1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp., spp., and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Andrea T. Feßler1, Stefan Schwarz2
  • Editors: Frank Møller Aarestrup3, Stefan Schwarz4, Jianzhong Shen5, Lina Cavaco6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; 2: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; 3: Technical University of Denmark, Lyngby, Denmark; 4: Friedrich-Loeffler-Institut, Neustadt, Germany; 5: China Agricultural University, Beijing, China; 6: Technical University of Denmark, Lyngby, Denmark
  • Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0021-2017
  • Received 20 May 2017 Accepted 28 September 2017 Published 07 December 2017
  • Andrea T. Feßler, andrea.fessler@fli.de
image of Antimicrobial Resistance in <span class="jp-italic">Corynebacterium</span> spp., <span class="jp-italic">Arcanobacterium</span> spp., and <span class="jp-italic">Trueperella pyogenes</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp., spp., and , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/6/ARBA-0021-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/6/ARBA-0021-2017-2.gif
  • Abstract:

    There is currently only limited information on the antimicrobial susceptibility and resistance of spp., spp., and from animals. The comparability of the data is hampered by the use of different antimicrobial susceptibility testing methods and interpretive criteria. To date, standard broth microdilution methods and clinical breakpoints that are approved by the Clinical and Laboratory Standards Institute and are applicable to spp., spp., and are available. The lack of species-specific clinical breakpoints for the different animal species reduces the explanatory power of the data. Among the isolates of the three genera, elevated MICs for different classes of antimicrobial agents (e.g., β-lactams, macrolides, lincosamides, tetracyclines, aminoglycosides, phenicols, sulfonamides/diaminopyrimidines, and fluoroquinolones) have been described. The most comprehensive data set is available for , which also includes information about genes and mutations involved in antimicrobial resistance. In isolates, the macrolide-lincosamide-streptogramin B resistance genes (B) and (X) were identified. Tetracycline resistance in was based on the resistance genes (W), (Z), and (33), whereas the aminoglycoside resistance genes , , , , , and have been described in . So far, only single genes conferring either phenicol resistance (), trimethoprim resistance (), or β-lactam resistance () are known to occur in isolates. Various 23S rRNA mutations, including A2058T, A2058G, and G2137C, were identified in macrolide/lincosamide-resistant .

  • Citation: Feßler A, Schwarz S. 2017. Antimicrobial Resistance in spp., spp., and . Microbiol Spectrum 5(6):ARBA-0021-2017. doi:10.1128/microbiolspec.ARBA-0021-2017.

Key Concept Ranking

Bacteria
0.53974324
Clavulanic acid
0.48591492
Gram-Positive Bacteria
0.43966892
Urinary Tract Infections
0.43147594
0.53974324

