1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Drug Resistance in Fish Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Ron A. Miller1, Heather Harbottle2
  • Editors: Frank Møller Aarestrup3, Stefan Schwarz4, Jianzhong Shen5, Lina Cavaco6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: U.S. Food and Drug Administration, Center for Veterinary Medicine, Division of Human Food Safety, Rockville, MD 20855; 2: U.S. Food and Drug Administration, Center for Veterinary Medicine, Division of Human Food Safety, Rockville, MD 20855; 3: Technical University of Denmark, Lyngby, Denmark; 4: Freie Universität Berlin, Berlin, Germany; 5: China Agricultural University, Beijing, China; 6: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
  • Received 05 April 2017 Accepted 17 November 2017 Published 25 January 2018
  • Ron A. Miller, [email protected]
image of Antimicrobial Drug Resistance in Fish Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Drug Resistance in Fish Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/1/ARBA-0017-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/1/ARBA-0017-2017-2.gif
  • Abstract:

    Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in larvae caused by resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera , , , , and . Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens ( spp., spp., spp., spp., and spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens ( serotypes, , and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments.

  • Citation: Miller R, Harbottle H. 2018. Antimicrobial Drug Resistance in Fish Pathogens. Microbiol Spectrum 6(1):ARBA-0017-2017. doi:10.1128/microbiolspec.ARBA-0017-2017.

