1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Laurent Poirel1, Jean-Yves Madec4, Agnese Lupo5, Anne-Kathrin Schink6, Nicolas Kieffer7, Patrice Nordmann8, Stefan Schwarz11
  • Editors: Frank Møller Aarestrup12, Stefan Schwarz13, Jianzhong Shen14, Lina Cavaco15
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; 2: French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland; 3: National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland; 4: Université de Lyon – Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 5: Université de Lyon – Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 6: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; 7: Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; 8: Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland; 9: French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland; 10: National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland; 11: Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; 12: Technical University of Denmark, Lyngby, Denmark; 13: Freie Universität Berlin, Berlin, Germany; 14: China Agricultural University, Beijing, China; 15: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0026-2017
  • Received 09 May 2018 Accepted 16 May 2018 Published 12 July 2018
  • Laurent Poirel, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Escherichia coli</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0026-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0026-2017-2.gif
  • Abstract:

    Multidrug resistance in has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, of animal origin often also show resistances to other—mostly older—antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.

  • Citation: Poirel L, Madec J, Lupo A, Schink A, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial Resistance in . Microbiol Spectrum 6(4):ARBA-0026-2017. doi:10.1128/microbiolspec.ARBA-0026-2017.

References

1. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140 http://dx.doi.org/10.1038/nrmicro818. [PubMed]
2. Köhler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642–647 http://dx.doi.org/10.1016/j.ijmm.2011.09.006. [PubMed]
3. Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295:383–404 http://dx.doi.org/10.1016/j.ijmm.2005.07.005. [PubMed]
4. Izzo MM, Kirkland PD, Mohler VL, Perkins NR, Gunn AA, House JK. 2011. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Aust Vet J 89:167–173 http://dx.doi.org/10.1111/j.1751-0813.2011.00692.x. [PubMed]
5. Kolenda R, Burdukiewicz M, Schierack P. 2015. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 5:23 http://dx.doi.org/10.3389/fcimb.2015.00023. [PubMed]
6. Bouillon J, Snead E, Caswell J, Feng C, Hélie P, Lemetayer J. 2018. Pyelonephritis in dogs: retrospective study of 47 histologically diagnosed cases (2005–2015). J Vet Intern Med 32:249–259 http://dx.doi.org/10.1111/jvim.14836. [PubMed]
7. Hutton TA, Innes GK, Harel J, Garneau P, Cucchiara A, Schifferli DM, Rankin SC. 2018. Phylogroup and virulence gene association with clinical characteristics of Escherichia coli urinary tract infections from dogs and cats. J Vet Diagn Invest 30:64–70 http://dx.doi.org/10.1177/1040638717729395. [PubMed]
8. Antão EM, Glodde S, Li G, Sharifi R, Homeier T, Laturnus C, Diehl I, Bethe A, Philipp HC, Preisinger R, Wieler LH, Ewers C. 2008. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog 45:361–369 http://dx.doi.org/10.1016/j.micpath.2008.08.005. [PubMed]
9. Ruegg PL. 2017. A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397 http://dx.doi.org/10.3168/jds.2017-13023.
10. Taponen S, Liski E, Heikkilä AM, Pyörälä S. 2017. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 100:493–503 http://dx.doi.org/10.3168/jds.2016-11465.
11. Shpigel NY, Elazar S, Rosenshine I. 2008. Mammary pathogenic Escherichia coli. Curr Opin Microbiol 11:60–65 http://dx.doi.org/10.1016/j.mib.2008.01.004. [PubMed]
12. Suojala L, Kaartinen L, Pyörälä S. 2013. Treatment for bovine Escherichia coli mastitis: an evidence-based approach. J Vet Pharmacol Ther 36:521–531 http://dx.doi.org/10.1111/jvp.12057. [PubMed]
13. Dahmen S, Métayer V, Gay E, Madec JY, Haenni M. 2013. Characterization of extended-spectrum β-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet Microbiol 162:793–799 http://dx.doi.org/10.1016/j.vetmic.2012.10.015. [PubMed]
14. Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S. 2017. Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol 200:151–156 http://dx.doi.org/10.1016/j.vetmic.2016.08.010. [PubMed]
15. Su Y, Yu CY, Tsai Y, Wang SH, Lee C, Chu C. 2016. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in southern Taiwan. J Microbiol Immunol Infect 49:892–901 http://dx.doi.org/10.1016/j.jmii.2014.10.003. [PubMed]
16. Timofte D, Maciuca IE, Evans NJ, Williams H, Wattret A, Fick JC, Williams NJ. 2014. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother 58:789–794 http://dx.doi.org/10.1128/AAC.00752-13. [PubMed]
17. Pempek JA, Holder E, Proudfoot KL, Masterson M, Habing G. 2018. Short communication: investigation of antibiotic alternatives to improve health and growth of veal calves. J Dairy Sci 101:4473–4478 http://dx.doi.org/10.3168/jds.2017-14055. [PubMed]
18. Meganck V, Hoflack G, Opsomer G. 2014. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet Scand 56:75 http://dx.doi.org/10.1186/s13028-014-0075-x. [PubMed]
19. Dierikx CM, van der Goot JA, Smith HE, Kant A, Mevius DJ. 2013. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One 8:e79005 http://dx.doi.org/10.1371/journal.pone.0079005. [PubMed]
20. Haenni M, Châtre P, Métayer V, Bour M, Signol E, Madec JY, Gay E. 2014. Comparative prevalence and characterization of ESBL-producing Enterobacteriaceae in dominant versus subdominant enteric flora in veal calves at slaughterhouse, France. Vet Microbiol 171:321–327 http://dx.doi.org/10.1016/j.vetmic.2014.02.023.
21. Hordijk J, Mevius DJ, Kant A, Bos ME, Graveland H, Bosman AB, Hartskeerl CM, Heederik DJ, Wagenaar JA. 2013. Within-farm dynamics of ESBL/AmpC-producing Escherichia coli in veal calves: a longitudinal approach. J Antimicrob Chemother 68:2468–2476 http://dx.doi.org/10.1093/jac/dkt219. [PubMed]
22. Ambler RP. 1980. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331 http://dx.doi.org/10.1098/rstb.1980.0049. [PubMed]
23. Bush K, Jacoby GA. 2010. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976 http://dx.doi.org/10.1128/AAC.01009-09. [PubMed]
24. Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. 2012. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18:646–655 http://dx.doi.org/10.1111/j.1469-0691.2012.03850.x. [PubMed]
25. Madec JY, Haenni M, Nordmann P, Poirel L. 2017. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 23:826–833 http://dx.doi.org/10.1016/j.cmi.2017.01.013. [PubMed]
26. Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E, Dierikx C, Mevius D, Wagenaar JA. 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol 4:242–247 http://dx.doi.org/10.3389/fmicb.2013.00242. [PubMed]
27. Lalak A, Wasyl D, Zając M, Skarżyńska M, Hoszowski A, Samcik I, Woźniakowski G, Szulowski K. 2016. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Vet Microbiol 194:69–73 http://dx.doi.org/10.1016/j.vetmic.2016.01.023. [PubMed]
28. Schaufler K, Bethe A, Lübke-Becker A, Ewers C, Kohn B, Wieler LH, Guenther S. 2015. Putative connection between zoonotic multiresistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol 5:25334–25339 http://dx.doi.org/10.3402/iee.v5.25334. [PubMed]
29. Tian GB, Wang HN, Zhang AY, Zhang Y, Fan WQ, Xu CW, Zeng B, Guan ZB, Zou LK. 2012. Detection of clinically important β-lactamases in commensal Escherichia coli of human and swine origin in western China. J Med Microbiol 61:233–238 http://dx.doi.org/10.1099/jmm.0.036806-0. [PubMed]
30. Guenther S, Ewers C, Wieler LH. 2011. Extended-spectrum β-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246–259 http://dx.doi.org/10.3389/fmicb.2011.00246. [PubMed]
31. Karim A, Poirel L, Nagarajan S, Nordmann P. 2001. Plasmid-mediated extended-spectrum β-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett 201:237–241 https://doi.org/10.1111/j.1574-6968.2001.tb10762.x. [PubMed]
32. Pitout JD, Nordmann P, Laupland KB, Poirel L. 2005. Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community. J Antimicrob Chemother 56:52–59 http://dx.doi.org/10.1093/jac/dki166. [PubMed]
33. Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, Kadlec K, Schwarz S. 2015. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 10:427–443 http://dx.doi.org/10.2217/fmb.14.93. [PubMed]
34. EFSA. 2011. Panel on Biological Hazards (BIOHAZ); scientific opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J 9:2322–2417 http://dx.doi.org/10.2903/j.efsa.2011.2322.
35. Michael GB, Kaspar H, Siqueira AK, de Freitas Costa E, Corbellini LG, Kadlec K, Schwarz S. 2017. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet Microbiol 200:142–150 http://dx.doi.org/10.1016/j.vetmic.2016.08.023. [PubMed]
36. Day MJ, Rodríguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K, Schink AK, Wu G, Chattaway MA, DoNascimento V, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Coldham N, Mevius D, Woodford N. 2016. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J Antimicrob Chemother 71:1178–1182 http://dx.doi.org/10.1093/jac/dkv485. [PubMed]
37. Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T. 2014. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 14:187–200 http://dx.doi.org/10.1186/1471-2180-14-187.
38. Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J, Park M, Rafii F, Boothe DM. 2011. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob Agents Chemother 55:5666–5675 http://dx.doi.org/10.1128/AAC.00656-11. [PubMed]
39. Alonso CA, Michael GB, Li J, Somalo S, Simón C, Wang Y, Kaspar H, Kadlec K, Torres C, Schwarz S. 2017. Analysis of blaSHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. J Antimicrob Chemother 72:1589–1596 http://dx.doi.org/10.1093/jac/dkx024. [PubMed]
40. Peirano G, Pitout JD. 2010. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 35:316–321 http://dx.doi.org/10.1016/j.ijantimicag.2009.11.003. [PubMed]
41. Albrechtova K, Dolejska M, Cizek A, Tausova D, Klimes J, Bebora L, Literak I. 2012. Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid-mediated cephalosporin- and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131. Antimicrob Agents Chemother 56:4013–4017 http://dx.doi.org/10.1128/AAC.05859-11. [PubMed]
42. Marques C, Belas A, Franco A, Aboim C, Gama LT, Pomba C. 2018. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother 73:377–384 http://dx.doi.org/10.1093/jac/dkx401. [PubMed]
43. Schink AK, Kadlec K, Kaspar H, Mankertz J, Schwarz S. 2013. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother 68:1741–1749 http://dx.doi.org/10.1093/jac/dkt123. [PubMed]
44. Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A. 2011. Methicillin-resistant staphylococci (MRS) and extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 301:635–641 http://dx.doi.org/10.1016/j.ijmm.2011.09.009. [PubMed]
45. Cantón R, González-Alba JM, Galán JC. 2012. CTX-M enzymes: origin and diffusion. Front Microbiol 3:110–129 http://dx.doi.org/10.3389/fmicb.2012.00110. [PubMed]
46. Poirel L, Naas T, Nordmann P. 2008. Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect 14(Suppl 1):75–81 http://dx.doi.org/10.1111/j.1469-0691.2007.01865.x. [PubMed]
47. Carattoli A. 2013. Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304 http://dx.doi.org/10.1016/j.ijmm.2013.02.001. [PubMed]
48. Ferreira JC, Penha Filho RA, Andrade LN, Berchieri A Jr, Darini AL. 2014. Detection of chromosomal bla(CTX-M-2) in diverse Escherichia coli isolates from healthy broiler chickens. Clin Microbiol Infect 20:O623–O626 http://dx.doi.org/10.1111/1469-0691.12531. [PubMed]
49. Guenther S, Semmler T, Stubbe A, Stubbe M, Wieler LH, Schaufler K. 2017. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J Antimicrob Chemother 72:1310–1313 http://dx.doi.org/10.1093/jac/dkx006. [PubMed]
50. Valentin L, Sharp H, Hille K, Seibt U, Fischer J, Pfeifer Y, Michael GB, Nickel S, Schmiedel J, Falgenhauer L, Friese A, Bauerfeind R, Roesler U, Imirzalioglu C, Chakraborty T, Helmuth R, Valenza G, Werner G, Schwarz S, Guerra B, Appel B, Kreienbrock L, Käsbohrer A. 2014. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol 304:805–816 http://dx.doi.org/10.1016/j.ijmm.2014.07.015. [PubMed]
51. Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, Sharma M, van Essen-Zandbergen A, Rodríguez I, Dierikx C, Kadlec K, Schink AK, Chattaway M, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Woodford N, Coldham N, Mevius D. 2013. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 8:e75392–e75402 http://dx.doi.org/10.1371/journal.pone.0075392. [PubMed]
52. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Platteel T, Fluit AC, van de Sande-Bruinsma N, Scharinga J, Bonten MJ, Mevius DJ, National ESBL Surveillance Group. 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17:873–880 http://dx.doi.org/10.1111/j.1469-0691.2011.03497.x. [PubMed]
53. Casella T, Nogueira MCL, Saras E, Haenni M, Madec JY. 2017. High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. Int J Food Microbiol 257:271–275 http://dx.doi.org/10.1016/j.ijfoodmicro.2017.07.005.
54. Jacoby GA. 2009. AmpC β-lactamases. Clin Microbiol Rev 22:161–182 http://dx.doi.org/10.1128/CMR.00036-08. [PubMed]
55. Philippon A, Arlet G, Jacoby GA. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46:1–11 http://dx.doi.org/10.1128/AAC.46.1.1-11.2002. [PubMed]
56. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C, Threlfall J. 2013. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56:1030–1037 http://dx.doi.org/10.1093/cid/cis1043.
57. Hansen KH, Bortolaia V, Nielsen CA, Nielsen JB, Schønning K, Agersø Y, Guardabassi L. 2016. Host-specific patterns of genetic diversity among IncI1-Igamma and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Appl Environ Microbiol 82:4705–4714 http://dx.doi.org/10.1128/AEM.00495-16. [PubMed]
58. Börjesson S, Ny S, Egervärn M, Bergström J, Rosengren Å, Englund S, Löfmark S, Byfors S. 2016. Limited dissemination of extended-spectrum β-lactamase- and plasmid-encoded AmpC-producing Escherichia coli from food and farm animals, Sweden. Emerg Infect Dis 22:634–640 http://dx.doi.org/10.3201/eid2204.151142. [PubMed]
59. Nilsson O, Börjesson S, Landén A, Bengtsson B. 2014. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J Antimicrob Chemother 69:1497–1500 http://dx.doi.org/10.1093/jac/dku030. [PubMed]
60. Loncaric I, Stalder GL, Mehinagic K, Rosengarten R, Hoelzl F, Knauer F, Walzer C. 2013. Comparison of ESBL--and AmpC producing Enterobacteriaceae and methicillin-resistant Staphylococcus aureus (MRSA) isolated from migratory and resident population of rooks (Corvus frugilegus) in Austria. PLoS One 8:e84048 http://dx.doi.org/10.1371/journal.pone.0084048. [PubMed]
61. Poirel L, Potron A, De La Cuesta C, Cleary T, Nordmann P, Munoz-Price LS. 2012. Wild coastline birds as reservoirs of broad-spectrum-β-lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob Agents Chemother 56:2756–2758 http://dx.doi.org/10.1128/AAC.05982-11. [PubMed]
62. Báez J, Hernández-García M, Guamparito C, Díaz S, Olave A, Guerrero K, Cantón R, Baquero F, Gahona J, Valenzuela N, Del Campo R, Silva J. 2015. Molecular characterization and genetic diversity of ESBL-producing Escherichia coli colonizing the migratory Franklin’s gulls (Leucophaeus pipixcan) in Antofagasta, North of Chile. Microb Drug Resist 21:111–116 http://dx.doi.org/10.1089/mdr.2014.0158. [PubMed]
63. Simões RR, Poirel L, Da Costa PM, Nordmann P. 2010. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg Infect Dis 16:110–112 http://dx.doi.org/10.3201/eid1601.090896. [PubMed]
64. Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. Epub ahead of print. doi:10.1016/j.cmi.2018.04.004. [PubMed]
65. Poirel L, Stephan R, Perreten V, Nordmann P. 2014. The carbapenemase threat in the animal world: the wrong culprit. J Antimicrob Chemother 69:2007–2008 http://dx.doi.org/10.1093/jac/dku054. [PubMed]
66. Woodford N, Wareham DW, Guerra B, Teale C. 2014. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother 69:287–291 http://dx.doi.org/10.1093/jac/dkt392. [PubMed]
67. Fischer J, San José M, Roschanski N, Schmoger S, Baumann B, Irrgang A, Friese A, Roesler U, Helmuth R, Guerra B. 2017. Spread and persistence of VIM-1 carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012. Vet Microbiol 200:118–123 http://dx.doi.org/10.1016/j.vetmic.2016.04.026. [PubMed]
68. Fischer J, Rodríguez I, Schmoger S, Friese A, Roesler U, Helmuth R, Guerra B. 2012. Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J Antimicrob Chemother 67:1793–1795 http://dx.doi.org/10.1093/jac/dks108. [PubMed]
69. Guerra B, Fischer J, Helmuth R. 2014. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 171:290–297 http://dx.doi.org/10.1016/j.vetmic.2014.02.001. [PubMed]
70. Shaheen BW, Nayak R, Boothe DM. 2013. Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States. Antimicrob Agents Chemother 57:2902–2903 http://dx.doi.org/10.1128/AAC.02028-12. [PubMed]
71. Wang Y, Zhang R, Li J, Wu Z, Yin W, Schwarz S, Tyrrell JM, Zheng Y, Wang S, Shen Z, Liu Z, Liu J, Lei L, Li M, Zhang Q, Wu C, Zhang Q, Wu Y, Walsh TR, Shen J. 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2:16260 http://dx.doi.org/10.1038/nmicrobiol.2016.260. [PubMed]
72. Liu Z, Wang Y, Walsh TR, Liu D, Shen Z, Zhang R, Yin W, Yao H, Li J, Shen J. 2017. Plasmid-mediated novel blaNDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrob Agents Chemother 61:e02233-16. [PubMed]
73. Singh AS, Lekshmi M, Nayak BB, Kumar SH. 2016. Isolation of Escherichia coli harboring blaNDM-5 from fresh fish in India. J Microbiol Immunol Infect 49:822–823 http://dx.doi.org/10.1016/j.jmii.2014.11.004. [PubMed]
74. Yang RS, Feng Y, Lv XY, Duan JH, Chen J, Fang LX, Xia J, Liao XP, Sun J, Liu YH. 2016. Emergence of NDM-5- and MCR-1-producing Escherichia coli clones ST648 and ST156 from a single Muscovy duck (Cairina moschata). Antimicrob Agents Chemother 60:6899–6902 http://dx.doi.org/10.1128/AAC.01365-16. [PubMed]
75. Yousfi M, Touati A, Mairi A, Brasme L, Gharout-Sait A, Guillard T, De Champs C. 2016. Emergence of carbapenemase-producing Escherichia coli isolated from companion animals in Algeria. Microb Drug Resist 22:342–346 http://dx.doi.org/10.1089/mdr.2015.0196. [PubMed]
76. Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70 http://dx.doi.org/10.1093/jac/dkv306. [PubMed]
77. Al Bayssari C, Olaitan AO, Dabboussi F, Hamze M, Rolain JM. 2015. Emergence of OXA-48-producing Escherichia coli clone ST38 in fowl. Antimicrob Agents Chemother 59:745–746 http://dx.doi.org/10.1128/AAC.03552-14. [PubMed]
78. Melo LC, Boisson MN, Saras E, Médaille C, Boulouis HJ, Madec JY, Haenni M. 2017. OXA-48-producing ST372 Escherichia coli in a French dog. J Antimicrob Chemother 72:1256–1258. [PubMed]
79. Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E, Guenther S, Bethe A, Pfeifer Y, Ewers C. 2013. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother 68:2802–2808 http://dx.doi.org/10.1093/jac/dkt259. [PubMed]
80. Pulss S, Semmler T, Prenger-Berninghoff E, Bauerfeind R, Ewers C. 2017. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int J Antimicrob Agents 50:232–236 http://dx.doi.org/10.1016/j.ijantimicag.2017.03.014. [PubMed]
81. Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum TE. 2017. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61:e01298-16 http://dx.doi.org/10.1128/AAC.01298-16. [PubMed]
82. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796 http://dx.doi.org/10.1016/S1473-3099(13)70190-7.
83. Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25:358–373 http://dx.doi.org/10.1016/j.ijantimicag.2005.02.006. [PubMed]
84. de Jong A, Muggeo A, El Garch F, Moyaert H, de Champs C, Guillard T. 2018. Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Vet Microbiol 216:159–167 http://dx.doi.org/10.1016/j.vetmic.2018.02.002. [PubMed]
85. Schink AK, Kadlec K, Hauschild T, Brenner Michael G, Dörner JC, Ludwig C, Werckenthin C, Hehnen HR, Stephan B, Schwarz S. 2013. Susceptibility of canine and feline bacterial pathogens to pradofloxacin and comparison with other fluoroquinolones approved for companion animals. Vet Microbiol 162:119–126 http://dx.doi.org/10.1016/j.vetmic.2012.08.001. [PubMed]
86. Liu BT, Liao XP, Yang SS, Wang XM, Li LL, Sun J, Yang YR, Fang LX, Li L, Zhao DH, Liu YH. 2012. Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. J Med Microbiol 61:1591–1599 http://dx.doi.org/10.1099/jmm.0.043307-0. [PubMed]
87. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445 http://dx.doi.org/10.1016/j.tim.2014.04.007. [PubMed]
88. Cattoir V, Nordmann P. 2009. Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr Med Chem 16:1028–1046 http://dx.doi.org/10.2174/092986709787581879. [PubMed]
89. Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. 2016. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat 29:13–29 http://dx.doi.org/10.1016/j.drup.2016.09.001. [PubMed]
90. Ma J, Zeng Z, Chen Z, Xu X, Wang X, Deng Y, Lü D, Huang L, Zhang Y, Liu J, Wang M. 2009. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6′)-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 53:519–524 http://dx.doi.org/10.1128/AAC.00886-08. [PubMed]
91. Huang SY, Dai L, Xia LN, Du XD, Qi YH, Liu HB, Wu CM, Shen JZ. 2009. Increased prevalence of plasmid-mediated quinolone resistance determinants in chicken Escherichia coli isolates from 2001 to 2007. Foodborne Pathog Dis 6:1203–1209 http://dx.doi.org/10.1089/fpd.2009.0348. [PubMed]
92. Veldman K, Cavaco LM, Mevius D, Battisti A, Franco A, Botteldoorn N, Bruneau M, Perrin-Guyomard A, Cerny T, De Frutos Escobar C, Guerra B, Schroeter A, Gutierrez M, Hopkins K, Myllyniemi AL, Sunde M, Wasyl D, Aarestrup FM. 2011. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 66:1278–1286 http://dx.doi.org/10.1093/jac/dkr084. [PubMed]
93. Dolejska M, Duskova E, Rybarikova J, Janoszowska D, Roubalova E, Dibdakova K, Maceckova G, Kohoutova L, Literak I, Smola J, Cizek A. 2011. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 66:757–764 http://dx.doi.org/10.1093/jac/dkq500. [PubMed]
94. Schink AK, Kadlec K, Schwarz S. 2012. Detection of qnr genes among Escherichia coli isolates of animal origin and complete sequence of the conjugative qnrB19-carrying plasmid pQNR2078. J Antimicrob Chemother 67:1099–1102 http://dx.doi.org/10.1093/jac/dks024. [PubMed]
95. Hordijk J, Bosman AB, van Essen-Zandbergen A, Veldman K, Dierikx C, Wagenaar JA, Mevius D. 2011. qnrB19 gene bracketed by IS26 on a 40-kilobase IncR plasmid from an Escherichia coli isolate from a veal calf. Antimicrob Agents Chemother 55:453–454 http://dx.doi.org/10.1128/AAC.00866-10. [PubMed]
96. Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA, Guerra B, Stubbe M, Doi Y, Zong Z, Kola A, Schaufler K, Semmler T, Fruth A, Wieler LH, Guenther S. 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230 http://dx.doi.org/10.1093/jac/dkt516. [PubMed]
97. Liu X, Liu H, Li Y, Hao C. 2016. High prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 7:1843–1852 http://dx.doi.org/10.3389/fmicb.2016.01843.
98. Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martínez-Martínez L. 2009. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob Agents Chemother 53:327–328 http://dx.doi.org/10.1128/AAC.00896-08. [PubMed]
99. Timofte D, Maciuca IE, Williams NJ, Wattret A, Schmidt V. 2016. Veterinary hospital dissemination of CTX-M-15 extended-spectrum β-lactamase-producing Escherichia coli ST410 in the United Kingdom. Microb Drug Resist 22:609–615 http://dx.doi.org/10.1089/mdr.2016.0036. [PubMed]
100. Madec JY, Poirel L, Saras E, Gourguechon A, Girlich D, Nordmann P, Haenni M. 2012. Non-ST131 Escherichia coli from cattle harbouring human-like bla(CTX-M-15)-carrying plasmids. J Antimicrob Chemother 67:578–581 http://dx.doi.org/10.1093/jac/dkr542. [PubMed]
101. Chen X, He L, Li Y, Zeng Z, Deng Y, Liu Y, Liu JH. 2014. Complete sequence of a F2:A-:B- plasmid pHN3A11 carrying rmtB and qepA, and its dissemination in China. Vet Microbiol 174:267–271 http://dx.doi.org/10.1016/j.vetmic.2014.08.023. [PubMed]
102. Liu BT, Yang QE, Li L, Sun J, Liao XP, Fang LX, Yang SS, Deng H, Liu YH. 2013. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in Escherichia coli isolates from food-producing animals. PLoS One 8:e73947 http://dx.doi.org/10.1371/journal.pone.0073947. [PubMed]
103. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. 2007. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 60:145–147 http://dx.doi.org/10.1093/jac/dkm167. [PubMed]
104. Davies J, Wright GD. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240 http://dx.doi.org/10.1016/S0966-842X(97)01033-0.
105. Doi Y, Wachino JI, Arakawa Y. 2016. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 30:523–537 http://dx.doi.org/10.1016/j.idc.2016.02.011. [PubMed]
106. Anonymous. 2014. Concept paper on the of aminoglycosides in animals in the European Union: development of resistance and impact on human and animal health. EMA/CVMP/AWP/158821/2014 1-4.
107. Fourmy D, Yoshizawa S, Puglisi JD. 1998. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol 277:333–345 http://dx.doi.org/10.1006/jmbi.1997.1551. [PubMed]
108. Bowers DR SAN, Tam VH. 2016. Aminoglycoside pharmacodynamics, p 199–220. In Rotschafer J, Andes D, Rodvold K (ed), Antibiotic Pharmacodynamics. Methods in Pharmacology and Toxicology. Humana Press, New York, NY.
