1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in , , and Other Rarely Investigated Veterinary and Zoonotic Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Darren J. Trott1, Sam Abraham2, Ben Adler3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia; 2: School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; 3: School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0029-2017
  • Received 24 February 2017 Accepted 14 March 2018 Published 19 July 2018
  • Darren J. Trott, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Leptospira</span>, <span class="jp-italic">Brucella</span>, and Other Rarely Investigated Veterinary and Zoonotic Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in , , and Other Rarely Investigated Veterinary and Zoonotic Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0029-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0029-2017-2.gif
  • Abstract:

    , , and are major agents of zoonotic disease, causing high morbidity and, in some cases, significant mortality in humans. For all three genera, prompt diagnosis and appropriate antimicrobial therapy are required to prevent the development of chronic, debilitating illness. spp. are intrinsically resistant to several antimicrobial classes; however, there is little evidence in the literature for development of acquired resistance to antimicrobial agents used for clinical treatment of acute leptospirosis. For infections, there are numerous reports of relapses following therapy, but it is unclear whether this is due to sequestration within infected sites (e.g., bone) or the development of acquired resistance. have maintained their susceptibility to doxycycline and rifampicin, which in combination remain the most common treatments of brucellosis in humans. induced point mutations are described as imparting resistance to rifampicin () and fluoroquinolones (). The clinical significance of these mutations is unclear. For , although acquired resistance to some antimicrobial agents has been described, resistance due to bacterial persister cells surviving in the presence of antimicrobial, with no apparent increase in the MIC of the organism, have been recently described. Of the remaining veterinary fastidious pathogens, is the most interesting from an antimicrobial resistance perspective because it can only be grown in cell culture, making susceptibility testing challenging. MIC testing has been undertaken on a small number of isolates, and some differences in susceptibility to macrolides have been demonstrated between isolates obtained from different regions.

  • Citation: Trott D, Abraham S, Adler B. 2018. Antimicrobial Resistance in , , and Other Rarely Investigated Veterinary and Zoonotic Pathogens. Microbiol Spectrum 6(4):ARBA-0029-2017. doi:10.1128/microbiolspec.ARBA-0029-2017.

References

1. Adler B, de la Peña Moctezuma A. 2010. Leptospira and leptospirosis. Vet Microbiol 140:287–296 http://dx.doi.org/10.1016/j.vetmic.2009.03.012. [PubMed]
2. Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang Y-F, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA Jr, Yang XF, Zhang J-J, Vinetz JM. 2016. What makes a bacterial species pathogenic? Comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 10:e0004403 http://dx.doi.org/10.1371/journal.pntd.0004403. [PubMed]
3. Adler B, Faine S, Christopher WL, Chappel RJ. 1986. Development of an improved selective medium for isolation of leptospires from clinical material. Vet Microbiol 12:377–381 http://dx.doi.org/10.1016/0378-1135(86)90087-8. [PubMed]
4. Cousineau JG, McKiel JA. 1961. In vitro sensitivity of Leptospira to varioqs antimicrobial agents. Can J Microbiol 7:751–758 http://dx.doi.org/10.1139/m61-089. [PubMed]
5. Schönberg A. 1981. Studies on the effect of antibiotic substances on leptospires and their cultivation from material with a high bacterial count. Zentralbl Bakteriol A 249:400–406. [PubMed]
6. Vinod Kumar K, Lall C, Raj RV, Vedhagiri K, Sunish IP, Vijayachari P. 2016. In vitro antimicrobial susceptibility of pathogenic Leptospira biofilm. Microb Drug Resist 22:511–514 http://dx.doi.org/10.1089/mdr.2015.0284. [PubMed]
7. Moreno LZ, Miraglia F, Lilenbaum W, Neto JSF, Freitas JC, Morais ZM, Hartskeerl RA, da Costa BLP, Vasconcellos SA, Moreno AM. 2016. Profiling of Leptospira interrogans, L. santarosai, L. meyeri and L. borgpetersenii by SE-AFLP, PFGE and susceptibility testing: a continuous attempt at species and serovar differentiation. Emerg Microbes Infect 5:e17 http://dx.doi.org/10.1038/emi.2016.16. [PubMed]
8. Faine S, Kaipainen WJ. 1955. Erythromycin in experimental leptospirosis. J Infect Dis 97:146–151 http://dx.doi.org/10.1093/infdis/97.2.146. [PubMed]
9. Moon JE, Ellis MW, Griffith ME, Hawley JS, Rivard RG, McCall S, Hospenthal DR, Murray CK. 2006. Efficacy of macrolides and telithromycin against leptospirosis in a hamster model. Antimicrob Agents Chemother 50:1989–1992 http://dx.doi.org/10.1128/AAC.01467-05. [PubMed]