References

1. Coyne R, Bergh Ø, Samuelsen O, Andersen K, Lunestad BT, Nilsen H, Dalsgaard I, Smith P. 2004. Attempt to validate breakpoint MIC values estimated from pharmacokinetic data obtained during oxolinic acid therapy of winter ulcer disease in Atlantic salmon (Salmo salar). Aquaculture 238:51–66 http://dx.doi.org/10.1016/j.aquaculture.2004.04.027.
2. Austin B, Austin DA. 1993. Bacterial Fish Pathogens: Diseases in Farmed and Wild Fish. Ellis Horwood, Chichester, United Kingdom.
3. Miller RA, Pelsor FR, Qiu J, Kane AS, Reimschuessel R. 2016. Determination of oxytetracycline absorption and effectiveness against Aeromonas salmonicida in rainbow trout (Oncorhynchus mykiss). J Vet Sci Anim Welf 1:1–9.
4. Petersen A, Andersen JS, Kaewmak T, Somsiri T, Dalsgaard A. 2002. Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol 68:6036–6042 http://dx.doi.org/10.1128/AEM.68.12.6036-6042.2002. [PubMed]
5. Aoki T, Egusa S, Kimura T, Watanabe T. 1971. Detection of R-factors in naturally occurring Aeromonas salmonicida strains. Appl Microbiol 22:716–717. [PubMed]
6. Aoki T, Arai T, Egusa S. 1977. Detection of R plasmids in naturally occurring fish-pathogenic bacteria, Edwardsiella tarda. Microbiol Immunol 21:77–83 http://dx.doi.org/10.1111/j.1348-0421.1977.tb02810.x. [PubMed]
7. Aoki T, Kitao T. 1981. Drug resistance and transferrable R plasmids in Edwardsiella tarda from fish culture ponds. Fish Pathol 15:277–281 http://dx.doi.org/10.3147/jsfp.15.277.
8. Aoki T, Satoh T, Kitao T. 1987. New tetracycline resistance determinant on R plasmids from Vibrio anguillarum. Antimicrob Agents Chemother 31:1446–1449 http://dx.doi.org/10.1128/AAC.31.9.1446. [PubMed]
9. Aoki T, Takahashi A. 1987. Class D tetracycline resistance determinants of R plasmids from the fish pathogens Aeromonas hydrophila, Edwardsiella tarda, and Pasteurella piscicida. Antimicrob Agents Chemother 31:1278–1280 http://dx.doi.org/10.1128/AAC.31.8.1278.
10. Miranda CD, Tello A, Keen PL. 2013. Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol 4:233 http://dx.doi.org/10.3389/fmicb.2013.00233. [PubMed]
11. Sǿrum H. 1998. Mobile drug resistance genes among fish bacteria. APMIS Suppl 106:74–76. [PubMed]
12. Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ. 2016. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis 16:e127–e133 http://dx.doi.org/10.1016/S1473-3099(16)00100-6. [PubMed]
13. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. 2013. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942 http://dx.doi.org/10.1111/1462-2920.12134. [PubMed]
14. Kim JH, Hwang SY, Son JS, Han JE, Jun JW, Shin SP, Choresca C Jr, Choi YJ, Park YH, Park SC. 2011. Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. J Vet Sci 12:41–48. [PubMed]
15. Oppegaard H, Sørum H. 1994. gyrA mutations in quinolone-resistant isolates of the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother 38:2460–2464 http://dx.doi.org/10.1128/AAC.38.10.2460. [PubMed]
16. L’Abée-Lund TM, Sørum H. 2001. Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide. Microb Drug Resist 7:263–272 http://dx.doi.org/10.1089/10766290152652819. [PubMed]
17. Sørum H, L’Abée-Lund TM, Solberg A, Wold A. 2003. Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob Agents Chemother 47:1285–1290. [PubMed]
18. Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ. 2014. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol 169:1–7. [PubMed]
19. Vincent AT, Emond-Rheault JG, Barbeau X, Attéré SA, Frenette M, Lagüe P, Charette SJ. 2016. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida. Microbio 162:942–953. [PubMed]
20. Trudel MV, Vincent AT, Attéré SA, Labbé M, Derome N, Culley AI, Charette SJ. 2016. Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8. Sci Rep 6:35617. doi:10.1038/srep35617. [PubMed]
21. McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE, Zalinger ZB, Gilg IC, Danner GR, Johnson KA, Beattie M, Ritchie R. 2008. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J Antimicrob Chemother 61:1221–1228. [PubMed]
22. Starliper CE, Cooper RK, Shotts EB, Taylor PW. 1993. Plasmid-mediated Romet resistance of Edwardsiella ictaluri. J Aquat Anim Health 5:1–8.
