1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Anne V. Gautier-Bouchardon1
  • Editors: Frank Møller Aarestrup2, Stefan Schwarz3, Jianzhong Shen4, Lina Cavaco5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Mycoplasmology, Bacteriology, and Antimicrobial Resistance Unit, Ploufragan-Plouzané Laboratory, French Agency for Food, Environmental, and Occupational Health and Safety (ANSES), Ploufragan, France; 2: Technical University of Denmark, Lyngby, Denmark; 3: Freie Universität Berlin, Berlin, Germany; 4: China Agricultural University, Beijing, China; 5: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
  • Received 24 January 2018 Accepted 09 March 2018 Published 12 July 2018
  • Anne V. Gautier-Bouchardon, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Mycoplasma</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0030-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0030-2018-2.gif
  • Abstract:

    Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic species of major veterinary interest: and in poultry; , , and in swine; in cattle; and in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics . Resistance frequencies vary according to the species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, -selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that information can be used to provide advice on selection of treatments.

  • Citation: Gautier-Bouchardon A. 2018. Antimicrobial Resistance in spp.. Microbiol Spectrum 6(4):ARBA-0030-2018. doi:10.1128/microbiolspec.ARBA-0030-2018.

References

1. Razin S. 1996. Mycoplasmas. In Baron S (ed), Medical Microbiology. University of Texas Medical Branch at Galveston, Galveston, TX.
2. Taylor-Robinson D. 1996. Infections due to species of Mycoplasma and Ureaplasma: an update. Clin Infect Dis 23:671–682, quiz 683–684 http://dx.doi.org/10.1093/clinids/23.4.671. [PubMed]
3. Brown DR, Zacher LA, Wendland LD, Brown MB. 2005. Emerging mycoplasmoses in wildlife, p 383–414. In Blanchard A, Browning G (ed), Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control. Horizon Bioscience, Norfolk, UK. [PubMed]
4. Markham PF, Noormohammadi AH. 2005. Diagnosis of mycoplasmosis in animals, p 355–382. In Blanchard A, Browning G (ed), Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control. Horizon Bioscience, Norfolk, UK.
5. Waites K, Talkington D. 2005. New developments in human diseases due to mycoplasmas, p 289–354. In Blanchard A, Browning G (ed), Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control. Horizon Bioscience, Norfolk, UK.
6. Razin S, Yogev D, Naot Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156. [PubMed]
7. Chopra-Dewasthaly R, Baumgartner M, Gamper E, Innerebner C, Zimmermann M, Schilcher F, Tichy A, Winter P, Jechlinger W, Rosengarten R, Spergser J. 2012. Role of Vpma phase variation in Mycoplasma agalactiae pathogenesis. FEMS Immunol Med Microbiol 66:307–322 http://dx.doi.org/10.1111/j.1574-695X.2012.01010.x. [PubMed]
8. Bürki S, Gaschen V, Stoffel MH, Stojiljkovic A, Frey J, Kuehni-Boghenbor K, Pilo P. 2015. Invasion and persistence of Mycoplasma bovis in embryonic calf turbinate cells. Vet Res (Faisalabad) 46:53 http://dx.doi.org/10.1186/s13567-015-0194-z. [PubMed]
9. Hegde S, Hegde S, Spergser J, Brunthaler R, Rosengarten R, Chopra-Dewasthaly R. 2014. In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. Int J Med Microbiol 304:1024–1031 http://dx.doi.org/10.1016/j.ijmm.2014.07.011. [PubMed]
10. Buim MR, Buzinhani M, Yamaguti M, Oliveira RC, Mettifogo E, Ueno PM, Timenetsky J, Santelli GM, Ferreira AJ. 2011. Mycoplasma synoviae cell invasion: elucidation of the Mycoplasma pathogenesis in chicken. Comp Immunol Microbiol Infect Dis 34:41–47 http://dx.doi.org/10.1016/j.cimid.2009.11.001. [PubMed]