10. Griffith ME, Moon JE, Johnson EN, Clark KP, Hawley JS, Hospenthal DR, Murray CK. 2007. Efficacy of fluoroquinolones against Leptospira interrogans in a hamster model. Antimicrob Agents Chemother 51:2615–2617 http://dx.doi.org/10.1128/AAC.00240-07. [PubMed]
11. Harris BM, Blatz PJ, Hinkle MK, McCall S, Beckius ML, Mende K, Robertson JL, Griffith ME, Murray CK, Hospenthal DR. 2011. In vitro and in vivo activity of first generation cephalosporins against Leptospira. Am J Trop Med Hyg 85:905–908 http://dx.doi.org/10.4269/ajtmh.2011.11-0352. [PubMed]
12. Alt DP, Zuerner RL, Bolin CA. 2001. Evaluation of antibiotics for treatment of cattle infected with Leptospira borgpetersenii serovar Hardjo. J Am Vet Med Assoc 219:636–639 http://dx.doi.org/10.2460/javma.2001.219.636. [PubMed]
13. Haake DA, Levett PN. 2015. Leptospirosis in humans, p 65–97. In Adler B (ed), Leptospira and Leptospirosis. Springer, Berlin, Germany. [PubMed]
14. Ellis WA. 2015. Animal leptospirosis, p 99–137. In Adler B (ed), Leptospira and Leptospirosis. Springer, Berlin, Germany. [PubMed]
15. Kim D, Kordick D, Divers T, Chang Y-F. 2006. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin. J Vet Sci 7:355–359 http://dx.doi.org/10.4142/jvs.2006.7.4.355. [PubMed]
16. Olsen SC, Palmer MV. 2014. Advancement of knowledge of Brucella over the past 50 years. Vet Pathol 51:1076–1089 http://dx.doi.org/10.1177/0300985814540545. [PubMed]
17. Centers for Disease Control and Prevention. 2017. Bioterrorism agents/diseases. https://emergency.cdc.gov/agent/agentlist-category.asp.
18. Marianelli C, Graziani C, Santangelo C, Xibilia MT, Imbriani A, Amato R, Neri D, Cuccia M, Rinnone S, Di Marco V, Ciuchini F. 2007. Molecular epidemiological and antibiotic susceptibility characterization of Brucella isolates from humans in Sicily, Italy. J Clin Microbiol 45:2923–2928 http://dx.doi.org/10.1128/JCM.00822-07.
19. Leiser OP, Corn JL, Schmit BS, Keim PS, Foster JT. 2013. Feral swine brucellosis in the United States and prospective genomic techniques for disease epidemiology. Vet Microbiol 166:1–10 http://dx.doi.org/10.1016/j.vetmic.2013.02.025. [PubMed]
20. Ramamoorthy S, Woldemeskel M, Ligett A, Snider R, Cobb R, Rajeev S. 2011. Brucella suis infection in dogs, Georgia, USA. Emerg Infect Dis 17:2386–2387 http://dx.doi.org/10.3201/eid1712.111127. [PubMed]
21. James DR, Golovsky G, Thornton JM, Goodchild L, Havlicek M, Martin P, Krockenberger MB, Marriott D, Ahuja V, Malik R, Mor SM. 2017. Clinical management of Brucella suis infection in dogs and implications for public health. Aust Vet J 95:19–25 http://dx.doi.org/10.1111/avj.12550. [PubMed]
22. Norton TH, Thomas AD. 1976. Letter: Brucella suis in feral pigs. Aust Vet J 52:293–294 http://dx.doi.org/10.1111/j.1751-0813.1976.tb00122.x. [PubMed]
23. Eales KM, Norton RE, Ketheesan N. 2010. Brucellosis in northern Australia. Am J Trop Med Hyg 83:876–878 http://dx.doi.org/10.4269/ajtmh.2010.10-0237. [PubMed]
24. Irwin MJ, Massey PD, Walker B, Durrheim DN. 2009. Feral pig hunting: a risk factor for human brucellosis in north-west NSW? N S W Public Health Bull 20:192–194 http://dx.doi.org/10.1071/NB09023. [PubMed]
25. Mor SM, Wiethoelter AK, Lee A, Moloney B, James DR, Malik R. 2016. Emergence of Brucella suis in dogs in New South Wales, Australia: clinical findings and implications for zoonotic transmission. BMC Vet Res 12:199 http://dx.doi.org/10.1186/s12917-016-0835-0. [PubMed]
26. Lonsway DR, Jevitt LA, Uhl JR, Cockerill FR III, Anderson ME, Sullivan MM, De BK, Edwards JR, Patel JB. 2010. Effect of carbon dioxide on broth microdilution susceptibility testing of Brucella spp. J Clin Microbiol 48:952–956 http://dx.doi.org/10.1128/JCM.01860-09. [PubMed]
27. Bayram Y, Korkoca H, Aypak C, Parlak M, Cikman A, Kilic S, Berktas M. 2011. Antimicrobial susceptibilities of Brucella isolates from various clinical specimens. Int J Med Sci 8:198–202 http://dx.doi.org/10.7150/ijms.8.198. [PubMed]
28. Ariza J, Bosch J, Gudiol F, Liñares J, Viladrich PF, Martín R. 1986. Relevance of in vitro antimicrobial susceptibility of Brucella melitensis to relapse rate in human brucellosis. Antimicrob Agents Chemother 30:958–960 http://dx.doi.org/10.1128/AAC.30.6.958. [PubMed]
29. Brown SD, Traczewski MM, the Brucella QC Working Group. 2005. Broth microdilution susceptibility testing of Brucella species: quality control limits for ten antimicrobial agents against three standard quality control strains. J Clin Microbiol 43:5804–5807 http://dx.doi.org/10.1128/JCM.43.11.5804-5807.2005. [PubMed]
30. Bosch J, Liñares J, López de Goicoechea MJ, Ariza J, Cisnal MC, Martin R. 1986. In-vitro activity of ciprofloxacin, ceftriaxone and five other antimicrobial agents against 95 strains of Brucella melitensis. J Antimicrob Chemother 17:459–461 http://dx.doi.org/10.1093/jac/17.4.459. [PubMed]
31. Clinical and Laboratory Standards Institute. 2010. Performance standards for antimicrobial susceptibility testing. CLSI, Wayne, PA.