23. Welch TJ, Evenhuis J, White DG, McDermott PF, Harbottle H, Miller RA, Griffin M, Wise D. 2009. IncA/C plasmid-mediated florfenicol resistance in the catfish pathogen Edwardsiella ictaluri. Antimicrob Agents Chemother 53:845–846. [PubMed]
24. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML, Rasko DA, Mammel MK, Eppinger M, Rosovitz MJ, Wagner D, Rahalison L, Leclerc JE, Hinshaw JM, Lindler LE, Cebula TA, Carniel E, Ravel J. 2007. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2:e309 http://dx.doi.org/10.1371/journal.pone.0000309. [PubMed]
25. Sun K, Wang H, Zhang M, Ziao Z, Sun L. 2009. Genetic mechanisms of multi-antimicrobial resistance in a pathogenic Edwardsiella tarda strain. Aquaculture 289:134–139 http://dx.doi.org/10.1016/j.aquaculture.2008.12.021.
26. Lo DY, Lee YJ, Wang JH, Kuo HC. 2014. Antimicrobial susceptibility and genetic characterisation of oxytetracycline-resistant Edwardsiella tarda isolated from diseased eels. Vet Rec 175:203 http://dx.doi.org/10.1136/vr.101580. [PubMed]
27. Yu JE, Cho MY, Kim JW, Kang HY. 2012. Large antibiotic-resistance plasmid of Edwardsiella tarda contributes to virulence in fish. Microb Pathog 52:259–266 http://dx.doi.org/10.1016/j.micpath.2012.01.006. [PubMed]
28. Huang Y, Michael GB, Becker R, Kaspar H, Mankertz J, Schwarz S, Runge M, Steinhagen D. 2014. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish. Vet Microbiol 171:406–412 http://dx.doi.org/10.1016/j.vetmic.2013.10.026. [PubMed]
29. Balta F, Sandalli C, Kayis S, Ozgumus OB. 2010. Molecular analysis of antimicrobial resistance in Yersinia ruckeri strains isolated from rainbow trout (Oncorhynchus mykiss) grown in commercial farms in Turkey. Bull Eur Assoc Fish Pathol 30:211–219.
30. Schiefer AM, Wiegand I, Sherwood KJ, Wiedemann B, Stock I. 2005. Biochemical and genetic characterization of the beta-lactamases of Y. aldovae, Y. bercovieri, Y. frederiksenii and “Y. ruckeri” strains. Int J Antimicrob Agents 25:496–500. [PubMed]
31. Vanni M, Meucci V, Tognetti R, Cagnardi P, Montesissa C, Piccirillo A, Rossi AM, Di Bello D, Intorre L. 2014. Fluoroquinolone resistance and molecular characterization of gyrA and parC quinolone resistance-determining regions in Escherichia coli isolated from poultry. Poult Sci 93:856–863. [PubMed]
32. Call DR, Singer RS, Meng D, Broschat SL, Orfe LH, Anderson JM, Herndon DR, Kappmeyer LS, Daniels JB, Besser TE. 2010. blaCMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids. Antimicrob Agents Chemother 54:590–596. [PubMed]
33. Fricke WF, Welch TJ, McDermott PF, Mammel MK, LeClerc JE, White DG, Cebula TA, Ravel J. 2009. Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol 191:4750–4757. [PubMed]
34. Lukkana M, Wongtavatchai J, Chuanchuen R. 2012. Class 1 integrons in Aeromonas hydrophila isolates from farmed Nile tilapia (Oreochromis nilotica). J Vet Med Sci 74:435–440 http://dx.doi.org/10.1292/jvms.11-0441. [PubMed]
35. Ndi OL, Barton MD. 2011. Incidence of class 1 integron and other antibiotic resistance determinants in Aeromonas spp. from rainbow trout farms in Australia. J Fish Dis 34:589–599 http://dx.doi.org/10.1111/j.1365-2761.2011.01272.x. [PubMed]
36. Deng Y, Wu Y, Jiang L, Tan A, Zhang R, Luo L. 2016. Multidrug resistance mediated by class 1 integrons in Aeromonas isolated from farmed freshwater animals. Front Microbiol 7:935 http://dx.doi.org/10.3389/fmicb.2016.00935. [PubMed]
37. Čížek A, Dolejská M, Sochorová R, Strachotová K, Piacková V, Veselý T. 2010. Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental (koi) carp (Cyprinus carpio koi) and common carp (Cyprinus carpio). Vet Microbiol 142:435–439 http://dx.doi.org/10.1016/j.vetmic.2009.10.001. [PubMed]
38. Aoki T. 1988. Drug-resistant plasmids from fish pathogens. Microbiol Sci 5:219–223. [PubMed]
39. Gordon L, Cloeckaert A, Doublet B, Schwarz S, Bouju-Albert A, Ganière JP, Le Bris H, Le Flèche-Matéos A, Giraud E. 2008. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother 62:65–71 http://dx.doi.org/10.1093/jac/dkn166. [PubMed]
