe B. 1996. Multiresistant Salmonella Typhimurium DT104 in cats: a public health risk. Lancet 348:471 http://dx.doi.org/10.1016/S0140-6736(96)24033-4. [PubMed]
107. Low JC, Tennant B, Munro D. 1996. Multiple-resistant Salmonella Typhimurium DT104 in cats. Lancet 348:1391 http://dx.doi.org/10.1016/S0140-6736(05)65465-7. [PubMed]
108. Frech G, Kehrenberg C, Schwarz S. 2003. Resistance phenotypes and genotypes of multiresistant Salmonella enterica subsp. enterica serovar Typhimurium var. Copenhagen isolates from animal sources. J Antimicrob Chemother 51:180–182 http://dx.doi.org/10.1093/jac/dkg058. [PubMed]
109. Centers for Disease Control and Prevention (CDC). 2001. Outbreaks of multidrug-resistant Salmonella Typhimurium associated with veterinary facilities: Idaho, Minnesota, and Washington, 1999. MMWR Morb Mortal Wkly Rep 50:701–704. [PubMed]
110. Wright JG, Tengelsen LA, Smith KE, Bender JB, Frank RK, Grendon JH, Rice DH, Thiessen AM, Gilbertson CJ, Sivapalasingam S, Barrett TJ, Besser TE, Hancock DD, Angulo FJ. 2005. Multidrug-resistant Salmonella Typhimurium in four animal facilities. Emerg Infect Dis 11:1235–1241 http://dx.doi.org/10.3201/eid1108.050111. [PubMed]
111. Swanson SJ, Snider C, Braden CR, Boxrud D, Wünschmann A, Rudroff JA, Lockett J, Smith KE. 2007. Multidrug-resistant Salmonella enterica serotype Typhimurium associated with pet rodents. N Engl J Med 356:21–28 http://dx.doi.org/10.1056/NEJMoa060465. [PubMed]
112. Izumiya H, Mori K, Kurazono T, Yamaguchi M, Higashide M, Konishi N, Kai A, Morita K, Terajima J, Watanabe H. 2005. Characterization of isolates of Salmonella enterica serovar Typhimurium displaying high-level fluoroquinolone resistance in Japan. J Clin Microbiol 43:5074–5079 http://dx.doi.org/10.1128/JCM.43.10.5074-5079.2005. [PubMed]
113. White DG, Datta A, McDermott P, Friedman S, Qaiyumi S, Ayers S, English L, McDermott S, Wagner DD, Zhao S. 2003. Antimicrobial susceptibility and genetic relatedness of Salmonella serovars isolated from animal-derived dog treats in the USA. J Antimicrob Chemother 52:860–863 http://dx.doi.org/10.1093/jac/dkg441. [PubMed]
114. Cartwright EJ, Nguyen T, Melluso C, Ayers T, Lane C, Hodges A, Li X, Quammen J, Yendell SJ, Adams J, Mitchell J, Rickert R, Klos R, Williams IT, Barton Behravesh C, Wright J. 2016. A multistate investigation of antibiotic-resistant Salmonella enterica serotype I 4,[5],12:i:- infections as part of an international outbreak associated with frozen feeder rodents. Zoonoses Public Health 63:62–71 http://dx.doi.org/10.1111/zph.12205. [PubMed]
115. Centers for Disease Control and Prevention (CDC). 2003. Reptile-associated salmonellosis: selected states, 1998–2002. MMWR Morb Mortal Wkly Rep 52:1206–1209. [PubMed]
116. Centers for Disease Control and Prevention (CDC). 2005. Salmonellosis associated with pet turtles: Wisconsin and Wyoming, 2004. MMWR Morb Mortal Wkly Rep 54:223–226. [PubMed]
117. Centers for Disease Control and Prevention (CDC). 2007. Turtle-associated salmonellosis in humans:United States, 2006–2007. MMWR Morb Mortal Wkly Rep 56:649–652. [PubMed]
118. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML, Rasko DA, Mammel MK, Eppinger M, Rosovitz MJ, Wagner D, Rahalison L, Leclerc JE, Hinshaw JM, Lindler LE, Cebula TA, Carniel E, Ravel J. 2007. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2:e309 http://dx.doi.org/10.1371/journal.pone.0000309. [PubMed]
119. GMI. The Global Microbial Identifier. http://www.globalmicrobialidentifier.org/. [PubMed]
120. FDA. 2017. GenomeTrakr Network. https://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgramWGS/ucm363134.htm. Accessed 24 November 2017.
121. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C, Folster JP, Ayers SL, Lam C, Tate HP, Zhao S. 2016. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 60:5515–5520 http://dx.doi.org/10.1128/AAC.01030-16. [PubMed]
122. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, Lund O, Larsen MV, Aarestrup FM. 2013. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 68:771–777 http://dx.doi.org/10.1093/jac/dks496. [PubMed]
123. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, Bodeis-Jones S, Kabera C, Gaines SA, Loneragan GH, Edrington TS, Torrence M, Harhay DM, Zhao S. 2015. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother 70:2763–2769 http://dx.doi.org/10.1093/jac/dkv186. [PubMed]
124. Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, Lam C, Folster JP, Whichard JM, McDermott PF. 2015. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp. Appl Environ Microbiol 82:459–466 http://dx.doi.org/10.1128/AEM.02873-15. [PubMed]
126. Michael GB, Schwarz S. 2016. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Clin Microbiol Infect 22:968–974 http://dx.doi.org/10.1016/j.cmi.2016.07.033. [PubMed]
127. Michael GB, Butaye P, Cloeckaert A, Schwarz S. 2006. Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Microbes Infect 8:1898–1914 http://dx.doi.org/10.1016/j.micinf.2005.12.019. [PubMed]
128. Michael GB, Schwarz S. 2013. Antimicrobial resistance in Salmonella, p 120–135. In Methner U (ed), Salmonella in Domestic Animals. CAB eBooks, Barrow, PA. http://dx.doi.org/10.1079/9781845939021.0120
129. Tran JH, Jacoby GA. 2002. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA 99:5638–5642 http://dx.doi.org/10.1073/pnas.082092899. [PubMed]
130. Périchon B, Courvalin P, Galimand M. 2007. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469 http://dx.doi.org/10.1128/AAC.00143-07. [PubMed]
131. Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y. 2007. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360 http://dx.doi.org/10.1128/AAC.00339-07. [PubMed]
132. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. 2006. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88 http://dx.doi.org/10.1038/nm1347. [PubMed]
133. Hansen LH, Johannesen E, Burmølle M, Sørensen AH, Sørensen SJ. 2004. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48:3332–3337 http://dx.doi.org/10.1128/AAC.48.9.3332-3337.2004. [PubMed]
134. Bai L, Zhao J, Gan X, Wang J, Zhang X, Cui S, Xia S, Hu Y, Yan S, Wang J, Li F, Fanning S, Xu J. 2016. Emergence and diversity of Salmonella enterica serovar Indiana isolates with concurrent resistance to ciprofloxacin and cefotaxime from patients and food-producing animals in China. Antimicrob Agents Chemother 60:3365–3371 http://dx.doi.org/10.1128/AAC.02849-15. [PubMed]
135. Campos J, Mourão J, Marçal S, Machado J, Novais C, Peixe L, Antunes P. 2016. Clinical Salmonella Typhimurium ST34 with metal tolerance genes and an IncHI2 plasmid carrying oqxAB-aac(6′)-Ib-cr from Europe. J Antimicrob Chemother 71:843–845 http://dx.doi.org/10.1093/jac/dkv409. [PubMed]
136. Wong MH, Chan EW, Liu LZ, Chen S. 2014. PMQR genes oqxAB and aac(6&prime;)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol 5:521 http://dx.doi.org/10.3389/fmicb.2014.00521. [PubMed]
137. Chen Y, Sun J, Liao XP, Shao Y, Li L, Fang LX, Liu YH. 2016. Impact of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and intestinal microbiota in chickens. Vet Microbiol 192:1–9 http://dx.doi.org/10.1016/j.vetmic.2016.05.014. [PubMed]
138. Nair S, Ashton P, Doumith M, Connell S, Painset A, Mwaigwisya S, Langridge G, de Pinna E, Godbole G, Day M. 2016. WGS for surveillance of antimicrobial resistance: a pilot study to detect the prevalence and mechanism of resistance to azithromycin in a UK population of non-typhoidal Salmonella. J Antimicrob Chemother 71:3400–3408 http://dx.doi.org/10.1093/jac/dkw318. [PubMed]