References

1. Skerman VBD, McGowan V, Sneath PHA. 1980. Approved lists of bacterial names. Int J Syst Evol Microbiol 30:225–420 http://dx.doi.org/10.1099/00207713-30-1-225.
2. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. 2013. Clinical Veterinary Microbiology, 2nd ed. Mosby Elsevier, Edinburgh, United Kingdom.
3. Judson R, Songer JG. 1991. Corynebacterium pseudotuberculosis: in vitro susceptibility to 39 antimicrobial agents. Vet Microbiol 27:145–150 http://dx.doi.org/10.1016/0378-1135(91)90005-Z.
4. Collins MD, Jones D, Schofield GM. 1982. Reclassification of ‘Corynebacterium haemolyticum’ (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J Gen Microbiol 128:1279–1281. [PubMed]
5. Sammra O, Rau J, Wickhorst JP, Alssahen M, Hassan AA, Lämmler C, Kämpfer P, Glaeser SP, Busse HJ, Kleinhagauer T, Knauf-Witzens T, Prenger-Berninghoff E, Abdulmawjood A, Klein G. 2017. Arcanobacterium wilhelmae sp. nov., isolated from the genital tract of a rhinoceros (Rhinoceros unicornis). Int J Syst Evol Microbiol 67:2093–2097 http://dx.doi.org/10.1099/ijsem.0.001784. [PubMed]
6. Yassin AF, Hupfer H, Siering C, Schumann P. 2011. Comparative chemotaxonomic and phylogenetic studies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol 61:1265–1274 http://dx.doi.org/10.1099/ijs.0.020032-0. [PubMed]
7. Ribeiro MG, Risseti RM, Bolaños CA, Caffaro KA, de Morais AC, Lara GH, Zamprogna TO, Paes AC, Listoni FJ, Franco MM. 2015. Trueperella pyogenes multispecies infections in domestic animals: a retrospective study of 144 cases (2002 to 2012). Vet Q 35:82–87 http://dx.doi.org/10.1080/01652176.2015.1022667. [PubMed]
8. Watts JL, Sweeney MT, Lubbers BV. 2017. Antimicrobial susceptibility testing of bacteria of veterinary origin. In Aarestrup FM, Cavaco L, Schwarz S, Shen Y (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. ASM Press, Washington, DC.
9. CLSI. 2016. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria, 3rd ed. CLSI guideline M45. Clinical and Laboratory Standards Institute, Wayne, PA.
10. CLSI. 2017. Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals. CLSI supplement VET06. Clinical and Laboratory Standards Institute, Wayne, PA.
11. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, Johnson AP, Gaastra W. 2010. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet Microbiol 141:1–4 http://dx.doi.org/10.1016/j.vetmic.2009.12.013. [PubMed]
12. Werckenthin C, Alesík E, Grobbel M, Lübke-Becker A, Schwarz S, Wieler LH, Wallmann J. 2007. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr 120:412–422. [PubMed]
13. Watts JL, Rossbach S. 2000. Susceptibilities of Corynebacterium bovis and Corynebacterium amylocolatum isolates from bovine mammary glands to 15 antimicrobial agents. Antimicrob Agents Chemother 44:3476–3477 http://dx.doi.org/10.1128/AAC.44.12.3476-3477.2000. [PubMed]
14. Fernández EP, Vela AI, Las Heras A, Domínguez L, Fernández-Garayzábal JF. Moreno MA. 2001. Antimicrobial susceptibility of corynebacteria isolated from ewe’s mastitis. Int J Antimicrob Agents 18:571–574 http://dx.doi.org/10.1016/S0924-8579(01)00424-1.
15. Foley JE, Spier SJ, Mihalyi J, Drazenovich N, Leutenegger CM. 2004. Molecular epidemiologic features of Corynebacterium pseudotuberculosis isolated from horses. Am J Vet Res 65:1734–1737 http://dx.doi.org/10.2460/ajvr.2004.65.1734. [PubMed]
16. Bailiff NL, Westropp JL, Jang SS, Ling GV. 2005. Corynebacterium urealyticum urinary tract infection in dogs and cats: 7 cases (1996–2003). J Am Vet Med Assoc 226:1676–1680 http://dx.doi.org/10.2460/javma.2005.226.1676. [PubMed]
17. Katsukawa C, Komiya T, Yamagishi H, Ishii A, Nishino S, Nagahama S, Iwaki M, Yamamoto A, Takahashi M. 2012. Prevalence of Corynebacterium ulcerans in dogs in Osaka, Japan. J Med Microbiol 61:266–273 http://dx.doi.org/10.1099/jmm.0.034868-0. [PubMed]
18. Rhodes DM, Magdesian KG, Byrne BA, Kass PH, Edman J, Spier SJ. 2015. Minimum inhibitory concentrations of equine Corynebacterium pseudotuberculosis isolates (1996–2012). J Vet Intern Med 29:327–332 http://dx.doi.org/10.1111/jvim.12534. [PubMed]
19. Adamson PJ, Wilson WD, Hirsh DC, Baggot JD, Martin LD. 1985. Susceptibility of equine bacterial isolates to antimicrobial agents. Am J Vet Res 46:447–450. [PubMed]