40. Kim EH, Aoki T. 1993. Drug resistance and broad geographical distribution of identical R plasmids of Pasteurella piscicida isolated from cultured yellowtail in Japan. Microbiol Immunol 37:103–109 http://dx.doi.org/10.1111/j.1348-0421.1993.tb03186.x. [PubMed]
41. Kim EH, Aoki T. 1994. The transposon-like structure of IS26-tetracycline, and kanamycin resistance determinant derived from transferable R plasmid of fish pathogen, Pasteurella piscicida. Microbiol Immunol 38:31–38 http://dx.doi.org/10.1111/j.1348-0421.1994.tb01741.x. [PubMed]
42. Kim MJ, Hirono I, Kurokawa K, Maki T, Hawke J, Kondo H, Santos MD, Aoki T. 2008. Complete DNA sequence and analysis of the transferable multiple-drug resistance plasmids (R plasmids) from Photobacterium damselae subsp. piscicida isolates collected in Japan and the United States. Antimicrob Agents Chemother 52:606–611. [PubMed]
43. del Castillo CS, Jang HB, Hikima J, Jung TS, Morii H, Hirono I, Kondo H, Kurosaka C, Aoki T. 2013. Comparative analysis and distribution of pP9014, a novel drug resistance IncP-1 plasmid from Photobacterium damselae subsp. piscicida. Int J Antimicrob Agents 42:10–18 http://dx.doi.org/10.1016/j.ijantimicag.2013.02.027. [PubMed]
44. Rodkhum C, Maki T, Hirono I, Aoki T. 2008. gyrA and parC associated with quinolone resistance in Vibrio anguillarum. J Fish Dis 31:395–399 http://dx.doi.org/10.1111/j.1365-2761.2007.00843.x. [PubMed]
45. Zhao J, Aoki T. 1992. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol Immunol 36:1051–1060 http://dx.doi.org/10.1111/j.1348-0421.1992.tb02109.x. [PubMed]
46. Izumi S, Ouchi S, Kuge T, Arai H, Mito T, Fujii H, Aranishi F, Shimizu A. 2007. PCR-RFLP genotypes associated with quinolone resistance in isolates of Flavobacterium psychrophilum. J Fish Dis 30:141–147 http://dx.doi.org/10.1111/j.1365-2761.2007.00797.x. [PubMed]
47. Soule M, LaFrentz S, Cain K, LaPatra S, Call DR. 2005. Polymorphisms in 16S rRNA genes of Flavobacterium psychrophilum correlate with elastin hydrolysis and tetracycline resistance. Dis Aquat Organ 65:209–216 http://dx.doi.org/10.3354/dao065209. [PubMed]
48. Del Cerro A, Márquez I, Prieto JM. 2010. Genetic diversity and antimicrobial resistance of Flavobacterium psychrophilum isolated from cultured rainbow trout, Onchorynchus mykiss (Walbaum), in Spain. J Fish Dis 33:285–291 http://dx.doi.org/10.1111/j.1365-2761.2009.01120.x. [PubMed]
49. Park YK, Nho SW, Shin GW, Park SB, Jang HB, Cha IS, Ha MA, Kim YR, Dalvi RS, Kang BJ, Jung TS. 2009. Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet Microbiol 136:76–81 http://dx.doi.org/10.1016/j.vetmic.2008.10.002. [PubMed]
50. Dangwetngam M, Suanyuk N, Kong F, Phromkunthong W. 2016. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: nine-year perspective. J Med Microbiol 65:247–254 http://dx.doi.org/10.1099/jmm.0.000213. [PubMed]
51. Cartes C, Isla A, Lagos F, Castro D, Muñoz M, Yañez A, Haussmann D, Figueroa J. 2016. Search and analysis of genes involved in antibiotic resistance in Chilean strains of Piscirickettsia salmonis. J Fish Dis 40:1025–1039. [PubMed]
52. Gonçalves LA, de Castro Soares S, Pereira FL, Dorella FA, de Carvalho AF, de Freitas Almeida GM, Leal CA, Azevedo V, Figueiredo HC. 2016. Complete genome sequences of Francisella noatunensis subsp. orientalis strains FNO12, FNO24 and FNO190: a fish pathogen with genomic clonal behavior. Stand Genomic Sci 11:30 http://dx.doi.org/10.1186/s40793-016-0151-0. [PubMed]
53. Rhodes LD, Nguyen OT, Deinhard RK, White TM, Harrell LW, Roberts MC. 2008. Characterization of Renibacterium salmoninarum with reduced susceptibility to macrolide antibiotics by a standardized antibiotic susceptibility test. Dis Aquat Organ 80:173–180 http://dx.doi.org/10.3354/dao01959. [PubMed]
54. CLSI. 2011. Generation, presentation, and application of antimicrobial susceptibility test data for bacteria of animal origin. Report VET05. Clinical and Laboratory Standards Institute Wayne, PA.
55. CLSI. 2014. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals. Informational supplement VET03/VET04. Clinical and Laboratory Standards Institute Wayne, PA.
56. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C, Folster JP, Ayers SL, Lam C, Tate HP, Zhao S. 2016. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 60:5515–5520 http://dx.doi.org/10.1128/AAC.01030-16. [PubMed]