11. Much P, Winner F, Stipkovits L, Rosengarten R, Citti C. 2002. Mycoplasma gallisepticum: influence of cell invasiveness on the outcome of experimental infection in chickens. FEMS Immunol Med Microbiol 34:181–186 http://dx.doi.org/10.1111/j.1574-695X.2002.tb00622.x. [PubMed]
12. Maes D, Segales J, Meyns T, Sibila M, Pieters M, Haesebrouck F. 2008. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 126:297–309 http://dx.doi.org/10.1016/j.vetmic.2007.09.008. [PubMed]
13. Pieters M, Fano E, Pijoan C, Dee S. 2010. An experimental model to evaluate Mycoplasma hyopneumoniae transmission from asymptomatic carriers to unvaccinated and vaccinated sentinel pigs. Can J Vet Res 74:157–160. [PubMed]
14. Feberwee A, Landman WJ, von Banniseht-Wysmuller T, Klinkenberg D, Vernooij JC, Gielkens AL, Stegeman JA. 2006. The effect of a live vaccine on the horizontal transmission of Mycoplasma gallisepticum. Avian Pathol 35:359–366 http://dx.doi.org/10.1080/03079450600924226. [PubMed]
15. Feberwee A, Dijkman R, Klinkenberg D, Landman WJM. 2017. Quantification of the horizontal transmission of Mycoplasma synoviae in non-vaccinated and MS-H-vaccinated layers. Avian Pathol 46:346–358 http://dx.doi.org/10.1080/03079457.2017.1282602. [PubMed]
16. Kleven SH. 2008. Control of avian mycoplasma infections in commercial poultry. Avian Dis 52:367–374 http://dx.doi.org/10.1637/8323-041808-Review.1. [PubMed]
17. Taylor-Robinson D, Bébéar C. 1997. Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J Antimicrob Chemother 40:622–630 http://dx.doi.org/10.1093/jac/40.5.622. [PubMed]
18. Schultz KK, Strait EL, Erickson BZ, Levy N. 2012. Optimization of an antibiotic sensitivity assay for Mycoplasma hyosynoviae and susceptibility profiles of field isolates from 1997 to 2011. Vet Microbiol 158:104–108 http://dx.doi.org/10.1016/j.vetmic.2012.02.002. [PubMed]
19. Bébéar CM, Bébéar C. 2002. Antimicrobial agents, p 545–566. In Razin S, Herrmann R (ed), Molecular Biology and Pathogenicity of Mycoplasmas. Kluwer Academic/Plenum Publishers, New York, NY. http://dx.doi.org/10.1007/0-306-47606-1_25
20. Gaurivaud P, Laigret F, Bove JM. 1996. Insusceptibility of members of the class Mollicutes to rifampin: studies of the Spiroplasma citri RNA polymerase beta-subunit gene. Antimicrob Agents Chemother 40:858–862. [PubMed]
21. Olaitan AO, Morand S, Rolain JM. 2014. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643 http://dx.doi.org/10.3389/fmicb.2014.00643. [PubMed]
22. McCormack WM. 1993. Susceptibility of mycoplasmas to antimicrobial agents: clinical implications. Clin Infect Dis 17(Suppl 1):S200–S201 http://dx.doi.org/10.1093/clinids/17.Supplement_1.S200. [PubMed]
23. Bébéar CM, Kempf I. 2005. Antimicrobial therapy and antimicrobial resistance, p 535–568. In Blanchard A, Browning G (ed), Mycoplasmas: Molecular Biology, Pathogenicity and Strategies for Control. Horizon Bioscience, Norfolk, UK.
24. Aarestrup FM, Kempf I. 2006. Mycoplasma, p 239–248. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
25. Hannan PC. 2000. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. International Research Programme on Comparative Mycoplasmology. Vet Res 31:373–395 http://dx.doi.org/10.1051/vetres:2000100. [PubMed]
26. Whithear KG, Bowtell DD, Ghiocas E, Hughes KL. 1983. Evaluation and use of a micro-broth dilution procedure for testing sensitivity of fermentative avian mycoplasmas to antibiotics. Avian Dis 27:937–949 http://dx.doi.org/10.2307/1590195. [PubMed]
27. Kenny GE. 1996. Problems and opportunities in susceptibility testing of mollicutes, p 185–188. In Tully JG, Razin S (ed), Molecular and Diagnostic Procedures in Mycoplasmology, vol II, Diagnostic Procedures. Academic Press, London, UK.