109. Griffey RH, Hofstadler SA, Sannes-Lowery KA, Ecker DJ, Crooke ST. 1999. Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc Natl Acad Sci USA 96:10129–10133 http://dx.doi.org/10.1073/pnas.96.18.10129. [PubMed]
110. Llano-Sotelo B, Hickerson RP, Lancaster L, Noller HF, Mankin AS. 2009. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding. RNA 15:1597–1604 http://dx.doi.org/10.1261/rna.1681609. [PubMed]
111. Galimand M, Courvalin P, Lambert T. 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47:2565–2571 http://dx.doi.org/10.1128/AAC.47.8.2565-2571.2003. [PubMed]
112. Batah R, Loucif L, Olaitan AO, Boutefnouchet N, Allag H, Rolain JM. 2015. Outbreak of Serratia marcescens coproducing ArmA and CTX-M-15 mediated high levels of resistance to aminoglycoside and extended-spectrum β-lactamases, Algeria. Microb Drug Resist 21:470–476 http://dx.doi.org/10.1089/mdr.2014.0240. [PubMed]
113. Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. 2013. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother 68:34–39 http://dx.doi.org/10.1093/jac/dks357. [PubMed]
114. Gurung M, Moon DC, Tamang MD, Kim J, Lee YC, Seol SY, Cho DT, Lee JC. 2010. Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis 68:468–470 http://dx.doi.org/10.1016/j.diagmicrobio.2010.07.021. [PubMed]
115. Wachino J, Yamane K, Shibayama K, Kurokawa H, Shibata N, Suzuki S, Doi Y, Kimura K, Ike Y, Arakawa Y. 2006. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides. Antimicrob Agents Chemother 50:178–184 http://dx.doi.org/10.1128/AAC.50.1.178-184.2006. [PubMed]
116. Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. 2007. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 60:454–455 http://dx.doi.org/10.1093/jac/dkm208. [PubMed]
117. Galimand M, Sabtcheva S, Courvalin P, Lambert T. 2005. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother 49:2949–2953 http://dx.doi.org/10.1128/AAC.49.7.2949-2953.2005. [PubMed]
118. González-Zorn B, Teshager T, Casas M, Porrero MC, Moreno MA, Courvalin P, Domínguez L. 2005. armA and aminoglycoside resistance in Escherichia coli. Emerg Infect Dis 11:954–956 http://dx.doi.org/10.3201/eid1106.040553. [PubMed]
119. Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX. 2007. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother 59:880–885 http://dx.doi.org/10.1093/jac/dkm065. [PubMed]
120. Du XD, Wu CM, Liu HB, Li XS, Beier RC, Xiao F, Qin SS, Huang SY, Shen JZ. 2009. Plasmid-mediated ArmA and RmtB 16S rRNA methylases in Escherichia coli isolated from chickens. J Antimicrob Chemother 64:1328–1330 http://dx.doi.org/10.1093/jac/dkp354. [PubMed]
121. Liu BT, Liao XP, Yue L, Chen XY, Li L, Yang SS, Sun J, Zhang S, Liao SD, Liu YH. 2013. Prevalence of β-lactamase and 16S rRNA methylase genes among clinical Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from animals. Microb Drug Resist 19:237–245 http://dx.doi.org/10.1089/mdr.2012.0179. [PubMed]
122. Yu T, He T, Yao H, Zhang JB, Li XN, Zhang RM, Wang GQ. 2015. Prevalence of 16S rRNA methylase gene rmtB among Escherichia coli isolated from bovine mastitis in Ningxia, China. Foodborne Pathog Dis 12:770–777 http://dx.doi.org/10.1089/fpd.2015.1983. [PubMed]
123. Yang Y, Zhang A, Lei C, Wang H, Guan Z, Xu C, Liu B, Zhang D, Li Q, Jiang W, Pan Y, Yang C. 2015. Characteristics of plasmids coharboring 16S rRNA methylases, CTX-M, and virulence factors in Escherichia coli and Klebsiella pneumoniae isolates from chickens in China. Foodborne Pathog Dis 12:873–880 http://dx.doi.org/10.1089/fpd.2015.2025. [PubMed]
124. Lupo A, Saras E, Madec JY, Haenni M. 2018. Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J Antimicrob Chemother 73:867–872 http://dx.doi.org/10.1093/jac/dkx489. [PubMed]
125. Leigue L, Warth JF, Melo LC, Silva KC, Moura RA, Barbato L, Silva LC, Santos AC, Silva RM, Lincopan N. 2015. MDR ST2179-CTX-M-15 Escherichia coli co-producing RmtD and AAC(6′)-Ib-cr in a horse with extraintestinal infection, Brazil. J Antimicrob Chemother 70:1263–1265. [PubMed]
126. Lee CS, Hu F, Rivera JI, Doi Y. 2014. Escherichia coli sequence type 354 coproducing CMY-2 cephalosporinase and RmtE 16S rRNA methyltransferase. Antimicrob Agents Chemother 58:4246–4247 http://dx.doi.…org/10.1128/AAC.02627-14. [PubMed]
127. Xia J, Sun J, Li L, Fang LX, Deng H, Yang RS, Li XP, Liao XP, Liu YH. 2015. First report of the IncI1/ST898 conjugative plasmid carrying rmtE2 16S rRNA methyltransferase gene in Escherichia coli. Antimicrob Agents Chemother 59:7921–7922 http://dx.doi.org/10.1128/AAC.01235-15. [PubMed]
128. Zou W, Li C, Yang X, Wang Y, Cheng G, Zeng J, Zhang X, Chen Y, Cai R, Huang Q, Feng L, Wang H, Li D, Zhang G, Chen Y, Zhang Z, Zhang H. 2018. Frequency of antimicrobial resistance and integron gene cassettes in Escherichia coli isolated from giant pandas (Ailuropoda melanoleuca) in China. Microb Pathog 116:173–179 http://dx.doi.org/10.1016/j.micpath.2018.01.034. [PubMed]
129. Gutierrez B, Escudero JA, San Millan A, Hidalgo L, Carrilero L, Ovejero CM, Santos-Lopez A, Thomas-Lopez D, Gonzalez-Zorn B. 2012. Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases. Antimicrob Agents Chemother 56:2335–2341 http://dx.doi.org/10.1128/AAC.06066-11. [PubMed]
130. Lioy VS, Goussard S, Guerineau V, Yoon EJ, Courvalin P, Galimand M, Grillot-Courvalin C. 2014. Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host. RNA 20:382–391 http://dx.doi.org/10.1261/rna.042572.113. [PubMed]
131. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171 http://dx.doi.org/10.1016/j.drup.2010.08.003. [PubMed]
132. Choi MJ, Lim SK, Nam HM, Kim AR, Jung SC, Kim MN. 2011. Apramycin and gentamicin resistances in indicator and clinical Escherichia coli isolates from farm animals in Korea. Foodborne Pathog Dis 8:119–123 http://dx.doi.org/10.1089/fpd.2010.0641. [PubMed]
133. Costa D, Poeta P, Sáenz Y, Vinué L, Coelho AC, Matos M, Rojo-Bezares B, Rodrigues J, Torres C. 2008. Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microb Drug Resist 14:71–77 http://dx.doi.org/10.1089/mdr.2008.0795. [PubMed]
134. Haldorsen BC, Simonsen GS, Sundsfjord A, Samuelsen O, Norwegian Study Group on Aminoglycoside Resistance. 2014. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6′)-Ib. Diagn Microbiol Infect Dis 78:66–69 http://dx.doi.org/10.1016/j.diagmicrobio.2013.10.001. [PubMed]
135. Medina A, Horcajo P, Jurado S, De la Fuente R, Ruiz-Santa-Quiteria JA, Domínguez-Bernal G, Orden JA. 2011. Phenotypic and genotypic characterization of antimicrobial resistance in enterohemorrhagic Escherichia coli and atypical enteropathogenic E. coli strains from ruminants. J Vet Diagn Invest 23:91–95 http://dx.doi.org/10.1177/104063871102300114. [PubMed]
136. Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R, Igrejas G. 2012. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J Med Microbiol 61:837–843 http://dx.doi.org/10.1099/jmm.0.038364-0. [PubMed]
137. Radhouani H, Poeta P, Igrejas G, Gonçalves A, Vinué L, Torres C. 2009. Antimicrobial resistance and phylogenetic groups in isolates of Escherichia coli from seagulls at the Berlengas nature reserve. Vet Rec 165:138–142 http://dx.doi.org/10.1136/vr.165.5.138. [PubMed]
138. Rocha-Gracia RC, Cortés-Cortés G, Lozano-Zarain P, Bello F, Martínez-Laguna Y, Torres C. 2015. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet J 203:315–319 http://dx.doi.org/10.1016/j.tvjl.2014.12.026. [PubMed]
139. Silva N, Igrejas G, Figueiredo N, Gonçalves A, Radhouani H, Rodrigues J, Poeta P. 2010. Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci Total Environ 408:4871–4876 http://dx.doi.org/10.1016/j.scitotenv.2010.06.046. [PubMed]
140. Xiao Y, Hu Y. 2012. The major aminoglycoside-modifying enzyme AAC(3)-II found in Escherichia coli determines a significant disparity in its resistance to gentamicin and amikacin in China. Microb Drug Resist 18:42–46 http://dx.doi.org/10.1089/mdr.2010.0190. [PubMed]
141. Allen SE, Boerlin P, Janecko N, Lumsden JS, Barker IK, Pearl DL, Reid-Smith RJ, Jardine C. 2011. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol 77:882–888 http://dx.doi.org/10.1128/AEM.01111-10. [PubMed]
142. Gonçalves A, Igrejas G, Radhouani H, Correia S, Pacheco R, Santos T, Monteiro R, Guerra A, Petrucci-Fonseca F, Brito F, Torres C, Poeta P. 2013. Antimicrobial resistance in faecal enterococci and Escherichia coli isolates recovered from Iberian wolf. Lett Appl Microbiol 56:268–274 http://dx.doi.org/10.1111/lam.12044. [PubMed]
143. Gonçalves A, Igrejas G, Radhouani H, Santos T, Monteiro R, Pacheco R, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P. 2013. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Sci Total Environ 456-457:115–119 http://dx.doi.org/10.1016/j.scitotenv.2013.03.073. [PubMed]
144. Marchant M, Vinué L, Torres C, Moreno MA. 2013. Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet Microbiol 163:124–132 http://dx.doi.org/10.1016/j.vetmic.2012.12.011. [PubMed]
145. Marinho C, Igrejas G, Gonçalves A, Silva N, Santos T, Monteiro R, Gonçalves D, Rodrigues T, Poeta P. 2014. Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Anaerobe 30:116–119 http://dx.doi.org/10.1016/j.anaerobe.2014.09.009. [PubMed]