57. Miller RA, Reimschuessel R. 2006. Epidemiologic cutoff values for antimicrobial agents against Aeromonas salmonicida isolates determined by frequency distributions of minimal inhibitory concentration and diameter of zone of inhibition data. Am J Vet Res 67:1837–1843 http://dx.doi.org/10.2460/ajvr.67.11.1837. [PubMed]
58. CLSI. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard VET01. Clinical and Laboratory Standards Institute, Wayne, PA.
59. Smith P. 2006. Breakpoints for disc diffusion susceptibility testing of bacteria associated with fish diseases: a review of current practice. Aquaculture 261:1113–1121 http://dx.doi.org/10.1016/j.aquaculture.2006.05.027.
60. CLSI. 2006. Methods for antimicrobial disk susceptibility testing of bacteria isolated from aquatic animals. Approved guideline VET03. Clinical and Laboratory Standards Institute, Wayne, PA.
61. CLSI. 2014. Methods for broth dilution susceptibility testing of bacteria isolated from aquatic animals. Approved guideline VET04. Clinical and Laboratory Standards Institute, Wayne, PA.
62. CLSI. 2016. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved guideline M45. Clinical and Laboratory Standards Institute, Wayne, PA.
63. Douglas I, Ruane NM, Geary M, Carroll C, Fleming GTA, McMurray J, Smith P. 2007. The advantages of the use of discs containing single agents in disc diffusion testing of the susceptibility of Aeromonas salmonicida to potentiated sulfonamides. Aquaculture 272:118–125 http://dx.doi.org/10.1016/j.aquaculture.2007.08.042.
64. Ruane NM, Douglas I, Geary M, Carroll C, Fleming GTA, Smith P. 2007. Application of normalised resistance interpretation to disc diffusion data on the susceptibility of Aeromonas salmonicida to three quinolone agents. Aquaculture 272:156–167 http://dx.doi.org/10.1016/j.aquaculture.2007.08.037.
65. Inglis V, Richards RH. 1991. The in vitro susceptibility of Aeromonas salmonicida and other fish-pathogenic bacteria to 29 antimicrobial agents. J Fish Dis 14:641–650 http://dx.doi.org/10.1111/j.1365-2761.1991.tb00622.x.
66. Giraud E, Blanc G, Bouju-Albert A, Weill FX, Donnay-Moreno C. 2004. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J Med Microbiol 53:895–901 http://dx.doi.org/10.1099/jmm.0.45579-0. [PubMed]
67. Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, Savolainen LC, Wagner R, Murray K, Peterson TS. 2013. Edwardsiellosis caused by Edwardsiella ictaluri in laboratory populations of zebrafish Danio rerio. J Aquat Anim Health 25:171–183 http://dx.doi.org/10.1080/08997659.2013.782226. [PubMed]
68. Dung TT, Haesebrouck F, Nguyen AT, Sorgeloos P, Baele M, Decostere A. 2008. Antimicrobial susceptibility pattern of Edwardsiella ictaluri isolates from natural outbreaks of bacillary necrosis of Pangasianodon hypophthalmus in Vietnam. Microb Drug Resist 14:311–316 http://dx.doi.org/10.1089/mdr.2008.0848. [PubMed]
69. Turnidge J, Paterson DL. 2007. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408 http://dx.doi.org/10.1128/CMR.00047-06. [PubMed]
70. McGinnis A, Gaunt P, Santucci T, Simmons R, Endris R. 2003. In vitro evaluation of the susceptibility of Edwardsiella ictaluri, etiological agent of enteric septicemia in channel catfish, Ictalurus punctatus (Rafinesque), to florfenicol. J Vet Diagn Invest 15:576–579 http://dx.doi.org/10.1177/104063870301500612.
71. Israil AM, Balotescu-Chifiriuc MC, Delcaru C, Aramă M. 2012. Influence of salinity upon the phenotypic expression of antibiotic resistance in nonhalophilic and halophilic vibrios. Roum Arch Microbiol Immunol 71:5–10. [PubMed]
72. Lee DC, Han HJ, Choi SY, Kronvall G, Park CI, Kim DH. 2012. Antibiograms and the estimation of epidemiological cutoff values for Vibrio ichthyoenteri isolated from larval olive flounder, Paralichthys olivaceus. Aquaculture 342:31–35 http://dx.doi.org/10.1016/j.aquaculture.2012.02.011.
73. Lewbart G. 2001. Bacteria and ornamental fish. Semin Avian Exotic Pet Med 10:48–56 http://dx.doi.org/10.1053/saep.2001.19543.
74. CLSI. 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard M31. Clinical and Laboratory Standards Institute, Wayne, PA.
