1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Kristina Kadlec1, Stefan Schwarz2
  • Editors: Frank Møller Aarestrup3, Stefan Schwarz4, Jianzhong Shen5, Lina Cavaco6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt-Mariensee, Germany; 2: Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; 3: Technical University of Denmark, Lyngby, Denmark; 4: Freie Universität Berlin, Berlin, Germany; 5: China Agricultural University, Beijing, China; 6: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0024-2017
  • Received 06 September 2017 Accepted 07 February 2018 Published 19 July 2018
  • Kristina Kadlec, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Bordetella bronchiseptica</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0024-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0024-2017-2.gif
  • Abstract:

    is involved in respiratory tract infections mainly in dogs and pigs but may also cause infections in humans. Valid and representative data on antimicrobial susceptibility of is rare. Approved antimicrobial susceptibility testing methods have been published, but very few clinical breakpoints are available. The MIC values are low for most agents but high for β-lactam antibiotics and macrolides. Information on the genetic basis of resistance is scarce. For a small number of isolates that are resistant or show elevated MICs, the molecular basis of resistance was identified. Three tetracycline resistance genes, (A), (C), and (31), coding for major facilitator superfamily efflux pumps, were identified. Two other major facilitator superfamily exporter genes confer resistance to chloramphenicol () or to chloramphenicol and florfenicol (). Two class B chloramphenicol acetyltransferase genes ( and ), which confer resistance to nonfluorinated phenicols by enzymatic inactivation, have been identified in . Like the trimethoprim resistance genes and , which code for trimethoprim-insensitive dihydrofolate reductases, the genes and were located on gene cassettes and found in class 1 integrons also harboring the sulfonamide resistance gene . In addition, the gene has also been detected. Both and code for sulfonamide-insensitive dihydropteroate synthases. A gene cassette harboring the β-lactamase gene was also identified, whereas β-lactam resistance in seems to be more likely due to reduced influx in combination with the species-specific β-lactamase encoded by . The resistance genes were mostly located on conjugative plasmids.

  • Citation: Kadlec K, Schwarz S. 2018. Antimicrobial Resistance in . Microbiol Spectrum 6(4):ARBA-0024-2017. doi:10.1128/microbiolspec.ARBA-0024-2017.