20. Prescott JF, Yielding KM. 1990. In vitro susceptibility of selected veterinary bacterial pathogens to ciprofloxacin, enrofloxacin and norfloxacin. Can J Vet Res 54:195–197. [PubMed]
21. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. 2002. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92. [PubMed]
22. Farrag H, Oof F. 1967. Sensitivity of organisms isolated from cases of bovine and goat mastitis to various antibiotics. Indian Vet J 44:640–646. [PubMed]
23. Wilkins RJ, Helland DR. 1973. Antibacterial sensitivities of bacteria isolated from dogs with tracheobronchitis. J Am Vet Med Assoc 162:47–50. [PubMed]
24. Swartz R, Jooste PJ, Novello JC. 1984. Antibiotic susceptibility patterns of mastitis pathogens isolated from Bloemfontein dairy herds. J S Afr Vet Assoc 55:187–193. [PubMed]
25. Gomez A, Nombela C, Zapardiel J, Soriano F. 1995. An encrusted cystitis caused by Corynebacterium urealyticum in a dog. Aust Vet J 72:72–73 http://dx.doi.org/10.1111/j.1751-0813.1995.tb15338.x. [PubMed]
26. Guedeja-Marrón J, Blanco JL, Ruperez C, Garcia ME. 1998. Susceptibility of bacterial isolates from chronic canine otitis externa to twenty antibiotics. Zentralbl Veterinarmed B 45:507–512.
27. Lin CT, Petersen-Jones SM. 2007. Antibiotic susceptibility of bacterial isolates from corneal ulcers of dogs in Taiwan. J Small Anim Pract 48:271–274 http://dx.doi.org/10.1111/j.1748-5827.2007.00348.x. [PubMed]
28. Aalbæk B, Bemis DA, Schjærff M, Kania SA, Frank LA, Guardabassi L. 2010. Coryneform bacteria associated with canine otitis externa. Vet Microbiol 145:292–298 http://dx.doi.org/10.1016/j.vetmic.2010.03.032. [PubMed]
29. Kireçci E, Ozkanlar Y, Aktas MS, Uyanik MH, Yazgi H. 2010. Isolation of pathogenic aerobic bacteria from the blood of septicaemic neonatal calves and the susceptibility of isolates to various antibiotics. J S Afr Vet Assoc 81:110–113 http://dx.doi.org/10.4102/jsava.v81i2.115. [PubMed]
30. Henneveld K, Rosychuk RA, Olea-Popelka FJ, Hyatt DR, Zabel S. 2012. Corynebacterium spp. in dogs and cats with otitis externa and/or media: a retrospective study. J Am Anim Hosp Assoc 48:320–326 http://dx.doi.org/10.5326/JAAHA-MS-5791. [PubMed]
31. Oliveira M, Barroco C, Mottola C, Santos R, Lemsaddek A, Tavares L, Semedo-Lemsaddek T. 2014. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus). BMC Vet Res 10:218 http://dx.doi.org/10.1186/s12917-014-0218-3. [PubMed]
32. Johnson SP, Jang S, Gulland FM, Miller MA, Casper DR, Lawrence J, Herrera J. 2003. Characterization and clinical manifestations of Arcanobacterium phocae infections in marine mammals stranded along the central California coast. J Wildl Dis 39:136–144 http://dx.doi.org/10.7589/0090-3558-39.1.136. [PubMed]
33. Tyrrell KL, Citron DM, Jenkins JR, Goldstein EJ. 2002. Periodontal bacteria in rabbit mandibular and maxillary abscesses. J Clin Microbiol 40:1044–1047 http://dx.doi.org/10.1128/JCM.40.3.1044-1047.2002. [PubMed]
34. Ülbegi-Mohyla H, Hassan AA, Alber J, Lämmler C, Prenger-Berninghoff E, Weiss R, Zschöck M. 2010. Identification of Arcanobacterium pluranimalium isolated from a dog by phenotypic properties and by PCR mediated characterization of various molecular targets. Vet Microbiol 142:458–460 http://dx.doi.org/10.1016/j.vetmic.2009.09.058. [PubMed]
35. Hassan AA, Ülbegi-Mohyla H, Kanbar T, Alber J, Lämmler C, Abdulmawjood A, Zschöck M, Weiss R. 2009. Phenotypic and genotypic characterization of Arcanobacterium haemolyticum isolates from infections of horses. J Clin Microbiol 47:124–128 http://dx.doi.org/10.1128/JCM.01933-08. [PubMed]
36. Watts JL, Salmon SA, Yancey RJ Jr, Nickerson SC, Weaver LJ, Holmberg C, Pankey JW, Fox LK. 1995. Antimicrobial susceptibility of microorganisms isolated from the mammary glands of dairy heifers. J Dairy Sci 78:1637–1648 http://dx.doi.org/10.3168/jds.S0022-0302(95)76788-1.
37. Morck DW, Olson ME, Louie TJ, Koppe A, Quinn B. 1998. Comparison of ceftiofur sodium and oxytetracycline for treatment of acute interdigital phlegmon (foot rot) in feedlot cattle. J Am Vet Med Assoc 212:254–257. [PubMed]
38. Narayanan S, Nagaraja TG, Staats J, Chengappa MM, Oberst RD. 1998. Biochemical and biological characterizations and ribotyping of Actinomyces pyogenes and Actinomyces pyogenes-like organisms from liver abscesses in cattle. Vet Microbiol 61:289–303 http://dx.doi.org/10.1016/S0378-1135(98)00190-4.