75. Jagoda SS, Wijewardana TG, Arulkanthan A, Igarashi Y, Tan E, Kinoshita S, Watabe S, Asakawa S. 2014. Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia. Dis Aquat Organ 109:127–137 http://dx.doi.org/10.3354/dao02733. [PubMed]
76. Gieseker CM, Mayer TD, Crosby TC, Carson J, Dalsgaard I, Darwish AM, Gaunt PS, Gao DX, Hsu HM, Lin TL, Oaks JL, Pyecroft M, Teitzel C, Somsiri T, Wu CC. 2012. Quality control ranges for testing broth microdilution susceptibility of Flavobacterium columnare and F. psychrophilum to nine antimicrobials. Dis Aquat Organ 101:207–215 http://dx.doi.org/10.3354/dao02527. [PubMed]
77. Gieseker CM, Crosby TC, Woods LC III. 2016. Provisional epidemiological cutoff values for standard broth microdilution susceptibility testing of Flavobacterium columnare. J Fish Dis (Sep):1–8.
78. Smith P. 2017. MIC for Flavobacterium psychrophilum: analysis of the data from 5 laboratories. Presentation to the Clinical and Laboratory Standards Institute – Subcommittee on Veterinary Antimicrobial Susceptibility Testing. January 2017. Tempe, AZ.
79. Van Vliet D, Loch TP, Smith P, Faisal M. 2017. Antimicrobial susceptibilities of Flavobacterium psychrophilum isolates from the Great Lakes Basin, Michigan. Microb Drug Resist 23:791–798. [PubMed]
80. Miranda CD, Smith P, Rojas R, Contreras-Lynch S, Vega JM. 2016. Antimicrobial susceptibility of Flavobacterium psychrophilum from Chilean salmon farms and their epidemiological cut-off values using agar dilution and disk diffusion methods. Front Microbiol 7:1880 http://dx.doi.org/10.3389/fmicb.2016.01880. [PubMed]
81. Henríquez-Núñez H, Evrard O, Kronvall G, Avendaño-Herrera R. 2012. Antimicrobial susceptibility and plasmid profiles of Flavobacterium psychrophilum strains isolated in Chile. Aquaculture 354:38–44 http://dx.doi.org/10.1016/j.aquaculture.2012.04.034.
82. Tang HJ, Chang MC, Ko WC, Huang KY, Lee CL, Chuang YC. 2002. In vitro and in vivo activities of newer fluoroquinolones against Vibrio vulnificus. Antimicrob Agents Chemother 46:3580–3584 http://dx.doi.org/10.1128/AAC.46.11.3580-3584.2002. [PubMed]
83. Hsueh PR, Chang JC, Chang SC, Ho SW, Hsieh WC. 1995. In vitro antimicrobial susceptibility of Vibrio vulnificus isolated in Taiwan. Eur J Clin Microbiol Infect Dis 14:151–153 http://dx.doi.org/10.1007/BF02111880. [PubMed]
84. Hassanzadeh Y, Bahador N, Baseri-Salehi M. 2015. First time isolation of Photobacterium damselae subsp. damselae from Caranx sexfasciatus in Persian Gulf, Iran. Iran J Microbiol 7:178–184. [PubMed]
85. Coyne R, Smith P, Dalsgaard I, Nilsen H, Kongshaug H, Bergh Ø, Samuelsen O. 2006. Winter ulcer disease of post-smolt Atlantic salmon: an unsuitable case for treatment? Aquaculture 253:171–178 http://dx.doi.org/10.1016/j.aquaculture.2005.08.016.
86. Pazos F, Santos Y, Macias AR, Nuñez S, Toranzo AE. 1996. Evaluation of media for the successful culture of Flexibacter maritimus. J Fish Dis 19:193–197 http://dx.doi.org/10.1111/j.1365-2761.1996.tb00701.x.
87. Avendaño-Herrera R, Nuñez S, Barja JL, Toranzo AE. 2008. Evolution of drug resistance and minimum inhibitory concentration to enrofloxacin in Tenacibaculum maritimum strains isolates in fish farms. Aquacult Int 16:1–11 http://dx.doi.org/10.1007/s10499-007-9117-y.
88. Soto E, Halliday-Simmonds I, Francis S, Fraites T, Martínez-López B, Wiles J, Hawke JP, Endris RD. 2016. Improved broth microdilution method for antimicrobial susceptibility testing of Francisella noatunensis orientalis. J Aquat Anim Health 28:199–207 http://dx.doi.org/10.1080/08997659.2016.1185051. [PubMed]
89. Yañez AJ, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R, Figueroa J, Claude A, Gonzalez J, Avendaño-Herrera R, Carcamo JG. 2012. Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis Aquat Organ 97:197–205 http://dx.doi.org/10.3354/dao02403. [PubMed]
90. Henríquez P, Kaiser M, Bohle H, Bustos P, Mancilla M. 2016. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J Fish Dis 39:441–448 http://dx.doi.org/10.1111/jfd.12427. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0017-2017
2018-01-25
2018-08-15