References

1. Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect Immun 80:1530–1536 http://dx.doi.org/10.1128/IAI.06310-11. [PubMed]
2. Gustavsson OE, Röken BO, Serrander R. 1990. An epizootic of whooping cough among chimpanzees in a zoo. Folia Primatol (Basel) 55:45–50 http://dx.doi.org/10.1159/000156498. [PubMed]
3. Spilker T, Liwienski AA, LiPuma JJ. 2008. Identification of Bordetella spp. in respiratory specimens from individuals with cystic fibrosis. Clin Microbiol Infect 14:504–506 http://dx.doi.org/10.1111/j.1469-0691.2008.01968.x. [PubMed]
4. Harrington AT, Castellanos JA, Ziedalski TM, Clarridge JE III, Cookson BT. 2009. Isolation of Bordetella avium and novel Bordetella strain from patients with respiratory disease. Emerg Infect Dis 15:72–74 http://dx.doi.org/10.3201/eid1501.071677. [PubMed]
5. Goodnow RA. 1980. Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738. [PubMed]
6. Brockmeier SL, Halbur PG, Thacker EL. 2002. Porcine respiratory disease complex, p 231–258. In Brogden KA, Guthmiller JM (ed), Polymicrobial Diseases. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817947.ch13
7. Magyar T, Lax AJ. 2002. Atrophic rhinitis, p 169–197. In Brogden KA, Guthmiller JM (ed), Polymicrobial Diseases. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817947.ch10
8. OIE. 2012. Atrophic rhinitis of swine, chapter 2.8.2. In Terrestrial Manual 2012. OIE, Paris, France.
9. Rampelotto RF, Hörner A, Hörner C, Righi R, Hörner R. 2016. Pneumonia caused by Bordetella bronchiseptica in two HIV-positive patients. Sao Paulo Med J 134:268–272 http://dx.doi.org/10.1590/1516-3180.2015.02492701. [PubMed]
10. Mazumder SA, Cleveland KO. 2010. Bordetella bronchiseptica bacteremia in a patient with AIDS. South Med J 103:934–935 http://dx.doi.org/10.1097/SMJ.0b013e3181ebcdbc. [PubMed]
11. Register KB, Sukumar N, Palavecino EL, Rubin BK, Deora R. 2012. Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat. Zoonoses Public Health 59:246–250 http://dx.doi.org/10.1111/j.1863-2378.2011.01446.x. [PubMed]
12. Gueirard P, Weber C, Le Coustumier A, Guiso N. 1995. Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J Clin Microbiol 33:2002–2006. [PubMed]
13. Woolfrey BF, Moody JA. 1991. Human infections associated with Bordetella bronchiseptica. Clin Microbiol Rev 4:243–255 http://dx.doi.org/10.1128/CMR.4.3.243. [PubMed]
14. Dworkin MS, Sullivan PS, Buskin SE, Harrington RD, Olliffe J, MacArthur RD, Lopez CE. 1999. Bordetella bronchiseptica infection in human immunodeficiency virus-infected patients. Clin Infect Dis 28:1095–1099 http://dx.doi.org/10.1086/514761. [PubMed]
15. Belen O, Campos JM, Cogen PH, Jantausch BA. 2003. Postsurgical meningitis caused by Bordetella bronchiseptica. Pediatr Infect Dis J 22:380–381 http://dx.doi.org/10.1097/01.inf.0000059766.51912.e8. [PubMed]
16. Wernli D, Emonet S, Schrenzel J, Harbarth S. 2011. Evaluation of eight cases of confirmed Bordetella bronchiseptica infection and colonization over a 15-year period. Clin Microbiol Infect 17:201–203 http://dx.doi.org/10.1111/j.1469-0691.2010.03258.x. [PubMed]
17. Mattoo S, Cherry JD. 2005. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382 http://dx.doi.org/10.1128/CMR.18.2.326-382.2005. [PubMed]
18. CLSI. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 4th ed. CLSI document VET01-A4. Clinical and Laboratory Standards Institute, Wayne, PA.
19. CLSI. 2015. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; CLSI supplement VET01-S3. Clinical and Laboratory Standards Institute, Wayne, PA.
20. Prüller S, Frömke C, Kaspar H, Klein G, Kreienbrock L, Kehrenberg C. 2015. Recommendation for a standardised method of broth microdilution susceptibility testing for porcine Bordetella bronchiseptica. PLoS One 10:e0123883 http://dx.doi.org/10.1371/journal.pone.0123883. [PubMed]
21. Schwarz S, Böttner A, Goossens L, Hafez HM, Hartmann K, Kaske M, Kehrenberg C, Kietzmann M, Klarmann D, Klein G, Krabisch P, Luhofer G, Richter A, Schulz B, Sigge C, Waldmann KH, Wallmann J, Werckenthin C. 2008. A proposal of clinical breakpoints for amoxicillin applicable to porcine respiratory tract pathogens. Vet Microbiol 126:178–188 http://dx.doi.org/10.1016/j.vetmic.2007.06.023. [PubMed]
22. Kadlec K, Kehrenberg C, Wallmann J, Schwarz S. 2004. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from porcine respiratory tract infections. Antimicrob Agents Chemother 48:4903–4906 http://dx.doi.org/10.1128/AAC.48.12.4903-4906.2004. [PubMed]
23. Kadlec K, Kehrenberg C, Schwarz S. 2006. tet(A)-mediated tetracycline resistance in porcine Bordetella bronchiseptica isolates is based on plasmid-borne Tn1721 relics. J Antimicrob Chemother 58:225–227 http://dx.doi.org/10.1093/jac/dkl149. [PubMed]