39. Nagaraja TG, Beharka AB, Chengappa MM, Carroll LH, Raun AP, Laudert SB, Parrott JC. 1999. Bacterial flora of liver abscesses in feedlot cattle fed tylosin or no tylosin. J Anim Sci 77:973–978 http://dx.doi.org/10.2527/1999.774973x. [PubMed]
40. Billington SJ, Songer JG, Jost BH. 2002. Widespread distribution of a tet W determinant among tetracycline-resistant isolates of the animal pathogen Arcanobacterium pyogenes. Antimicrob Agents Chemother 46:1281–1287 http://dx.doi.org/10.1128/AAC.46.5.1281-1287.2002. [PubMed]
41. Trinh HT, Billington SJ, Field AC, Songer JG, Jost BH. 2002. Susceptibility of Arcanobacterium pyogenes from different sources to tetracycline, macrolide and lincosamide antimicrobial agents. Vet Microbiol 85:353–359 http://dx.doi.org/10.1016/S0378-1135(01)00524-7.
42. Jost BH, Field AC, Trinh HT, Songer JG, Billington SJ. 2003. Tylosin resistance in Arcanobacterium pyogenes is encoded by an erm X determinant. Antimicrob Agents Chemother 47:3519–3524 http://dx.doi.org/10.1128/AAC.47.11.3519-3524.2003. [PubMed]
43. Jost BH, Trinh HT, Songer JG, Billington SJ. 2004. A second tylosin resistance determinant, Erm B, in Arcanobacterium pyogenes. Antimicrob Agents Chemother 48:721–727 http://dx.doi.org/10.1128/AAC.48.3.721-727.2004. [PubMed]
44. Liu MC, Wu CM, Liu YC, Zhao JC, Yang YL, Shen JZ. 2009. Identification, susceptibility, and detection of integron-gene cassettes of Arcanobacterium pyogenes in bovine endometritis. J Dairy Sci 92:3659–3666 http://dx.doi.org/10.3168/jds.2008-1756. [PubMed]
45. Santos TM, Caixeta LS, Machado VS, Rauf AK, Gilbert RO, Bicalho RC. 2010. Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Vet Microbiol 145:84–89 http://dx.doi.org/10.1016/j.vetmic.2010.03.001. [PubMed]
46. Tell LA, Brooks JW, Lintner V, Matthews T, Kariyawasam S. 2011. Antimicrobial susceptibility of Arcanobacterium pyogenes isolated from the lungs of white-tailed deer (Odocoileus virginianus) with pneumonia. J Vet Diagn Invest 23:1009–1013 http://dx.doi.org/10.1177/1040638711416618. [PubMed]
47. Zastempowska E, Lassa H. 2012. Genotypic characterization and evaluation of an antibiotic resistance of Trueperella pyogenes (Arcanobacterium pyogenes) isolated from milk of dairy cows with clinical mastitis. Vet Microbiol 161:153–158 http://dx.doi.org/10.1016/j.vetmic.2012.07.018. [PubMed]
48. Zhang DX, Tian K, Han LM, Wang QX, Liu YC, Tian CL, Liu MC. 2014. Resistance to β-lactam antibiotic may influence nanH gene expression in Trueperella pyogenes isolated from bovine endometritis. Microb Pathog 71-72:20–24 http://dx.doi.org/10.1016/j.micpath.2014.04.006. [PubMed]
49. de Boer M, Heuer C, Hussein H, McDougall S. 2015. Minimum inhibitory concentrations of selected antimicrobials against Escherichia coli and Trueperella pyogenes of bovine uterine origin. J Dairy Sci 98:4427–4438 http://dx.doi.org/10.3168/jds.2014-8890. [PubMed]
50. Alkasir R, Wang J, Gao J, Ali T, Zhang L, Szenci O, Bajcsy ÁC, Han B. 2016. Properties and antimicrobial susceptibility of Trueperella pyogenes isolated from bovine mastitis in China. Acta Vet Hung 64:1–12 http://dx.doi.org/10.1556/004.2016.001. [PubMed]
51. Guérin-Faublée V, Flandrois JP, Broye E, Tupin F, Richard Y. 1993. Actinomyces pyogenes: susceptibility of 103 clinical animal isolates to 22 antimicrobial agents. Vet Res 24:251–259. [PubMed]
52. Cohen RO, Bernstein M, Ziv G. 1995. Isolation and anti-microbial susceptibility of Actinomyces pyogenes re-covered from the uterus of dairy cows with retained fetal membranes and post parturient endometritis. Theriogenology 43:1389–1397 http://dx.doi.org/10.1016/0093-691X(95)00124-Q.
53. Jousimies-Somer H, Pyörälä S, Kanervo A. 1996. Susceptibilities of bovine summer mastitis bacteria to antimicrobial agents. Antimicrob Agents Chemother 40:157–160. [PubMed]
54. Chirino-Trejo M, Woodbury MR, Huang F. 2003. Antibiotic sensitivity and biochemical characterization of Fusobacterium spp. and Arcanobacterium pyogenes isolated from farmed white-tailed deer (Odocoileus virginianus) with necrobacillosis. J Zoo Wildl Med 34:262–268 http://dx.doi.org/10.1638/02-019. [PubMed]