32. Barbosa Pauletti R, Reinato Stynen AP, Pinto da Silva Mol J, Seles Dorneles EM, Alves TM, de Sousa Moura Souto M, Minharro S, Heinemann MB, Lage AP. 2015. Reduced susceptibility to rifampicin and resistance to multiple antimicrobial agents among Brucella abortus isolates from cattle in Brazil. PLoS One 10:e0132532 http://dx.doi.org/10.1371/journal.pone.0132532. [PubMed]
33. Clinical and Laboratory Standards Institute. 2015. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolates or fastidious bacteria, 3rd ed. CLSI guidline M45. CLSI, Wayne PA.
34. Solís García del Pozo J, Solera J. 2012. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS One 7:e32090 http://dx.doi.org/10.1371/journal.pone.0032090. [PubMed]
35. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, Roushan MRH, Rubinstein E, Sipsas NV, Solera J, Young EJ, Pappas G, International Society of Chemotherapy, Institute of Continuing Medical Education of Ioannina. 2007. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med 4:e317 http://dx.doi.org/10.1371/journal.pmed.0040317. [PubMed]
36. Bertrand A. 1994. Antibiotic treatment of brucellosis. Presse Med 23:1128–1131. (In French.) [PubMed]
37. Bayindir Y, Sonmez E, Aladag A, Buyukberber N. 2003. Comparison of five antimicrobial regimens for the treatment of brucellar spondylitis: a prospective, randomized study. J Chemother 15:466–471. [PubMed]
38. Nicoletti PL, Quinn BR, Minor PW. 1967. Canine to human transmission of brucellosis. N Y State J Med 67:2886–2887. [PubMed]
39. Mateu-de-Antonio EM, Martín M. 1995. In vitro efficacy of several antimicrobial combinations against Brucella canis and Brucella melitensis strains isolated from dogs. Vet Microbiol 45:1–10 http://dx.doi.org/10.1016/0378-1135(94)00122-D. [PubMed]
40. Guerra MA, Nicoletti P. 1986. Comparison of the susceptibility of Brucella abortus isolates obtained before and after cows were treated with oxytetracycline and streptomycin. Am J Vet Res 47:2612–2613. [PubMed]
41. Hall WH, Spink WW. 1947. In vitro sensitivity of Brucella to streptomycin; development of resistance during streptomycin treatment. Proc Soc Exp Biol Med 64:403–406 http://dx.doi.org/10.3181/00379727-64-15808. [PubMed]
42. Balandin GA. 1967. Ampicillin and brucellas. Antibiotiki 12:828–830. (In Russian.) [PubMed]
43. Lal S, Modawal KK, Fowle AS, Peach B, Popham RD. 1970. Acute brucellosis treated with trimethoprim and sulphamethoxazole. BMJ 3:256–257 http://dx.doi.org/10.1136/bmj.3.5717.256. [PubMed]
44. Qadri SM, Akhtar M, Ueno Y, al-Sibai MB. 1989. Susceptibility of Brucella melitensis to fluoroquinolones. Drugs Exp Clin Res 15:483–485. [PubMed]
45. De Rautlin de la Roy YM, Grignon B, Grollier G, Coindreau MF, Becq-Giraudon B. 1986. Rifampicin resistance in a strain of Brucella melitensis after treatment with doxycycline and rifampicin. J Antimicrob Chemother 18:648–649 http://dx.doi.org/10.1093/jac/18.5.648. [PubMed]
46. Reynes E, López G, Ayala SM, Hunter GC, Lucero NE. 2012. Monitoring infected dogs after a canine brucellosis outbreak. Comp Immunol Microbiol Infect Dis 35:533–537 http://dx.doi.org/10.1016/j.cimid.2012.05.004. [PubMed]
47. Falagas ME, Bliziotis IA. 2006. Quinolones for treatment of human brucellosis: critical review of the evidence from microbiological and clinical studies. Antimicrob Agents Chemother 50:22–33 http://dx.doi.org/10.1128/AAC.50.1.22-33.2006. [PubMed]
48. Kocagöz S, Akova M, Altun B, Gür D, Hasçelik G. 2002. In vitro activities of new quinolones against Brucella melitensis isolated in a tertiary-care hospital in Turkey. Clin Microbiol Infect 8:240–242 http://dx.doi.org/10.1046/j.1469-0691.2002.00416.x. [PubMed]