24. Prüller S, Rensch U, Meemken D, Kaspar H, Kopp PA, Klein G, Kehrenberg C. 2015. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from swine and companion animals and detection of resistance genes. PLoS One 10:e0135703 http://dx.doi.org/10.1371/journal.pone.0135703. [PubMed]
25. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. 2016. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009-2012: VetPath results. Vet Microbiol 194:11–22 http://dx.doi.org/10.1016/j.vetmic.2016.04.009. [PubMed]
26. Stepniewska K, Urbaniak K, Markowska-Daniel I. 2014. Phenotypic and genotypic characterization of Bordetella bronchiseptica strains isolated from pigs in Poland. Pol J Vet Sci 17:71–77 http://dx.doi.org/10.2478/pjvs-2014-0009. [PubMed]
27. GERM-Vet. 2016. BVL-Report · 10.5 Berichte zur Resistenzmonitoringstudie. ISBN 978-3-319-31696-3. Springer, Basel, Switzerland. (in German).
28. GERM-Vet. 2014. BVL-Report · 8.6 Berichte zur Resistenzmonitoringstudie. ISBN 978-3-319-05995-2. Springer, Basel, Switzerland. (in German).
29. GERM-Vet. 2012. Berichte zur Resistenzmonitoringstudie 2009. ISBN 978-3-0348-0504-9. Springer, Basel, Switzerland. (in German).
30. GERM-Vet. 2012. Berichte zur Resistenzmonitoringstudie 2008. ISBN 978-3-0348-0422-6. Springer, Basel, Switzerland. (in German).
31. Gerlach G, von Wintzingerode F, Middendorf B, Gross R. 2001. Evolutionary trends in the genus Bordetella. Microbes Infect 3:61–72 http://dx.doi.org/10.1016/S1286-4579(00)01353-8. [PubMed]
32. Carbonetti NH, Wirsing von König CH, Lan R, Jacob-Dubuisson F, Cotter PA, Deora R, Merkel TJ, van Els CA, Locht C, Hozbor D, Rodriguez ME. 2016. Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development. Clin Vaccine Immunol 23:842–850 http://dx.doi.org/10.1128/CVI.00388-16. [PubMed]
33. Shimizu T. 1978. Prophylaxis of Bordetella bronchiseptica infection in guinea pigs by intranasal vaccination with live strain ts-S34. Infect Immun 22:318–321. [PubMed]
34. Mortensen JE, Brumbach A, Shryock TR. 1989. Antimicrobial susceptibility of Bordetella avium and Bordetella bronchiseptica isolates. Antimicrob Agents Chemother 33:771–772 http://dx.doi.org/10.1128/AAC.33.5.771. [PubMed]
35. Speakman AJ, Binns SH, Osborn AM, Corkill JE, Kariuki S, Saunders JR, Dawson S, Gaskell RM, Hart CA. 1997. Characterization of antibiotic resistance plasmids from Bordetella bronchiseptica. J Antimicrob Chemother 40:811–816 http://dx.doi.org/10.1093/jac/40.6.811. [PubMed]
36. Kadlec K, Kaspar H, Mankertz J, Schwarz. 2012. First identification of tet(31) among tetracycline-resistant porcine Bordetella bronchiseptica. Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) 16–19 June 2012, San Francisco, CA.
37. Dugan J, Rockey DD, Jones L, Andersen AA. 2004. Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene. Antimicrob Agents Chemother 48:3989–3995 http://dx.doi.org/10.1128/AAC.48.10.3989-3995.2004. [PubMed]
38. Kadlec K, Kehrenberg C, Schwarz S. 2005. Molecular basis of resistance to trimethoprim, chloramphenicol and sulphonamides in Bordetella bronchiseptica. J Antimicrob Chemother 56:485–490 http://dx.doi.org/10.1093/jac/dki262. [PubMed]
39. Schwarz S, Alesík E, Grobbel M, Lübke-Becker A, Werckenthin C, Wieler LH, Wallmann J. 2007. Antimicrobial susceptibility of Pasteurella multocida and Bordetella bronchiseptica from dogs and cats as determined in the BfT-GermVet monitoring program 2004-2006. Berl Munch Tierarztl Wochenschr 120:423–430. [PubMed]
40. Sundin GW, Bender CL. 1996. Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 5:133–143 http://dx.doi.org/10.1111/j.1365-294X.1996.tb00299.x. [PubMed]
41. Kehrenberg C, Tham NT, Schwarz S. 2003. New plasmid-borne antibiotic resistance gene cluster in Pasteurella multocida. Antimicrob Agents Chemother 47:2978–2980 http://dx.doi.org/10.1128/AAC.47.9.2978-2980.2003. [PubMed]
42. Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S. 2012. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother 67:84–90 http://dx.doi.org/10.1093/jac/dkr406. [PubMed]
43. Toulouse JL, Edens TJ, Alejaldre L, Manges AR, Pelletier JN. 2017. Integron-associated DfrB4, a previously uncharacterized member of the trimethoprim-resistant dihydrofolate reductase B family, is a clinically identified emergent source of antibiotic resistance. Antimicrob Agents Chemother 61:5 http://dx.doi.org/10.1128/AAC.02665-16. [PubMed]
44. Kadlec K, Kehrenberg C, Schwarz S. 2007. Efflux-mediated resistance to florfenicol and/or chloramphenicol in Bordetella bronchiseptica: identification of a novel chloramphenicol exporter. J Antimicrob Chemother 59:191–196 http://dx.doi.org/10.1093/jac/dkl498. [PubMed]