146. Radhouani H, Igrejas G, Gonçalves A, Pacheco R, Monteiro R, Sargo R, Brito F, Torres C, Poeta P. 2013. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes). Anaerobe 23:82–86 http://dx.doi.org/10.1016/j.anaerobe.2013.06.013. [PubMed]
147. Sacristán C, Esperón F, Herrera-León S, Iglesias I, Neves E, Nogal V, Muñoz MJ, de la Torre A. 2014. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain. Avian Pathol 43:172–175 http://dx.doi.org/10.1080/03079457.2014.897683. [PubMed]
148. Santos T, Silva N, Igrejas G, Rodrigues P, Micael J, Rodrigues T, Resendes R, Gonçalves A, Marinho C, Gonçalves D, Cunha R, Poeta P. 2013. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 24:25–31 http://dx.doi.org/10.1016/j.anaerobe.2013.09.004. [PubMed]
149. Karczmarczyk M, Abbott Y, Walsh C, Leonard N, Fanning S. 2011. Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Appl Environ Microbiol 77:7104–7112 http://dx.doi.org/10.1128/AEM.00599-11. [PubMed]
150. Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. 2014. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli isolates from South Korean cattle farms. J Microbiol 52:785–793 http://dx.doi.org/10.1007/s12275-014-4166-1. [PubMed]
151. Toszeghy M, Phillips N, Reeves H, Wu G, Teale C, Coldham N, Randall L. 2012. Molecular and phenotypic characterisation of extended spectrum β-lactamase CTX-M Escherichia coli from farm animals in Great Britain. Res Vet Sci 93:1142–1150 http://dx.doi.org/10.1016/j.rvsc.2012.05.001. [PubMed]
152. Yamamoto S, Iwabuchi E, Hasegawa M, Esaki H, Muramatsu M, Hirayama N, Hirai K. 2013. Prevalence and molecular epidemiological characterization of antimicrobial-resistant Escherichia coli isolates from Japanese black beef cattle. J Food Prot 76:394–404 http://dx.doi.org/10.4315/0362-028X.JFP-12-273. [PubMed]
153. Adelowo OO, Fagade OE, Agersø Y. 2014. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J Infect Dev Ctries 8:1103–1112 http://dx.doi.org/10.3855/jidc.4222. [PubMed]
154. Zhang FY, Huo SY, Li YR, Xie R, Wu XJ, Chen LG, Gao YH. 2014. A survey of the frequency of aminoglycoside antibiotic-resistant genotypes and phenotypes in Escherichia coli in broilers with septicaemia in Hebei, China. Br Poult Sci 55:305–310 http://dx.doi.org/10.1080/00071668.2014.891096. [PubMed]
155. Gonçalves A, Torres C, Silva N, Carneiro C, Radhouani H, Coelho C, Araújo C, Rodrigues J, Vinué L, Somalo S, Poeta P, Igrejas G. 2010. Genetic characterization of extended-spectrum β-lactamases in Escherichia coli isolates of pigs from a Portuguese intensive swine farm. Foodborne Pathog Dis 7:1569–1573 http://dx.doi.org/10.1089/fpd.2010.0598. [PubMed]
156. Tang X, Tan C, Zhang X, Zhao Z, Xia X, Wu B, Guo A, Zhou R, Chen H. 2011. Antimicrobial resistances of extraintestinal pathogenic Escherichia coli isolates from swine in China. Microb Pathog 50:207–212 http://dx.doi.org/10.1016/j.micpath.2011.01.004. [PubMed]
157. Zhang WJ, Xu XR, Schwarz S, Wang XM, Dai L, Zheng HJ, Liu S. 2014. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J Antimicrob Chemother 69:385–389 http://dx.doi.org/10.1093/jac/dkt355. [PubMed]
158. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. 2016. Fosfomycin. Clin Microbiol Rev 29:321–347 http://dx.doi.org/10.1128/CMR.00068-15. [PubMed]
159. Pérez DS, Tapia MO, Soraci AL. 2014. Fosfomycin: uses and potentialities in veterinary medicine. Open Vet J 4:26–43. [PubMed]
160. Silver LL. 2017. Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 7:7 http://dx.doi.org/10.1101/cshperspect.a025262. [PubMed]
161. Wang X, Zhu Y, Hua X, Chen F, Wang C, Zhang Y, Liu S, Zhang W. 2018. F14:A-:B- and IncX4 Inc group cfr-positive plasmids circulating in Escherichia coli of animal origin in Northeast China. Vet Microbiol 217:53–57 http://dx.doi.org/10.1016/j.vetmic.2018.02.003. [PubMed]
162. Wang XM, Dong Z, Schwarz S, Zhu Y, Hua X, Zhang Y, Liu S, Zhang WJ. 2017. Plasmids of diverse Inc groups disseminate the fosfomycin resistance gene fosA3 among Escherichia coli isolates from pigs, chickens, and dairy cows in Northeast China. Antimicrob Agents Chemother 61:e00859–e00817 http://dx.doi.org/10.1128/AAC.00859-17. [PubMed]
163. Hou J, Huang X, Deng Y, He L, Yang T, Zeng Z, Chen Z, Liu JH. 2012. Dissemination of the fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob Agents Chemother 56:2135–2138 http://dx.doi.org/10.1128/AAC.05104-11. [PubMed]
164. Yao H, Wu D, Lei L, Shen Z, Wang Y, Liao K. 2016. The detection of fosfomycin resistance genes in Enterobacteriaceae from pets and their owners. Vet Microbiol 193:67–71 http://dx.doi.org/10.1016/j.vetmic.2016.07.019. [PubMed]
165. Xie M, Lin D, Chen K, Chan EW, Yao W, Chen S. 2016. Molecular characterization of Escherichia coli strains isolated from retail meat that harbor blaCTX-M and fosA3 genes. Antimicrob Agents Chemother 60:2450–2455 http://dx.doi.org/10.1128/AAC.03101-15. [PubMed]
166. He L, Partridge SR, Yang X, Hou J, Deng Y, Yao Q, Zeng Z, Chen Z, Liu JH. 2013. Complete nucleotide sequence of pHN7A8, an F33:A-:B-type epidemic plasmid carrying blaCTX-M-65, fosA3 and rmtB from China. J Antimicrob Chemother 68:46–50 http://dx.doi.org/10.1093/jac/dks369. [PubMed]
167. Ho PL, Chan J, Lo WU, Law PY, Chow KH. 2013. Plasmid-mediated fosfomycin resistance in Escherichia coli isolated from pig. Vet Microbiol 162:964–967 http://dx.doi.org/10.1016/j.vetmic.2012.09.023. [PubMed]
168. Sun H, Li S, Xie Z, Yang F, Sun Y, Zhu Y, Zhao X, Jiang S. 2012. A novel multidrug resistance plasmid isolated from an Escherichia coli strain resistant to aminoglycosides. J Antimicrob Chemother 67:1635–1638 http://dx.doi.org/10.1093/jac/dks107. [PubMed]
169. Pan YS, Yuan L, Zong ZY, Liu JH, Wang LF, Hu GZ. 2014. A multidrug-resistance region containing blaCTX-M-65, fosA3 and rmtB on conjugative IncFII plasmids in Escherichia coli ST117 isolates from chicken. J Med Microbiol 63:485–488 http://dx.doi.org/10.1099/jmm.0.070664-0. [PubMed]
170. Hou J, Yang X, Zeng Z, Lv L, Yang T, Lin D, Liu JH. 2013. Detection of the plasmid-encoded fosfomycin resistance gene fosA3 in Escherichia coli of food-animal origin. J Antimicrob Chemother 68:766–770 http://dx.doi.org/10.1093/jac/dks465. [PubMed]
171. Ho PL, Chan J, Lo WU, Law PY, Li Z, Lai EL, Chow KH. 2013. Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J Appl Microbiol 114:695–702 http://dx.doi.org/10.1111/jam.12099. [PubMed]
172. Tseng SP, Wang SF, Kuo CY, Huang JW, Hung WC, Ke GM, Lu PL. 2015. Characterization of fosfomycin resistant extended-spectrum β-lactamase-producing Escherichia coli isolates from human and pig in Taiwan. PLoS One 10:e0135864 http://dx.doi.org/10.1371/journal.pone.0135864. [PubMed]
173. Grave K, Torren-Edo J, Muller A, Greko C, Moulin G, Mackay D, Group E, ESVAC Group. 2014. Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. J Antimicrob Chemother 69:2284–2291 http://dx.doi.org/10.1093/jac/dku106. [PubMed]
174. Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl Environ Microbiol 81:5560–5566 http://dx.doi.org/10.1128/AEM.01511-15. [PubMed]
175. Metzger SA, Hogan JS. 2013. Short communication: antimicrobial susceptibility and frequency of resistance genes in Escherichia coli isolated from bovine mastitis. J Dairy Sci 96:3044–3049 http://dx.doi.org/10.3168/jds.2012-6402. [PubMed]
176. Srinivasan V, Gillespie BE, Lewis MJ, Nguyen LT, Headrick SI, Schukken YH, Oliver SP. 2007. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet Microbiol 124:319–328 http://dx.doi.org/10.1016/j.vetmic.2007.04.040. [PubMed]
177. Lanz R, Kuhnert P, Boerlin P. 2003. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Vet Microbiol 91:73–84 http://dx.doi.org/10.1016/S0378-1135(02)00263-8.
178. Jurado-Rabadán S, de la Fuente R, Ruiz-Santa-Quiteria JA, Orden JA, de Vries LE, Agersø Y. 2014. Detection and linkage to mobile genetic elements of tetracycline resistance gene tet(M) in Escherichia coli isolates from pigs. BMC Vet Res 10:155–162 http://dx.doi.org/10.1186/1746-6148-10-155. [PubMed]
179. Hölzel CS, Harms KS, Bauer J, Bauer-Unkauf I, Hörmansdorfer S, Kämpf P, Mölle G, Oehme C, Preikschat P, Schwaiger K. 2012. Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Vet Microbiol 160:403–412 http://dx.doi.org/10.1016/j.vetmic.2012.06.010. [PubMed]
180. Seifi S, Khoshbakht R. 2016. Prevalence of tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. Br Poult Sci 57:729–733 http://dx.doi.org/10.1080/00071668.2016.1232478. [PubMed]
181. Costa D, Poeta P, Sáenz Y, Coelho AC, Matos M, Vinué L, Rodrigues J, Torres C. 2008. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet Microbiol 127:97–105 http://dx.doi.org/10.1016/j.vetmic.2007.08.004. [PubMed]
182. Bryan A, Shapir N, Sadowsky MJ. 2004. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl Environ Microbiol 70:2503–2507 http://dx.doi.org/10.1128/AEM.70.4.2503-2507.2004. [PubMed]
183. Allmeier H, Cresnar B, Greck M, Schmitt R. 1992. Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111:11–20 http://dx.doi.org/10.1016/0378-1119(92)90597-I.