49. Sayan M, Kılıc S, Uyanık MH. 2012. Epidemiological survey of rifampicin resistance in clinic isolates of Brucella melitensis obtained from all regions of Turkey. J Infect Chemother 18:41–46 http://dx.doi.org/10.1007/s10156-011-0281-7. [PubMed]
50. Maves RC, Castillo R, Guillen A, Espinosa B, Meza R, Espinoza N, Núñez G, Sánchez L, Chacaltana J, Cepeda D, González S, Hall ER. 2011. Antimicrobial susceptibility of Brucella melitensis isolates in Peru. Antimicrob Agents Chemother 55:1279–1281 http://dx.doi.org/10.1128/AAC.00979-10. [PubMed]
51. Jiang H, Mao L, Zhao H-y, Li LY, Piao D, Yao WQ, Cui BY. 2010. MLVA typing and antibioticantimicrobial agent susceptibility of Brucella human isolates from Liaoning, China. Trans R Soc Trop Med Hyg 104:796–800 http://dx.doi.org/10.1016/j.trstmh.2010.08.002. [PubMed]
52. Ariza J, Gudiol F, Pallarés R, Rufí G, Fernández-Viladrich P. 1985. Comparative trial of rifampin-doxycycline versus tetracycline-streptomycin in the therapy of human brucellosis. Antimicrob Agents Chemother 28:548–551 http://dx.doi.org/10.1128/AAC.28.4.548. [PubMed]
53. Ariza J, Gudiol F, Pallares R, Viladrich PF, Rufi G, Corredoira J, Miravitlles MR. 1992. Treatment of human brucellosis with doxycycline plus rifampin or doxycycline plus streptomycin. A randomized, double-blind study. Ann Intern Med 117:25–30 http://dx.doi.org/10.7326/0003-4819-117-1-25. [PubMed]
54. Baykam N, Esener H, Ergönül O, Eren S, Çelikbas AK, Dokuzoğuz B. 2004. In vitro antimicrobial susceptibility of Brucella species. Int J Antimicrob Agents 23:405–407 http://dx.doi.org/10.1016/j.ijantimicag.2003.09.024. [PubMed]
55. Dimitrov TS, Panigrahi D, Emara M, Al-Nakkas A, Awni F, Passadilla R. 2005. Incidence of bloodstream infections in a speciality hospital in Kuwait: 8-year experience. Med Princ Pract 14:417–421 http://dx.doi.org/10.1159/000088115. [PubMed]
56. Abdel-Maksoud M, House B, Wasfy M, Abdel-Rahman B, Pimentel G, Roushdy G, Dueger E. 2012. In vitro antibiotic susceptibility testing of Brucella isolates from Egypt between 1999 and 2007 and evidence of probable rifampin resistance. Ann Clin Microbiol Antimicrob 11:24 http://dx.doi.org/10.1186/1476-0711-11-24. [PubMed]
57. Torkaman Asadi F, Hashemi SH, Alikhani MY, Moghimbeigi A, Naseri Z. 2017. Clinical and diagnostic aspects of brucellosis and antimicrobial susceptibility of Brucella isolates in Hamedan, Iran. Jpn J Infect Dis 70:235–238 http://dx.doi.org/10.7883/yoken.JJID.2016.133. [PubMed]
58. Razzaghi R, Rastegar R, Momen-Heravi M, Erami M, Nazeri M. 2016. Antimicrobial susceptibility testing of Brucella melitensis isolated from patients with acute brucellosis in a centre of Iran. Indian J Med Microbiol 34:342–345 http://dx.doi.org/10.4103/0255-0857.188336. [PubMed]
59. Sayan M, Yumuk Z, Dündar D, Bilenoğlu O, Erdenliğ S, Yaşar E, Willke A. 2008. Rifampicin resistance phenotyping of Brucella melitensis by rpoB gene analysis in clinical isolates. J Chemother 20:431–435 http://dx.doi.org/10.1179/joc.2008.20.4.431. [PubMed]
60. al-Sibai MB, Qadri SM. 1990. Development of ciprofloxacin resistance in Brucella melitensis. J Antimicrob Chemother 25:302–303 http://dx.doi.org/10.1093/jac/25.2.302. [PubMed]
61. Memish Z, Mah MW, Al Mahmoud S, Al Shaalan M, Khan MY. 2000. Brucella bacteraemia: clinical and laboratory observations in 160 patients. J Infect 40:59–63 http://dx.doi.org/10.1053/jinf.1999.0586. [PubMed]
62. Bannatyne RM, Rich M, Memish ZA. 2001. Co-trimoxazole resistant Brucella. J Trop Pediatr 47:60. [PubMed]
63. Almuneef M, Memish ZA, Al Shaalan M, Al Banyan E, Al-Alola S, Balkhy HH. 2003. Brucella melitensis bacteremia in children: review of 62 cases. J Chemother 15:76–80 http://dx.doi.org/10.1179/joc.2003.15.1.76. [PubMed]