45. Barreto-Hernández E, Falquet L, Reguero MT, Mantilla JR, Valenzuela EM, González E, Cepeda A, Escalante A. 2013. Draft genome sequences of multidrug-resistant Acinetobacter sp. strains from Colombian hospitals. Genome Announc 1:e00868-e13 http://dx.doi.org/10.1128/genomeA.00868-13. [PubMed]
46. Lartigue MF, Poirel L, Fortineau N, Nordmann P. 2005. Chromosome-borne class A BOR-1 β-lactamase of Bordetella bronchiseptica and Bordetella parapertussis. Antimicrob Agents Chemother 49:2565–2567 http://dx.doi.org/10.1128/AAC.49.6.2565-2567.2005. [PubMed]
47. Kadlec K, Wiegand I, Kehrenberg C, Schwarz S. 2007. Studies on the mechanisms of β-lactam resistance in Bordetella bronchiseptica. J Antimicrob Chemother 59:396–402 http://dx.doi.org/10.1093/jac/dkl515. [PubMed]
48. Hannan PC, O’Hanlon PJ, Rogers NH. 1989. In vitro evaluation of various quinolone antibacterial agents against veterinary mycoplasmas and porcine respiratory bacterial pathogens. Res Vet Sci 46:202–211. [PubMed]
49. Speakman AJ, Dawson S, Corkill JE, Binns SH, Hart CA, Gaskell RM. 2000. Antibiotic susceptibility of canine Bordetella bronchiseptica isolates. Vet Microbiol 71:193–200 http://dx.doi.org/10.1016/S0378-1135(99)00171-6. [PubMed]
50. Carbone M, Pennisi MG, Masucci M, De Sarro A, Giannone M, Fera MT. 2001. Activity and postantibiotic effect of marbofloxacin, enrofloxacin, difloxacin and ciprofloxacin against feline Bordetella bronchiseptica isolates. Vet Microbiol 81:79–84 http://dx.doi.org/10.1016/S0378-1135(01)00349-2. [PubMed]
51. Schink AK, Kadlec K, Hauschild T, Brenner Michael G, Dörner JC, Ludwig C, Werckenthin C, Hehnen HR, Stephan B, Schwarz S. 2013. Susceptibility of canine and feline bacterial pathogens to pradofloxacin and comparison with other fluoroquinolones approved for companion animals. Vet Microbiol 162:119–126 http://dx.doi.org/10.1016/j.vetmic.2012.08.001. [PubMed]
52. El Garch F, Kroemer S, Galland D, Morrissey I, Woehrle F. 2017. Survey of susceptibility to marbofloxacin in bacteria isolated from diseased pigs in Europe. Vet Rec 180:591 http://dx.doi.org/10.1136/vr.103954. [PubMed]
53. Kehrenberg C, Schwarz S. 2002. Nucleotide sequence and organization of plasmid pMVSCS1 from Mannheimia varigena: identification of a multiresistance gene cluster. J Antimicrob Chemother 49:383–386 http://dx.doi.org/10.1093/jac/49.2.383. [PubMed]
54. Chiou CS, Jones AL. 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other Gram-negative bacteria. J Bacteriol 175:732–740 http://dx.doi.org/10.1128/jb.175.3.732-740.1993. [PubMed]
55. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Llagostera M, Dominguez L, Gonzalez-Zorn B. 2009. Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 53:3399–3404 http://dx.doi.org/10.1128/AAC.01522-08. [PubMed]
56. Eidam C, Poehlein A, Leimbach A, Michael GB, Kadlec K, Liesegang H, Daniel R, Sweeney MT, Murray RW, Watts JL, Schwarz S. 2015. Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother 70:93–97 http://dx.doi.org/10.1093/jac/dku361. [PubMed]
57. Petrova M, Kurakov A, Shcherbatova N, Mindlin S. 2014. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology 160:2253–2263 http://dx.doi.org/10.1099/mic.0.079335-0. [PubMed]
58. Wallmann J, Kaspar H, Kroker R. 2004. [The prevalence of antimicrobial susceptibility of veterinary pathogens isolated from cattle and pigs: national antibiotic resistance monitoring 2002/2003 of the BVL]. Berl Munch Tierarztl Wochenschr 117:480–492. The prevalence of antimicrobial susceptibility of veterinary pathogens isolated from cattle and pigs: national reistance monitoring 2002/2003 of the BVL.
59. Shin SJ, Kang SG, Nabin R, Kang ML, Yoo HS. 2005. Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease. Vet Microbiol 106:73–77 http://dx.doi.org/10.1016/j.vetmic.2004.11.015. [PubMed]
60. Schwarz S, Kadlec K, Silley P. 2013. Antimicrobial Resistance in Bacteria of Animal Origin. ZETT-Verlag, Steinen, Germany.
61. Kehrenberg C, Mumme J, Wallmann J, Verspohl J, Tegeler R, Kühn T, Schwarz S. 2004. Monitoring of florfenicol susceptibility among bovine and porcine respiratory tract pathogens collected in Germany during the years 2002 and 2003. J Antimicrob Chemother 54:572–574 http://dx.doi.org/10.1093/jac/dkh371. [PubMed]
62. Priebe S, Schwarz S. 2003. In vitro activities of florfenicol against bovine and porcine respiratory tract pathogens. Antimicrob Agents Chemother 47:2703–2705 http://dx.doi.org/10.1128/AAC.47.8.2703-2705.2003. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0024-2017
2018-07-19
2018-10-20