184. Chalmers R, Sewitz S, Lipkow K, Crellin P. 2000. Complete nucleotide sequence of Tn10. J Bacteriol 182:2970–2972 http://dx.doi.org/10.1128/JB.182.10.2970-2972.2000. [PubMed]
185. Siqueira AK, Michael GB, Domingos DF, Ferraz MM, Ribeiro MG, Schwarz S, Leite DS. 2016. Diversity of class 1 and 2 integrons detected in Escherichia coli isolates from diseased and apparently healthy dogs. Vet Microbiol 194:79–83 http://dx.doi.org/10.1016/j.vetmic.2016.05.005. [PubMed]
186. Huang SY, Zhu XQ, Wang Y, Liu HB, Dai L, He JK, Li BB, Wu CM, Shen JZ. 2012. Co-carriage of qnrS1, floR, and bla(CTX-M-14) on a multidrug-resistant plasmid in Escherichia coli isolated from pigs. Foodborne Pathog Dis 9:896–901 http://dx.doi.org/10.1089/fpd.2012.1131. [PubMed]
187. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542 http://dx.doi.org/10.1016/j.femsre.2004.04.001. [PubMed]
188. Wang XM, Liao XP, Liu SG, Zhang WJ, Jiang HX, Zhang MJ, Zhu HQ, Sun Y, Sun J, Li AX, Liu YH. 2011. Serotypes, virulence genes, and antimicrobial susceptibility of Escherichia coli isolates from pigs. Foodborne Pathog Dis 8:687–692 http://dx.doi.org/10.1089/fpd.2010.0739. [PubMed]
189. Travis RM, Gyles CL, Reid-Smith R, Poppe C, McEwen SA, Friendship R, Janecko N, Boerlin P. 2006. Chloramphenicol and kanamycin resistance among porcine Escherichia coli in Ontario. J Antimicrob Chemother 58:173–177 http://dx.doi.org/10.1093/jac/dkl207. [PubMed]
190. White DG, Hudson C, Maurer JJ, Ayers S, Zhao S, Lee MD, Bolton L, Foley T, Sherwood J. 2000. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J Clin Microbiol 38:4593–4598. [PubMed]
191. Guerra B, Junker E, Schroeter A, Malorny B, Lehmann S, Helmuth R. 2003. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrob Chemother 52:489–492 http://dx.doi.org/10.1093/jac/dkg362.
192. Awad A, Arafat N, Elhadidy M. 2016. Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli. Ann Clin Microbiol Antimicrob 15:59–67 http://dx.doi.org/10.1186/s12941-016-0174-9. [PubMed]
193. Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. 2010. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob 9:12–19 http://dx.doi.org/10.1186/1476-0711-9-12. [PubMed]
194. Shaheen BW, Oyarzabal OA, Boothe DM. 2010. The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet Microbiol 144:363–370 http://dx.doi.org/10.1016/j.vetmic.2010.01.018. [PubMed]
195. Derakhshandeh A, Eraghi V, Boroojeni AM, Niaki MA, Zare S, Naziri Z. 2018. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners. Microb Pathog 116:241–245 http://dx.doi.org/10.1016/j.micpath.2018.01.041. [PubMed]
196. Chang SK, Lo DY, Wei HW, Kuo HC. 2015. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections. J Vet Med Sci 77:59–65 http://dx.doi.org/10.1292/jvms.13-0281. [PubMed]
197. Van TT, Chin J, Chapman T, Tran LT, Coloe PJ. 2008. Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int J Food Microbiol 124:217–223 http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.029. [PubMed]
198. Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD. 2000. Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrob Agents Chemother 44:421–424 http://dx.doi.org/10.1128/AAC.44.2.421-424.2000. [PubMed]
199. Bischoff KM, White DG, Hume ME, Poole TL, Nisbet DJ. 2005. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli. FEMS Microbiol Lett 243:285–291 http://dx.doi.org/10.1016/j.femsle.2004.12.017. [PubMed]
200. Blickwede M, Schwarz S. 2004. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. J Antimicrob Chemother 53:58–64 http://dx.doi.org/10.1093/jac/dkh007. [PubMed]
201. Cloeckaert A, Baucheron S, Flaujac G, Schwarz S, Kehrenberg C, Martel JL, Chaslus-Dancla E. 2000. Plasmid-mediated florfenicol resistance encoded by the floR gene in Escherichia coli isolated from cattle. Antimicrob Agents Chemother 44:2858–2860 http://dx.doi.org/10.1128/AAC.44.10.2858-2860.2000. [PubMed]
202. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
203. Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Wang Y, Ma L, Zhang Q, Shen J. 2012. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother 67:1094–1098 http://dx.doi.org/10.1093/jac/dks020. [PubMed]
204. Deng H, Sun J, Ma J, Li L, Fang LX, Zhang Q, Liu YH, Liao XP. 2014. Identification of the multi-resistance gene cfr in Escherichia coli isolates of animal origin. PLoS One 9:e102378 http://dx.doi.org/10.1371/journal.pone.0102378. [PubMed]
205. Sun J, Deng H, Li L, Chen MY, Fang LX, Yang QE, Liu YH, Liao XP. 2015. Complete nucleotide sequence of cfr-carrying IncX4 plasmid pSD11 from Escherichia coli. Antimicrob Agents Chemother 59:738–741 http://dx.doi.org/10.1128/AAC.04388-14. [PubMed]
206. Zhang WJ, Wang XM, Dai L, Hua X, Dong Z, Schwarz S, Liu S. 2015. Novel conjugative plasmid from Escherichia coli of swine origin that coharbors the multiresistance gene cfr and the extended-spectrum-β-lactamase gene blaCTX-M-14b. Antimicrob Agents Chemother 59:1337–1340 http://dx.doi.org/10.1128/AAC.04631-14. [PubMed]
207. Zhang R, Sun B, Wang Y, Lei L, Schwarz S, Wu C. 2015. Characterization of a cfr-carrying plasmid from porcine Escherichia coli that closely resembles plasmid pEA3 from the plant pathogen Erwinia amylovora. Antimicrob Agents Chemother 60:658–661 http://dx.doi.org/10.1128/AAC.02114-15. [PubMed]
208. van Duijkeren E, Schink AK, Roberts MC, Wang Y, Schwarz S. 2018. Mechanisms of bacterial resistance to antimicrobial agents. Microbiol Spectr 6: http://dx.doi.org/10.1128/microbiolspec.ARBA-0019-2017.
209. Recchia GD, Hall RM. 1995. Gene cassettes: a new class of mobile element. Microbiology 141:3015–3027 http://dx.doi.org/10.1099/13500872-141-12-3015. [PubMed]
210. Kadlec K, Schwarz S. 2008. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. J Antimicrob Chemother 62:469–473 http://dx.doi.org/10.1093/jac/dkn233. [PubMed]
211. Bass L, Liebert CA, Lee MD, Summers AO, White DG, Thayer SG, Maurer JJ. 1999. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 43:2925–2929. [PubMed]
212. Waturangi DE, Suwanto A, Schwarz S, Erdelen W. 2003. Identification of class 1 integrons-associated gene cassettes in Escherichia coli isolated from Varanus spp. in Indonesia. J Antimicrob Chemother 51:175–177 http://dx.doi.org/10.1093/jac/dkf253. [PubMed]
213. Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Wagner D, Gaines S, Meng J. 2001. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol 67:1558–1564 http://dx.doi.org/10.1128/AEM.67.4.1558-1564.2001. [PubMed]
214. Sunde M. 2005. Class I integron with a group II intron detected in an Escherichia coli strain from a free-range reindeer. Antimicrob Agents Chemother 49:2512–2514 http://dx.doi.org/10.1128/AAC.49.6.2512-2514.2005. [PubMed]
215. Du X, Shen Z, Wu B, Xia S, Shen J. 2005. Characterization of class 1 integrons-mediated antibiotic resistance among calf pathogenic Escherichia coli. FEMS Microbiol Lett 245:295–298 http://dx.doi.org/10.1016/j.femsle.2005.03.021. [PubMed]
216. Wu S, Dalsgaard A, Hammerum AM, Porsbo LJ, Jensen LB. 2010. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet Scand 52:47 http://dx.doi.org/10.1186/1751-0147-52-47. [PubMed]
217. Sidjabat HE, Townsend KM, Hanson ND, Bell JM, Stokes HW, Gobius KS, Moss SM, Trott DJ. 2006. Identification of bla(CMY-7) and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J Antimicrob Chemother 57:840–848 http://dx.doi.org/10.1093/jac/dkl057. [PubMed]
218. van Essen-Zandbergen A, Smith H, Veldman K, Mevius D. 2009. In vivo transfer of an incFIB plasmid harbouring a class 1 integron with gene cassettes dfrA1-aadA1. Vet Microbiol 137:402–407 http://dx.doi.org/10.1016/j.vetmic.2009.02.004. [PubMed]
219. Boerlin P, Travis R, Gyles CL, Reid-Smith R, Janecko N, Lim H, Nicholson V, McEwen SA, Friendship R, Archambault M. 2005. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol 71:6753–6761 http://dx.doi.org/10.1128/AEM.71.11.6753-6761.2005. [PubMed]
220. Kikuvi GM, Schwarz S, Ombui JN, Mitema ES, Kehrenberg C. 2007. Streptomycin and chloramphenicol resistance genes in Escherichia coli isolates from cattle, pigs, and chicken in Kenya. Microb Drug Resist 13:62–68 http://dx.doi.org/10.1089/mdr.2006.9998. [PubMed]
221. Ojo OE, Schwarz S, Michael GB. 2016. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol 194:62–68 http://dx.doi.org/10.1016/j.vetmic.2016.04.022. [PubMed]
222. Schwaiger K, Bauer J, Hölzel CS. 2013. Selection and persistence of antimicrobial-resistant Escherichia coli including extended-spectrum β-lactamase producers in different poultry flocks on one chicken farm. Microb Drug Resist 19:498–506 http://dx.doi.org/10.1089/mdr.2012.0257. [PubMed]
223. Touzain F, Le Devendec L, de Boisséson C, Baron S, Jouy E, Perrin-Guyomard A, Blanchard Y, Kempf I. 2018. Characterization of plasmids harboring blaCTX-M and blaCMY genes in E. coli from French broilers. PLoS One 13:e0188768 http://dx.doi.org/10.1371/journal.pone.0188768. [PubMed]
224. Perreten V, Boerlin P. 2003. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47:1169–1172 http://dx.doi.org/10.1128/AAC.47.3.1169-1172.2003. [PubMed]
225. Liu J, Keelan P, Bennett PM, Enne VI. 2009. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli. J Antimicrob Chemother 63:423–426 http://dx.doi.org/10.1093/jac/dkn523. [PubMed]
226. Sunde M, Solheim H, Slettemeås JS. 2008. Genetic linkage between class 1 integrons with the dfrA12-orfF-aadA2 cassette array and sul3 in Escherichia coli. Vet Microbiol 130:422–425 http://dx.doi.org/10.1016/j.vetmic.2008.02.001. [PubMed]
227. Pattishall KH, Acar J, Burchall JJ, Goldstein FW, Harvey RJ. 1977. Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. J Biol Chem 252:2319–2323. [PubMed]
228. Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M, Darling AE, Chapman TA, Djordjevic SP. 2017. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 3:3 http://dx.doi.org/10.1099/mgen.0.000143.