64. Shaalan MA, Memish ZA, Mahmoud SA, Alomari A, Khan MY, Almuneef M, Alalola S. 2002. Brucellosis in children: clinical observations in 115 cases. Int J Infect Dis 6:182–186 http://dx.doi.org/10.1016/S1201-9712(02)90108-6. [PubMed]
65. Heo E-J, Kang S-I, Kim J-W, Her M, Cho D, Cho Y-S, Hwang I-Y, Moon J-S, Wee S-H, Jung S-C, Nam HM. 2012. In vitro activities of antimicrobials against Brucella abortus isolates from cattle in Korea during 1998-2006. J Microbiol Biotechnol 22:567–570 http://dx.doi.org/10.4014/jmb.1109.09013. [PubMed]
66. Marianelli C, Ciuchini F, Tarantino M, Pasquali P, Adone R. 2004. Genetic bases of the rifampin resistance phenotype in Brucella spp. J Clin Microbiol 42:5439–5443 http://dx.doi.org/10.1128/JCM.42.12.5439-5443.2004. [PubMed]
67. Sandalakis V, Psaroulaki A, De Bock P-J, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. 2012. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 11:2374–2385 http://dx.doi.org/10.1021/pr201122w. [PubMed]
68. Turkmani A, Psaroulaki A, Christidou A, Samoilis G, Mourad TA, Tabaa D, Tselentis Y. 2007. Uptake of ciprofloxacin and ofloxacin by 2 Brucella strains and their fluoroquinolone-resistant variants under different conditions. An in vitro study. Diagn Microbiol Infect Dis 59:447–451 http://dx.doi.org/10.1016/j.diagmicrobio.2007.06.017. [PubMed]
69. Turkmani A, Psaroulaki A, Christidou A, Chochlakis D, Tabaa D, Tselentis Y. 2008. In vitro-selected resistance to fluoroquinolones in two Brucella strains associated with mutational changes in gyrA. Int J Antimicrob Agents 32:227–232 http://dx.doi.org/10.1016/j.ijantimicag.2008.03.012. [PubMed]
70. Ravanel N, Gestin B, Maurin M. 2009. In vitro selection of fluoroquinolone resistance in Brucella melitensis. Int J Antimicrob Agents 34:76–81 http://dx.doi.org/10.1016/j.ijantimicag.2009.01.002. [PubMed]
71. Lázaro FG, Rodríguez-Tarazona RE, García-Rodríguez JÁ, Muñoz-Bellido JL. 2009. Fluoroquinolone-resistant Brucella melitensis mutants obtained in vitro. Int J Antimicrob Agents 34:252–254 http://dx.doi.org/10.1016/j.ijantimicag.2008.12.013. [PubMed]
72. Valdezate S, Navarro A, Medina-Pascual MJ, Carrasco G, Saéz-Nieto JA. 2010. Molecular screening for rifampicin and fluoroquinolone resistance in a clinical population of Brucella melitensis. J Antimicrob Chemother 65:51–53 http://dx.doi.org/10.1093/jac/dkp389. [PubMed]
73. Feng J, Auwaerter PG, Zhang Y. 2015. Drug combinations against Borrelia burgdorferi persisters in vitro: eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS One 10:e0117207 http://dx.doi.org/10.1371/journal.pone.0117207. [PubMed]
74. Stefanciková A, Adaszek Ł, Pet’ko B, Winiarczyk S, Dudinák V. 2008. Serological evidence of Borrelia burgdorferi sensu lato in horses and cattle from Poland and diagnostic problems of Lyme borreliosis. Ann Agric Environ Med 15:37–43. [PubMed]
75. Stefancíková A, Stĕpánová G, Derdáková M, Pet’ko B, Kysel’ová J, Cigánek J, Strojný L, Cisláková L, Trávnicek M. 2002. Serological evidence for Borrelia burgdorferi infection associated with clinical signs in dairy cattle in Slovakia. Vet Res Commun 26:601–611 http://dx.doi.org/10.1023/A:1020912618950. [PubMed]
76. Ogden NH, Nuttall PA, Randolph SE. 1997. Natural Lyme disease cycles maintained via sheep by co-feeding ticks. Parasitology 115:591–599 http://dx.doi.org/10.1017/S0031182097001868. [PubMed]
77. Littman MP, Goldstein RE, Labato MA, Lappin MR, Moore GE. 2006. ACVIM small animal consensus statement on Lyme disease in dogs: diagnosis, treatment, and prevention. J Vet Intern Med 20:422–434 http://dx.doi.org/10.1111/j.1939-1676.2006.tb02880.x.