55. Yoshimura H, Kojima A, Ishimaru M. 2000. Antimicrobial susceptibility of Arcanobacterium pyogenes isolated from cattle and pigs. J Vet Med B Infect Dis Vet Public Health 47:139–143 http://dx.doi.org/10.1046/j.1439-0450.2000.00315.x. [PubMed]
56. Sheldon IM, Bushnell M, Montgomery J, Rycroft AN. 2004. Minimum inhibitory concentrations of some antimicrobial drugs against bacteria causing uterine infections in cattle. Vet Rec 155:383–387 http://dx.doi.org/10.1136/vr.155.13.383. [PubMed]
57. Zhao KL, Liu Y, Zhang XY, Palahati P, Wang HN, Yue BS. 2011. Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer. J Med Microbiol 60:1820–1826 http://dx.doi.org/10.1099/jmm.0.033332-0. [PubMed]
58. Kunter E. 1963. Sensitivity of mastitis pathogens to antibiotics and sulfonamides and mastitis pathogens. MhVet Med 18:88–92. (In German.)
59. Kunter E. 1975. Sensitivity of mastitis pathogens to antibiotics and chemotherapeutic agents. Arch Exp Veterinarmed 29:1–32. (In German.) [PubMed]
60. Hariharan H, Barnum DA, Mitchell WR. 1974. Drug resistance among pathogenic bacteria from animals in Ontario. Can J Comp Med 38:213–221. [PubMed]
61. Mohan K, Uzoukwu M. 1980. Certain characteristics of Corynebacterium pyogenes infection. Vet Rec 107:252–253 http://dx.doi.org/10.1136/vr.107.11.252. [PubMed]
62. Lämmler C, Blobel H. 1988. Comparative studies on Actinomyces pyogenes and Arcanobacterium haemolyticum. Med Microbiol Immunol (Berl) 177:109–114 http://dx.doi.org/10.1007/BF00189532.
63. Vogel G, Nicolet J, Martig J, Tschudi P, Meylan M. 2001. Pneumonia in calves: characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs. Schweiz Arch Tierheilkd 143:341–350. (In German.) [PubMed]
64. Martel A, Meulenaere V, Devriese LA, Decostere A, Haesebrouck F. 2003. Macrolide and lincosamide resistance in the Gram-positive nasal and tonsillar flora of pigs. Microb Drug Resist 9:293–297 http://dx.doi.org/10.1089/107662903322286508. [PubMed]
65. Wettstein K, Frey J. 2004. Comparison of antimicrobial resistance pattern of selected respiratory tract pathogens isolated from different animal species. Schweiz Arch Tierheilkd 146:417–422 http://dx.doi.org/10.1024/0036-7281.146.9.417. (In German.) [PubMed]
66. Kidanemariam A, Gouws J, van Vuuren M, Gummow B. 2005. In vitro antimicrobial susceptibility of Mycoplasma mycoides mycoides large colony and Arcanobacterium pyogenes isolated from clinical cases of ulcerative balanitis and vulvitis in Dorper sheep in South Africa. J S Afr Vet Assoc 76:204–208 http://dx.doi.org/10.4102/jsava.v76i4.427. [PubMed]
67. Schröder A, Hoedemaker M, Klein G. 2005. Resistance of mastitis pathogens in northern Germany. Berl Munch Tierarztl Wochenschr 118:393–398. (In German.) [PubMed]
68. Markowska-Daniel I, Urbaniak K, Stepniewska K, Pejsak Z. 2010. Antibiotic susceptibility of bacteria isolated from respiratory tract of pigs in Poland between 2004 and 2008. Pol J Vet Sci 13:29–36. [PubMed]
69. Brodzki P, Bochniarz M, Brodzki A, Wrona Z, Wawron W. 2014. Trueperella pyogenes and Escherichia coli as an etiological factor of endometritis in cows and the susceptibility of these bacteria to selected antibiotics. Pol J Vet Sci 17:657–664 http://dx.doi.org/10.2478/pjvs-2014-0096. [PubMed]
70. Jost BH, Trinh HT, Songer JG, Billington SJ. 2004. Ribosomal mutations in Arcanobacterium pyogenes confer a unique spectrum of macrolide resistance. Antimicrob Agents Chemother 48:1021–1023 http://dx.doi.org/10.1128/AAC.48.3.1021-1023.2004. [PubMed]
71. Alešík E. 2006. Antimicrobial susceptibility of Arcanobacterium pyogenes: Evaluation and application of a broth micro-dilution method for susceptibility testing and genotypic characterization of tetracycline resistant strains. (In German with English summary.) Thesis, Ludwig-Maximilians University, Munich, Germany.
72. Tauch A, Pühler A, Kalinowski J, Thierbach G. 2000. TetZ, a new tetracycline resistance determinant discovered in Gram-positive bacteria, shows high homology to Gram-negative regulated efflux systems. Plasmid 44:285–291 http://dx.doi.org/10.1006/plas.2000.1489. [PubMed]
microbiolspec.ARBA-0021-2017.citations
cm/5/6
content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0021-2017
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0021-2017
2017-12-07
2017-12-11