139. Nguyen F, Starosta AL, Arenz S, Sohmen D, Dönhöfer A, Wilson DN. 2014. Tetracycline antibiotics and resistance mechanisms. Biol Chem 395:559–575 http://dx.doi.org/10.1515/hsz-2013-0292. [PubMed]
140. Wachino J, Arakawa Y. 2012. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat 15:133–148 http://dx.doi.org/10.1016/j.drup.2012.05.001. [PubMed]
141. Folster JP, Rickert R, Barzilay EJ, Whichard JM. 2009. Identification of the aminoglycoside resistance determinants armA and rmtC among non-Typhi Salmonella isolates from humans in the United States. Antimicrob Agents Chemother 53:4563–4564 http://dx.doi.org/10.1128/AAC.00656-09. [PubMed]
142. Naas T, Bentchouala C, Lima S, Lezzar A, Smati F, Scheftel JM, Nordmann P. 2009. Plasmid-mediated 16S rRNA methylases among extended-spectrum-beta-lactamase-producing Salmonella enterica Senftenberg isolates from Algeria. J Antimicrob Chemother 64:866–868 http://dx.doi.org/10.1093/jac/dkp312. [PubMed]
143. Campos J, Cristino L, Peixe L, Antunes P. 2016. MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Euro Surveill 21:pii=30270 http://dx.doi.org/10.2807/1560-7917.ES.2016.21.26.30270. [PubMed]
144. Carnevali C, Morganti M, Scaltriti E, Bolzoni L, Pongolini S, Casadei G. 2016. Occurrence of mcr-1 in colistin-resistant Salmonella enterica isolates recovered from humans and animals in Italy, 2012 to 2015. Antimicrob Agents Chemother 60:7532–7534. [PubMed]
145. Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, Day M, Day M, Muller-Pebody B, Ellington MJ, de Pinna E, Johnson AP, Hopkins KL, Woodford N. 2016. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J Antimicrob Chemother 71:2300–2305 http://dx.doi.org/10.1093/jac/dkw093. [PubMed]
146. Quesada A, Ugarte-Ruiz M, Iglesias MR, Porrero MC, Martínez R, Florez-Cuadrado D, Campos MJ, García M, Píriz S, Sáez JL, Domínguez L. 2016. Detection of plasmid mediated colistin resistance (MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain. Res Vet Sci 105:134–135 http://dx.doi.org/10.1016/j.rvsc.2016.02.003. [PubMed]
147. Rau RB, de Lima-Morales D, Wink PL, Ribeiro AR, Martins AF, Barth AL. 2017. Emergence of mcr-1 producing Salmonella enterica serovar Typhimurium from retail meat first detection in Brazil. Foodborne Pathog Dis 15(1):58–59. doi:10.1089/fpd.2017.2346. [PubMed]
148. Torpdahl M, Hasman H, Litrup E, Skov RL, Nielsen EM, Hammerum AM. 2017. Detection of mcr-1-encoding plasmid-mediated colistin-resistant Salmonella isolates from human infection in Denmark. Int J Antimicrob Agents 49:261–262 http://dx.doi.org/10.1016/j.ijantimicag.2016.11.010. [PubMed]
149. Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, Fedorka-Cray P, Zhao S, Crump JA, Whichard JM. 2011. Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States. Antimicrob Agents Chemother 55(9):3985–3989. [PubMed]
150. Seidman JC, Coles CL, Silbergeld EK, Levens J, Mkocha H, Johnson LB, Muñoz B, West SK. 2014. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol 43(4):1105–1113. [PubMed]
151. Schmidt JW, Agga GE, Bosilevac JM, Brichta-Harhay DM, Shackelford SD, Wang R, Wheeler TL, Arthur TM. 2015. Occurrence of Antimicrobial-Resistant Escherichia coli and Salmonella enterica in the Beef Cattle Production and Processing Continuum. Appl Environ Microbiol 81(2):713–725. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0014-2017
2018-07-19
2018-12-10

Abstract:

Non-typhoidal is the most common foodborne bacterial pathogen in most countries. It is widely present in food animal species, and therefore blocking its transmission through the food supply is a prominent focus of food safety activities worldwide. Antibiotic resistance in non-typhoidal arises in large part because of antibiotic use in animal husbandry. Tracking resistance in is required to design targeted interventions to contain or diminish resistance and refine use practices in production. Many countries have established systems to monitor antibiotic resistance in and other bacteria, the earliest ones appearing the Europe and the US. In this chapter, we compare recent antibiotic susceptibility data from Europe and the US. In addition, we summarize the state of known resistance genes that have been identified in the genus. The advent of routine whole genome sequencing has made it possible to conduct genomic surveillance of resistance based on DNA sequences alone. This points to a new model of surveillance in the future that will provide more definitive information on the sources of resistant , the specific types of resistance genes involved, and information on how resistance spreads.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Temporal changes in resistance of clinical nontyphoidal from the 1940s to 2014. AMP, ampicillin; CHL, chloramphenicol; STR, streptomycin; SUL, sulfonamides; TET, tetracycline; NAL, nalidixic acid; AXO, ceftriaxone.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Resistances to critically important antimicrobials in human clinical isolates from the United States. MDR, multidrug resistant; AXO, ceftriaxone; AZI, azithromycin; CIP, ciprofloxacin.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Trends in third-generation cephalosporin resistance in from the United States.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Resistance to gentamicin, chloramphenicol, tetracycline, and ampicillin in human isolates from select European Union countries, Norway, and the United States. Breakpoints used for interpreting MICs were derived from the EUCAST.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Resistance to gentamicin, chloramphenicol, tetracycline, and ampicillin in broiler isolates from select European Union countries, Iceland, and the United States. Breakpoints used for interpreting MICs were derived from the EUCAST.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Resistance to quinolones and extended-spectrum cephalosporins in human isolates of from select European Union countries, Norway, and the United States. Breakpoints used for interpreting MICs were derived from the EUCAST. Among critically important drugs (defined here as macrolides, fluoroquinolones, extended-spectrum cephalosporins, and carbapenems), azithromycin, meropenem, and colistin resistances were very rare and not reported in most countries. *Percentage based on reporting of either cefotaxime or ceftazidime resistance from the European Union or ceftriaxone from the United States.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Resistance to quinolones, extended-spectrum cephalosporins, macrolides, and colistin in broiler strains of from select European Union countries, Iceland, and the United States. Breakpoints used for interpreting MICs were derived from the EUCAST. Among critically important drugs (defined here as macrolides, fluoroquinolones, extended-spectrum cephalosporins, and carbapenems), azithromycin, meropenem, and colistin resistances were very rare and not reported in most countries. *Percentage based on reporting of either cefotaxime or ceftazidime resistance from the European Union or ceftriaxone from United States.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Antimicrobials tested in the European Union and United States and criteria used to interpret microbiological and clinical resistance

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Generic image for table
TABLE 2

Percentage resistance of isolated from clinical companion animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017
Generic image for table
TABLE 3

Acquired antimicrobial resistance genes in nontyphoidal

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0014-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error