78. Hunfeld K-P, Kraiczy P, Kekoukh E, Schäfer V, Brade V. 2002. Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents: possible implications for new therapeutic approaches to Lyme disease. Int J Med Microbiol 291(Suppl 33):125–137 http://dx.doi.org/10.1016/S1438-4221(02)80024-8.
79. Ates L, Hanssen-Hübner C, Norris DE, Richter D, Kraiczy P, Hunfeld K-P. 2010. Comparison of in vitro activities of tigecycline, doxycycline, and tetracycline against the spirochete Borrelia burgdorferi. Ticks Tick Borne Dis 1:30–34 http://dx.doi.org/10.1016/j.ttbdis.2009.11.004. [PubMed]
80. Dever LL, Jorgensen JH, Barbour AG. 1992. In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: a microdilution MIC method and time-kill studies. J Clin Microbiol 30:2692–2697. [PubMed]
81. Hunfeld K-P, Kraiczy P, Wichelhaus TA, Schäfer V, Brade V. 2000. New colorimetric microdilution method for in vitro susceptibility testing of Borrelia burgdorferi against antimicrobial substances. Eur J Clin Microbiol Infect Dis 19:27–32 http://dx.doi.org/10.1007/s100960050005. [PubMed]
82. Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, Jacobs MB, Hasenkampf NR, Martin DS, Narasimhan S, Phillippi-Falkenstein KM, Purcell JE, Ratterree MS, Philipp MT. 2012. Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7:e29914 http://dx.doi.org/10.1371/journal.pone.0029914. [PubMed]
83. Hunfeld K-P, Brade V. 2006. Antimicrobial susceptibility of Borrelia burgdorferi sensu lato: what we know, what we don’t know, and what we need to know. Wien Klin Wochenschr 118:659–668 http://dx.doi.org/10.1007/s00508-006-0693-z. [PubMed]
84. Terekhova D, Sartakova ML, Wormser GP, Schwartz I, Cabello FC. 2002. Erythromycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 46:3637–3640 http://dx.doi.org/10.1128/AAC.46.11.3637-3640.2002. [PubMed]
85. Jackson CR, Boylan JA, Frye JG, Gherardini FC. 2007. Evidence of a conjugal erythromycin resistance element in the Lyme disease spirochete Borrelia burgdorferi. Int J Antimicrob Agents 30:496–504 http://dx.doi.org/10.1016/j.ijantimicag.2007.07.013. [PubMed]
86. Samuels DS, Marconi RT, Huang WM, Garon CF. 1994. gyrB mutations in coumermycin A1-resistant Borrelia burgdorferi. J Bacteriol 176:3072–3075 http://dx.doi.org/10.1128/jb.176.10.3072-3075.1994. [PubMed]
87. Criswell D, Tobiason VL, Lodmell JS, Samuels DS. 2006. Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother 50:445–452 http://dx.doi.org/10.1128/AAC.50.2.445-452.2006. [PubMed]
88. Galbraith KM, Ng AC, Eggers BJ, Kuchel CR, Eggers CH, Samuels DS. 2005. parC mutations in fluoroquinolone-resistant Borrelia burgdorferi. Antimicrob Agents Chemother 49:4354–4357 http://dx.doi.org/10.1128/AAC.49.10.4354-4357.2005. [PubMed]
89. Bunikis I, Denker K, Östberg Y, Andersen C, Benz R, Bergström S. 2008. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog 4:e1000009 http://dx.doi.org/10.1371/journal.ppat.1000009. [PubMed]
90. Hunfeld K-P, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F. 2005. In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother 49:1294–1301 http://dx.doi.org/10.1128/AAC.49.4.1294-1301.2005. [PubMed]
91. Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K. 2015. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother 59:4616–4624 http://dx.doi.org/10.1128/AAC.00864-15. [PubMed]
92. Sapi E, Kaur N, Anyanwu S, Luecke DF, Datar A, Patel S, Rossi M, Stricker RB. 2011. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect Drug Resist 4:97–113. [PubMed]
93. Sapi E, Theophilus PA, Pham TV, Burugu D, Luecke DF. 2016. Effect of RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic sensitivity of Borrelia burgdorferi. Eur J Microbiol Immunol (Bp) 6:272–286 http://dx.doi.org/10.1556/1886.2016.00026. [PubMed]
94. Jeffrey J. Zimmerman LAK, Alejandro Ramirez, Kent J. Schwartz, Gregory W. Stevenson. 2012. Diseases of Swine, 10 ed. Wiley-Blackwell, Chichester, UK.