229. Seputiené V, Povilonis J, Ruzauskas M, Pavilonis A, Suziedéliené E. 2010. Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania. J Med Microbiol 59:315–322 http://dx.doi.org/10.1099/jmm.0.015008-0. [PubMed]
230. Delport TC, Harcourt RG, Beaumont LJ, Webster KN, Power ML. 2015. Molecular detection of antibiotic-resistance determinants inEscherichia coli isolated from the endangered Australian sea lion (Neophoca Cinerea). J Wildl Dis 51:555–563 http://dx.doi.org/10.7589/2014-08-200. [PubMed]
231. Ojo KK, Kehrenberg C, Schwarz S, Odelola HA. 2002. Identification of a complete dfrA14 gene cassette integrated at a secondary site in a resistance plasmid of uropathogenic Escherichia coli from Nigeria. Antimicrob Agents Chemother 46:2054–2055 http://dx.doi.org/10.1128/AAC.46.6.2054-2055.2002. [PubMed]
232. Poirel L, Jayol A, Nordmann P. 2017. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596 http://dx.doi.org/10.1128/CMR.00064-16. [PubMed]
233. Rhouma M, Beaudry F, Thériault W, Letellier A. 2016. Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and One Health perspectives. Front Microbiol 7:1789 http://dx.doi.org/10.3389/fmicb.2016.01789. [PubMed]
234. Anonymous. 2016. European Medicines Agency. Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. EMA/CVMP/CHMP/231573.1-56.
235. Walsh TR, Wu Y. 2016. China bans colistin as a feed additive for animals. Lancet Infect Dis 16:1102–1103 http://dx.doi.org/10.1016/S1473-3099(16)30329-2.
236. Quesada A, Porrero MC, Téllez S, Palomo G, García M, Domínguez L. 2015. Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. J Antimicrob Chemother 70:71–74 http://dx.doi.org/10.1093/jac/dku320. [PubMed]
237. Delannoy S, Le Devendec L, Jouy E, Fach P, Drider D, Kempf I. 2017. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front Microbiol 8:2278 http://dx.doi.org/10.3389/fmicb.2017.02278. [PubMed]
238. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168 http://dx.doi.org/10.1016/S1473-3099(15)00424-7.
239. Schwarz S, Johnson AP. 2016. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 71:2066–2070 http://dx.doi.org/10.1093/jac/dkw274. [PubMed]
240. Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Käsbohrer A, Roesler U, Michael GB, Schwarz S, Werner G, Kreienbrock L, Chakraborty T, RESET consortium. 2016. Colistin resistance gene mcr-1 in extended-spectrum β-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis 16:282–283 http://dx.doi.org/10.1016/S1473-3099(16)00009-8.
241. Haenni M, Poirel L, Kieffer N, Châtre P, Saras E, Métayer V, Dumoulin R, Nordmann P, Madec JY. 2016. Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids. Lancet Infect Dis 16:281–282 http://dx.doi.org/10.1016/S1473-3099(16)00007-4.
242. Li R, Xie M, Zhang J, Yang Z, Liu L, Liu X, Zheng Z, Chan EW, Chen S. 2017. Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J Antimicrob Chemother 72:393–401 http://dx.doi.org/10.1093/jac/dkw411. [PubMed]
243. Zurfluh K, Klumpp J, Nüesch-Inderbinen M, Stephan R. 2016. Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended-spectrum-β-lactamase-producing Escherichia coli isolates of different origins. Antimicrob Agents Chemother 60:5589–5591 http://dx.doi.org/10.1128/AAC.00935-16. [PubMed]
244. Zurfuh K, Poirel L, Nordmann P, Nüesch-Inderbinen M, Hächler H, Stephan R. 2016. Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-β-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob Agents Chemother 60:2594–2595 http://dx.doi.org/10.1128/AAC.00066-16. [PubMed]
245. Poirel L, Kieffer N, Nordmann P. 2017. In vitro study of ISApl1-mediated mobilization of the colistin resistance gene mcr-1. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00127-17. [PubMed]
246. Yang YQ, Li YX, Song T, Yang YX, Jiang W, Zhang AY, Guo XY, Liu BH, Wang YX, Lei CW, Xiang R, Wang HN. 2017. Colistin resistance gene mcr-1 and its variant in Escherichia coli isolates from chickens in China. Antimicrob Agents Chemother 61:e01204-16. [PubMed]
247. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S. 2016. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 21:30280. [PubMed]
248. Zhang J, Chen L, Wang J, Yassin AK, Butaye P, Kelly P, Gong J, Guo W, Li J, Li M, Yang F, Feng Z, Jiang P, Song C, Wang Y, You J, Yang Y, Price S, Qi K, Kang Y, Wang C. 2018. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci Rep 8:3705 http://dx.doi.org/10.1038/s41598-018-22084-4. [PubMed]
249. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. 2017. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 8:e00543-17 http://dx.doi.org/10.1128/mBio.00543-17.
250. Hernández M, Iglesias MR, Rodríguez-Lázaro D, Gallardo A, Quijada N, Miguela-Villoldo P, Campos MJ, Píriz S, López-Orozco G, de Frutos C, Sáez JL, Ugarte-Ruiz M, Domínguez L, Quesada A. 2017. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Euro Surveill 22:30586 http://dx.doi.org/10.2807/1560-7917.ES.2017.22.31.30586. [PubMed]
251. Haenni M, Beyrouthy R, Lupo A, Châtre P, Madec JY, Bonnet R. 2018. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J Antimicrob Chemother 73:533–536 http://dx.doi.org/10.1093/jac/dkx418. [PubMed]
252. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF. 2017. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22:30589 http://dx.doi.org/10.2807/1560-7917.ES.2017.22.31.30589. [PubMed]
253. Hammerl JA, Borowiak M, Schmoger S, Shamoun D, Grobbel M, Malorny B, Tenhagen BA, Käsbohrer A. 2018. mcr-5 and a novel mcr-5.2 variant in Escherichia coli isolates from food and food-producing animals, Germany, 2010 to 2017. J Antimicrob Chemother 73:1433–1435 http://dx.doi.org/10.1093/jac/dky020. [PubMed]
254. Haenni M, Métayer V, Gay E, Madec JY. 2016. Increasing trends in mcr-1 prevalence among extended-spectrum-β-lactamase-producing Escherichia coli isolates from French calves despite decreasing exposure to colistin. Antimicrob Agents Chemother 60:6433–6434 http://dx.doi.org/10.1128/AAC.01147-16. [PubMed]
255. Shen Z, Wang Y, Shen Y, Shen J, Wu C. 2016. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 16:293 http://dx.doi.org/10.1016/S1473-3099(16)00061-X.
256. Guenther S, Falgenhauer L, Semmler T, Imirzalioglu C, Chakraborty T, Roesler U, Roschanski N. 2017. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. J Antimicrob Chemother 72:1289–1292 http://dx.doi.org/10.1093/jac/dkw585. [PubMed]
257. Hammerum AM, Larsen J, Andersen VD, Lester CH, Skovgaard Skytte TS, Hansen F, Olsen SS, Mordhorst H, Skov RL, Aarestrup FM, Agersø Y. 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J Antimicrob Chemother 69:2650–2657 http://dx.doi.org/10.1093/jac/dku180. [PubMed]
258. Börjesson S, Bengtsson B, Jernberg C, Englund S. 2013. Spread of extended-spectrum β-lactamase producing Escherichia coli isolates in Swedish broilers mediated by an incl plasmid carrying bla(CTX-M-1). Acta Vet Scand 55:3 http://dx.doi.org/10.1186/1751-0147-55-3. [PubMed]
259. Randall LP, Clouting C, Horton RA, Coldham NG, Wu G, Clifton-Hadley FA, Davies RH, Teale CJ. 2011. Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother 66:86–95 http://dx.doi.org/10.1093/jac/dkq396. [PubMed]
260. Endimiani A, Rossano A, Kunz D, Overesch G, Perreten V. 2012. First countrywide survey of third-generation cephalosporin-resistant Escherichia coli from broilers, swine, and cattle in Switzerland. Diagn Microbiol Infect Dis 73:31–38 http://dx.doi.org/10.1016/j.diagmicrobio.2012.01.004.
261. Liu X, Thungrat K, Boothe DM. 2016. Occurrence of OXA-48 carbapenemase and other β-lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009–2013. Front Microbiol 7:1057 http://dx.doi.org/10.3389/fmicb.2016.01057.