Abstract:

is involved in respiratory tract infections mainly in dogs and pigs but may also cause infections in humans. Valid and representative data on antimicrobial susceptibility of is rare. Approved antimicrobial susceptibility testing methods have been published, but very few clinical breakpoints are available. The MIC values are low for most agents but high for β-lactam antibiotics and macrolides. Information on the genetic basis of resistance is scarce. For a small number of isolates that are resistant or show elevated MICs, the molecular basis of resistance was identified. Three tetracycline resistance genes, (A), (C), and (31), coding for major facilitator superfamily efflux pumps, were identified. Two other major facilitator superfamily exporter genes confer resistance to chloramphenicol () or to chloramphenicol and florfenicol (). Two class B chloramphenicol acetyltransferase genes ( and ), which confer resistance to nonfluorinated phenicols by enzymatic inactivation, have been identified in . Like the trimethoprim resistance genes and , which code for trimethoprim-insensitive dihydrofolate reductases, the genes and were located on gene cassettes and found in class 1 integrons also harboring the sulfonamide resistance gene . In addition, the gene has also been detected. Both and code for sulfonamide-insensitive dihydropteroate synthases. A gene cassette harboring the β-lactamase gene was also identified, whereas β-lactam resistance in seems to be more likely due to reduced influx in combination with the species-specific β-lactamase encoded by . The resistance genes were mostly located on conjugative plasmids.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic presentation of the class 1 integrons described so far in isolates. The reading frames of the antimicrobial resistance genes are shown as arrows, and the conserved segments of the class 1 integron are shown as boxes. The beginning and the end of the integrated cassettes are shown in detail below. The translational start and stop codons are underlined. The 59-base elements are shown in bold type, and the putative IntI1 integrase binding domains 1L, 2L, 2R, and 1R are indicated by arrows. The numbers refer to the positions of the bases in the EMBL database entries with the following accession numbers: (a) AJ844287, (b) AJ879564, and (c) AJ877267 ( 41 , 50 ).

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0024-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of Tn (GenBank accession no. X61367) and the sequenced parts of the resistance plasmids pKBB958 (GenBank accession no. AM183165) and pKBB4037 (GenBank accession no. AJ877266) from . A distance scale in kb is given below each map. The genes , (A), , , , Δ, , , , and Δ* are presented as arrows, with the arrowhead indicating the direction of transcription. The Δ symbol indicates a truncated, functionally inactive gene. The black boxes represent the terminal or internal 38-bp repeats of Tn. The gray shaded areas indicate the homologous parts between the plasmids and Tn ( 26 ).

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0024-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Tetracycline MIC distributions of isolates

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0024-2017
Generic image for table
TABLE 2

Florfenicol MIC distributions of isolates

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0024-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error