95. Page AE, Slovis NM, Horohov DW. 2014. Lawsonia intracellularis and equine proliferative enteropathy. Vet Clin North Am Equine Pract 30:641–658 http://dx.doi.org/10.1016/j.cveq.2014.08.001. [PubMed]
96. Page AE, Fallon LH, Bryant UK, Horohov DW, Luna TW, Marsh PS, Slovis NM, Sprayberry KA, Loynachan AT. 2012. Acute deterioration and death with necrotizing enteritis associated with Lawsonia intracellularis in 4 weanling horses. J Vet Intern Med 26:1476–1480 http://dx.doi.org/10.1111/j.1939-1676.2012.01002.x. [PubMed]
97. Vannucci FA, Gebhart CJ. 2014. Recent advances in understanding the pathogenesis of Lawsonia intracellularis infections. Vet Pathol 51:465–477 http://dx.doi.org/10.1177/0300985813520249. [PubMed]
98. McOrist S, Gebhart CJ, Boid R, Barns SM. 1995. Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol 45:820–825 http://dx.doi.org/10.1099/00207713-45-4-820. [PubMed]
99. Yeh J-Y, Lee J-H, Yeh H-R, Kim A, Lee JY, Hwang J-M, Kang B-K, Kim J-M, Choi I-S, Lee J-B. 2011. Antimicrobial susceptibility testing of two Lawsonia intracellularis isolates associated with proliferative hemorrhagic enteropathy and porcine intestinal adenomatosis in South Korea. Antimicrob Agents Chemother 55:4451–4453 http://dx.doi.org/10.1128/AAC.00408-11. [PubMed]
100. McOrist S, Smith SH, Shearn MF, Carr MM, Miller DJ. 1996. Treatment and prevention of porcine proliferative enteropathy with oral tiamulin. Vet Rec 139:615–618. [PubMed]
101. Wattanaphansak S, Singer RS, Gebhart CJ. 2009. In vitro antimicrobial activity against 10 North American and European Lawsonia intracellularis isolates. Vet Microbiol 134:305–310 http://dx.doi.org/10.1016/j.vetmic.2008.08.007. [PubMed]
102. Vannucci FA, Wattanaphansak S, Gebhart CJ. 2012. An alternative method for cultivation of Lawsonia intracellularis. J Clin Microbiol 50:1070–1072 http://dx.doi.org/10.1128/JCM.05976-11. [PubMed]
103. McOrist S, Mackie RA, Lawson GH. 1995. Antimicrobial susceptibility of ileal symbiont intracellularis isolated from pigs with proliferative enteropathy. J Clin Microbiol 33:1314–1317. [PubMed]
104. McOrist S, Gebhart J. 1995. In vitro testing of antimicrobial agents for proliferative enteropathy (ileitis). Swine Health Prod 3:146–149.
105. Casewell M, Friis C, Marco E, McMullin P, Phillips I. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161 http://dx.doi.org/10.1093/jac/dkg313. [PubMed]
106. Pusterla N, Gebhart C. 2013. Lawsonia intracellularis infection and proliferative enteropathy in foals. Vet Microbiol 167:34–41 http://dx.doi.org/10.1016/j.vetmic.2013.06.017. [PubMed]
107. Bak H, Rathkjen PH. 2009. Reduced use of antimicrobials after vaccination of pigs against porcine proliferative enteropathy in a Danish SPF herd. Acta Vet Scand 51:1 http://dx.doi.org/10.1186/1751-0147-51-1. [PubMed]
108. Larsen I, Nielsen SS, Olsen JE, Nielsen JP. 2016. The efficacy of oxytetracycline treatment at batch, pen and individual level on Lawsonia intracellularis infection in nursery pigs in a randomised clinical trial. Prev Vet Med 124:25–33 http://dx.doi.org/10.1016/j.prevetmed.2015.12.018. [PubMed]
109. Græsbøll K, Damborg P, Mellerup A, Herrero-Fresno A, Larsen I, Holm A, Nielsen JP, Christiansen LE, Angen Ø, Ahmed S, Folkesson A, Olsen JE. 2017. Effect of tetracycline dose and treatment mode on selection of resistant coliform bacteria in nursery pigs. Appl Environ Microbiol 83:e00538-17 http://dx.doi.org/10.1128/AEM.00538-17. [PubMed]
110. Larsen I, Hjulsager CK, Holm A, Olsen JE, Nielsen SS, Nielsen JP. 2016. A randomised clinical trial on the efficacy of oxytetracycline dose through water medication of nursery pigs on diarrhoea, faecal shedding of Lawsonia intracellularis and average daily weight gain. Prev Vet Med 123:52–59 http://dx.doi.org/10.1016/j.prevetmed.2015.12.004. [PubMed]
111. Riber U, Cordes H, Boutrup TS, Jensen TK, Heegaard PM, Jungersen G. 2011. Primary infection protects pigs against re-infection with Lawsonia intracellularis in experimental challenge studies. Vet Microbiol 149:406–414 http://dx.doi.org/10.1016/j.vetmic.2010.11.028. [PubMed]
112. Cameron GL. 1977. The susceptibility of New Zealand isolates of Leptospira to three antibiotics. N Z Med J 86:93–94. [PubMed]
113. Prescott JF, Nicholson VM. 1988. Antimicrobial drug susceptibility of Leptospira interrogans serovar Hardjo isolated from cattle. Can J Vet Res 52:286–287. [PubMed]