262. Liao XP, Xia J, Yang L, Li L, Sun J, Liu YH, Jiang HX. 2015. Characterization of CTX-M-14-producing Escherichia coli from food-producing animals. Front Microbiol 6:1136 http://dx.doi.org/10.3389/fmicb.2015.01136. [PubMed]
263. Falgenhauer L, Imirzalioglu C, Ghosh H, Gwozdzinski K, Schmiedel J, Gentil K, Bauerfeind R, Kämpfer P, Seifert H, Michael GB, Schwarz S, Pfeifer Y, Werner G, Pietsch M, Roesler U, Guerra B, Fischer J, Sharp H, Käsbohrer A, Goesmann A, Hille K, Kreienbrock L, Chakraborty T. 2016. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int J Antimicrob Agents 47:457–465 http://dx.doi.org/10.1016/j.ijantimicag.2016.03.019. [PubMed]
264. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S. 2010. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-β-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 65:651–660 http://dx.doi.org/10.1093/jac/dkq004. [PubMed]
265. Schill F, Abdulmawjood A, Klein G, Reich F. 2017. Prevalence and characterization of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Enterobacteriaceae in fresh pork meat at processing level in Germany. Int J Food Microbiol 257:58–66 http://dx.doi.org/10.1016/j.ijfoodmicro.2017.06.010. [PubMed]
266. Alcalá L, Alonso CA, Simón C, González-Esteban C, Orós J, Rezusta A, Ortega C, Torres C. 2016. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb Ecol 72:861–869 http://dx.doi.org/10.1007/s00248-015-0718-0. [PubMed]
267. Jones-Dias D, Manageiro V, Martins AP, Ferreira E, Caniça M. 2016. New class 2 integron In2-4 among IncI1-positive Escherichia coli isolates carrying ESBL and PMAβ genes from food animals in Portugal. Foodborne Pathog Dis 13:36–39 http://dx.doi.org/10.1089/fpd.2015.1972. [PubMed]
268. Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. 2014. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist 20:485–494 http://dx.doi.org/10.1089/mdr.2013.0210. [PubMed]
269. Park YS, Adams-Haduch JM, Rivera JI, Curry SR, Harrison LH, Doi Y. 2012. Escherichia coli producing CMY-2 β-lactamase in retail chicken, Pittsburgh, Pennsylvania, USA. Emerg Infect Dis 18:515–516 http://dx.doi.org/10.3201/eid1803.111434. [PubMed]
270. Cunha MP, Lincopan N, Cerdeira L, Esposito F, Dropa M, Franco LS, Moreno AM, Knobl T. 2017. Coexistence of CTX-M-2, CTX-M-55, CMY-2, FosA3, and QnrB19 in extraintestinal pathogenic Escherichia coli from poultry in Brazil. Antimicrob Agents Chemother 61:e02474-16 http://dx.doi.org/10.1128/AAC.02474-16. [PubMed]
271. Guo YF, Zhang WH, Ren SQ, Yang L, Lü DH, Zeng ZL, Liu YH, Jiang HX. 2014. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China. PLoS One 9:e96738 http://dx.doi.org/10.1371/journal.pone.0096738. [PubMed]
272. Ohnishi M, Okatani AT, Esaki H, Harada K, Sawada T, Murakami M, Marumo K, Kato Y, Sato R, Shimura K, Hatanaka N, Takahashi T. 2013. Herd prevalence of Enterobacteriaceae producing CTX-M-type and CMY-2 β-lactamases among Japanese dairy farms. J Appl Microbiol 115:282–289 http://dx.doi.org/10.1111/jam.12211. [PubMed]
273. Sato T, Yokota S, Okubo T, Usui M, Fujii N, Tamura Y. 2014. Phylogenetic association of fluoroquinolone and cephalosporin resistance of D-O1-ST648 Escherichia coli carrying blaCMY-2 from faecal samples of dogs in Japan. J Med Microbiol 63:263–270 http://dx.doi.org/10.1099/jmm.0.054676-0. [PubMed]
274. Maamar E, Hammami S, Alonso CA, Dakhli N, Abbassi MS, Ferjani S, Hamzaoui Z, Saidani M, Torres C, Boutiba-Ben Boubaker I. 2016. High prevalence of extended-spectrum and plasmidic AmpC β-lactamase-producing Escherichia coli from poultry in Tunisia. Int J Food Microbiol 231:69–75 http://dx.doi.org/10.1016/j.ijfoodmicro.2016.05.001. [PubMed]
275. Cui L, Lei L, Lv Y, Zhang R, Liu X, Li M, Zhang F, Wang Y. 2017. blaNDM-1-producing multidrug-resistant Escherichia coli isolated from a companion dog in China. J Glob Antimicrob Resist 13:24–27 http://dx.doi.org/10.1016/j.jgar.2017.10.021. [PubMed]
276. Lin D, Xie M, Li R, Chen K, Chan EW, Chen S. 2016. IncFII conjugative plasmid-mediated transmission of blaNDM-1 elements among animal-borne Escherichia coli strains. Antimicrob Agents Chemother 61:e02285-16 http://dx.doi.org/10.1128/AAC.02285-16. [PubMed]
277. Kong LH, Lei CW, Ma SZ, Jiang W, Liu BH, Wang YX, Guan R, Men S, Yuan QW, Cheng GY, Zhou WC, Wang HN. 2017. Various sequence types of Escherichia coli isolates coharboring blaNDM-5 and mcr-1 genes from a commercial swine farm in China. Antimicrob Agents Chemother 61:e02167-16 http://dx.doi.org/10.1128/AAC.02167-16. [PubMed]
278. Purkait D, Ahuja A, Bhattacharjee U, Singha A, Rhetso K, Dey TK, Das S, Sanjukta RK, Puro K, Shakuntala I, Sen A, Banerjee A, Sharma I, Bhatta RS, Mawlong M, Guha C, Pradhan NR, Ghatak S. 2016. Molecular characterization and computational modelling of New Delhi metallo-β-lactamase-5 from an Escherichia coli isolate (KOEC3) of bovine origin. Indian J Microbiol 56:182–189 http://dx.doi.org/10.1007/s12088-016-0569-5. [PubMed]
279. Yaici L, Haenni M, Saras E, Boudehouche W, Touati A, Madec JY. 2016. blaNDM-5-carrying IncX3 plasmid in Escherichia coli ST1284 isolated from raw milk collected in a dairy farm in Algeria. J Antimicrob Chemother 71:2671–2672 http://dx.doi.org/10.1093/jac/dkw160. [PubMed]
280. Roschanski N, Friese A, von Salviati-Claudius C, Hering J, Kaesbohrer A, Kreienbrock L, Roesler U. 2017. Prevalence of carbapenemase producing Enterobacteriaceae isolated from German pig-fattening farms during the years 2011–2013. Vet Microbiol 200:124–129 http://dx.doi.org/10.1016/j.vetmic.2015.11.030. [PubMed]
281. Roschanski N, Guenther S, Vu TTT, Fischer J, Semmler T, Huehn S, Alter T, Roesler U. 2017. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Euro Surveill 22:17-00032 http://dx.doi.org/10.2807/1560-7917.ES.2017.22.43.17-00032. [PubMed]
282. Unger F, Eisenberg T, Prenger-Berninghoff E, Leidner U, Ludwig ML, Rothe M, Semmler T, Ewers C. 2017. Imported reptiles as a risk factor for the global distribution of Escherichia coli harbouring the colistin resistance gene mcr-1. Int J Antimicrob Agents 49:122–123 http://dx.doi.org/10.1016/j.ijantimicag.2016.10.007. [PubMed]
283. Lim SK, Kang HY, Lee K, Moon DC, Lee HS, Jung SC. 2016. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob Agents Chemother 60:6991–6993 http://dx.doi.org/10.1128/AAC.01472-16. [PubMed]
284. Meinersmann RJ, Ladely SR, Plumblee JR, Cook KL, Thacker E. 2017. Prevalence of mcr-1 in the cecal contents of food animals in the United States. Antimicrob Agents Chemother 61:e02244-16 http://dx.doi.org/10.1128/AAC.02244-16. [PubMed]
285. Delgado-Blas JF, Ovejero CM, Abadia-Patiño L, Gonzalez-Zorn B. 2016. Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 60:6356–6358 http://dx.doi.org/10.1128/AAC.01319-16. [PubMed]
286. Sellera FP, Fernandes MR, Sartori L, Carvalho MP, Esposito F, Nascimento CL, Dutra GH, Mamizuka EM, Pérez-Chaparro PJ, McCulloch JA, Lincopan N. 2017. Escherichia coli carrying IncX4 plasmid-mediated mcr-1 and blaCTX-M genes in infected migratory Magellanic penguins (Spheniscus magellanicus). J Antimicrob Chemother 72:1255–1256 http://dx.doi.org/10.1093/jac/dkw543. [PubMed]
287. Sellera FP, Fernandes MR, Ruiz R, Falleiros ACM, Rodrigues FP, Cerdeira L, Lincopan N. 2018. Identification of KPC-2-producing Escherichia coli in a companion animal: a new challenge for veterinary clinicians. J Antimicrob Chemother [Epub ahead of print] http://dx.doi.org/10.1093/jac/dky173.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0026-2017
2018-07-12
2018-12-11

Abstract:

Multidrug resistance in has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, of animal origin often also show resistances to other—mostly older—antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Examples of acquired ESBL genes in of animal origin from Europe, the U.S., Latin America, Africa, and Asia

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0026-2017
Generic image for table
TABLE 2

Examples of acquired genes in of animal origin from Europe, the North and South America, Asia, and Africa

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0026-2017
Generic image for table
TABLE 3

Examples of acquired carbapenemase genes in of animal origin from Europe, North and South America, Africa, Australia, and Asia

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0026-2017
Generic image for table
TABLE 4

Examples of acquired genes in of animal origin from Europe, North and South America, and Asia

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0026-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error