Abstract:

There is currently only limited information on the antimicrobial susceptibility and resistance of spp., spp., and from animals. The comparability of the data is hampered by the use of different antimicrobial susceptibility testing methods and interpretive criteria. To date, standard broth microdilution methods and clinical breakpoints that are approved by the Clinical and Laboratory Standards Institute and are applicable to spp., spp., and are available. The lack of species-specific clinical breakpoints for the different animal species reduces the explanatory power of the data. Among the isolates of the three genera, elevated MICs for different classes of antimicrobial agents (e.g., β-lactams, macrolides, lincosamides, tetracyclines, aminoglycosides, phenicols, sulfonamides/diaminopyrimidines, and fluoroquinolones) have been described. The most comprehensive data set is available for , which also includes information about genes and mutations involved in antimicrobial resistance. In isolates, the macrolide-lincosamide-streptogramin B resistance genes (B) and (X) were identified. Tetracycline resistance in was based on the resistance genes (W), (Z), and (33), whereas the aminoglycoside resistance genes , , , , , and have been described in . So far, only single genes conferring either phenicol resistance (), trimethoprim resistance (), or β-lactam resistance () are known to occur in isolates. Various 23S rRNA mutations, including A2058T, A2058G, and G2137C, were identified in macrolide/lincosamide-resistant .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Examples of different AST methods and test conditions

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0021-2017
Generic image for table
TABLE 2

spp. AST data determined by broth microdilution according to CLSI/NCCLS standards

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0021-2017
Generic image for table
TABLE 3

AST data determined by broth microdilution according to CLSI/NCCLS standards

Source: microbiolspec December 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.ARBA-0021-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error