Abstract:

Major concerns surround the use of antimicrobial agents in farm-raised fish, including the potential impacts these uses may have on the development of antimicrobial-resistant pathogens in fish and the aquatic environment. Currently, some antimicrobial agents commonly used in aquaculture are only partially effective against select fish pathogens due to the emergence of resistant bacteria. Although reports of ineffectiveness in aquaculture due to resistant pathogens are scarce in the literature, some have reported mass mortalities in larvae caused by resistant to trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, and streptomycin. Genetic determinants of antimicrobial resistance have been described in aquaculture environments and are commonly found on mobile genetic elements which are recognized as the primary source of antimicrobial resistance for important fish pathogens. Indeed, resistance genes have been found on transferable plasmids and integrons in pathogenic bacterial species in the genera , , , , and . Class 1 integrons and IncA/C plasmids have been widely identified in important fish pathogens ( spp., spp., spp., spp., and spp.) and are thought to play a major role in the transmission of antimicrobial resistance determinants in the aquatic environment. The identification of plasmids in terrestrial pathogens ( serotypes, , and others) which have considerable homology to plasmid backbone DNA from aquatic pathogens suggests that the plasmid profiles of fish pathogens are extremely plastic and mobile and constitute a considerable reservoir for antimicrobial resistance genes for pathogens in diverse environments.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Distribution of MICs and categorization by clinical breakpoints contrasted to ECOFFs.

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Frequently isolated bacterial pathogens of fish

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
Generic image for table
TABLE 2

Antimicrobial susceptibility testing methods of aquatic bacterial pathogens

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
Generic image for table
TABLE 3

CLSI-approved MIC and zone diameter CBP and ECOFFs for ( 55 )

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
Generic image for table
TABLE 4

Provisional MIC ECOFFs for ( 77 )

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017
Generic image for table
TABLE 5

MIC ECOFFs and zone diameter ECOFFs for ( 78 80 )

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.ARBA-0017-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error