114. Murray CK, Hospenthal DR. 2004. Determination of susceptibilities of 26 Leptospira sp. serovars to 24 antimicrobial agents by a broth microdilution technique. Antimicrob Agents Chemother 48:4002–4005 http://dx.doi.org/10.1128/AAC.48.10.4002-4005.2004. [PubMed]
115. Chakraborty A, Miyahara S, Villanueva SYAM, Gloriani NG, Yoshida S. 2010. In vitro sensitivity and resistance of 46 Leptospira strains isolated from rats in the Philippines to 14 antimicrobial agents. Antimicrob Agents Chemother 54:5403–5405 http://dx.doi.org/10.1128/AAC.00973-10. [PubMed]
116. Wuthiekanun V, Amornchai P, Paris DH, Langla S, Thaipadunpanit J, Chierakul W, Smythe LD, White NJ, Day NPJ, Limmathurotsakul D, Peacock SJ. 2013. Rapid isolation and susceptibility testing of Leptospira spp. using a new solid medium, LVW agar. Antimicrob Agents Chemother 57:297–302 http://dx.doi.org/10.1128/AAC.01812-12.
117. Miraglia F, Matsuo M, Morais ZM, Dellagostin OA, Seixas FK, Freitas JC, Hartskeerl R, Moreno LZ, Costa BL, Souza GO, Vasconcellos SA, Moreno AM. 2013. Molecular characterization, serotyping, and antibiotic susceptibility profile of Leptospira interrogans serovar Copenhageni isolates from Brazil. Diagn Microbiol Infect Dis 77:195–199 http://dx.doi.org/10.1016/j.diagmicrobio.2013.08.003. [PubMed]
118. Suepaul SM, Carrington C, Campbell M, Borde G, Adesiyun AA. 2015. Antimicrobial susceptibility of Leptospira isolates from dogs and rats to 12 antimicrobial agents. Trop Biomed 32:1–10. [PubMed]
119. Wuthiekanun V, Amornchai P, Langla S, White NJ, Day NPJ, Limmathurotsakul D, Peacock SJ. 2015. Antimicrobial disk susceptibility testing of Leptospira spp. using Leptospira Vanaporn Wuthiekanun (LVW) agar. Am J Trop Med Hyg 93:241–243 http://dx.doi.org/10.4269/ajtmh.15-0180. [PubMed]
120. Benacer D, Zain SNM, Ooi PT, Thong KL. 2017. Antimicrobial susceptibility of Leptospira spp. isolated from environmental, human and animal sources in Malaysia. Indian J Med Microbiol 35:124–128 http://dx.doi.org/10.4103/ijmm.IJMM_15_458. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0029-2017
2018-07-19
2018-10-20

Abstract:

, , and are major agents of zoonotic disease, causing high morbidity and, in some cases, significant mortality in humans. For all three genera, prompt diagnosis and appropriate antimicrobial therapy are required to prevent the development of chronic, debilitating illness. spp. are intrinsically resistant to several antimicrobial classes; however, there is little evidence in the literature for development of acquired resistance to antimicrobial agents used for clinical treatment of acute leptospirosis. For infections, there are numerous reports of relapses following therapy, but it is unclear whether this is due to sequestration within infected sites (e.g., bone) or the development of acquired resistance. have maintained their susceptibility to doxycycline and rifampicin, which in combination remain the most common treatments of brucellosis in humans. induced point mutations are described as imparting resistance to rifampicin () and fluoroquinolones (). The clinical significance of these mutations is unclear. For , although acquired resistance to some antimicrobial agents has been described, resistance due to bacterial persister cells surviving in the presence of antimicrobial, with no apparent increase in the MIC of the organism, have been recently described. Of the remaining veterinary fastidious pathogens, is the most interesting from an antimicrobial resistance perspective because it can only be grown in cell culture, making susceptibility testing challenging. MIC testing has been undertaken on a small number of isolates, and some differences in susceptibility to macrolides have been demonstrated between isolates obtained from different regions.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Reported antimicrobial susceptibilities of spp.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0029-2017
Generic image for table
TABLE 2

CLSI human-specific clinical breakpoints for MIC testing of spp.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0029-2017
Generic image for table
TABLE 3

MIC, MIC, and MIC range values for 6 antimicrobial agents tested against 10 North American and European isolates of

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0029-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error