28. Bébéar C, Robertson JA. 1996. Determination of minimal inhibitory concentrations, p 189–197. In Tully JG, Razin S (ed), Molecular and Diagnostic Procedures in Mycoplasmology, vol II, Diagnostic Procedures. Academic Press, London, UK.
29. Gerchman I, Lysnyansky I, Perk S, Levisohn S. 2008. In vitro susceptibilities to fluoroquinolones in current and archived Mycoplasma gallisepticum and Mycoplasma synoviae isolates from meat-type turkeys. Vet Microbiol 131:266–276 http://dx.doi.org/10.1016/j.vetmic.2008.04.006. [PubMed]
30. CLSI. 2011. M43A: Methods for antimicrobial susceptibility testing for human mycoplasmas. Approved guideline. Clinical and Laboratory Standards Institute, Wayne, PA.
31. Waites KB, Duffy LB, Bébéar CM, Matlow A, Talkington DF, Kenny GE, Totten PA, Bade DJ, Zheng X, Davidson MK, Shortridge VD, Watts JL, Brown SD. 2012. Standardized methods and quality control limits for agar and broth microdilution susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum. J Clin Microbiol 50:3542–3547 http://dx.doi.org/10.1128/JCM.01439-12.
32. Lysnyansky I, Gerchman I, Mikula I, Gobbo F, Catania S, Levisohn S. 2013. Molecular characterization of acquired enrofloxacin resistance in Mycoplasma synoviae field isolates. Antimicrob Agents Chemother 57:3072–3077 http://dx.doi.org/10.1128/AAC.00203-13. [PubMed]
33. Ammar AM, Abd El-Aziz NK, Gharib AA, Ahmed HK, Lameay AE. 2016. Mutations of domain V in 23S ribosomal RNA of macrolide-resistant Mycoplasma gallisepticum isolates in Egypt. J Infect Dev Ctries 10:807–813 http://dx.doi.org/10.3855/jidc.7850. [PubMed]
34. Heuvelink A, Reugebrink C, Mars J. 2016. Antimicrobial susceptibility of Mycoplasma bovis isolates from veal calves and dairy cattle in the Netherlands. Vet Microbiol 189:1–7 http://dx.doi.org/10.1016/j.vetmic.2016.04.012. [PubMed]
35. Zhang N, Ye X, Wu Y, Huang Z, Gu X, Cai Q, Shen X, Jiang H, Ding H. 2017. Determination of the mutant selection window and evaluation of the killing of Mycoplasma gallisepticum by danofloxacin, doxycycline, tilmicosin, tylvalosin and valnemulin. PLoS One 12:e0169134 http://dx.doi.org/10.1371/journal.pone.0169134.
36. Gautier-Bouchardon AV, Ferré S, Le Grand D, Paoli A, Gay E, Poumarat F. 2014. Overall decrease in the susceptibility of Mycoplasma bovis to antimicrobials over the past 30 years in France. PLoS One 9:e87672 http://dx.doi.org/10.1371/journal.pone.0087672. [PubMed]
37. Khalil D, Becker CA, Tardy F. 2015. Alterations in the quinolone resistance-determining regions and fluoroquinolone resistance in clinical isolates and laboratory-derived mutants of Mycoplasma bovis: not all genotypes may be equal. Appl Environ Microbiol 82:1060–1068 http://dx.doi.org/10.1128/AEM.03280-15. [PubMed]
38. Poumarat F, Gautier-Bouchardon AV, Bergonier D, Gay E, Tardy F. 2016. Diversity and variation in antimicrobial susceptibility patterns over time in Mycoplasma agalactiae isolates collected from sheep and goats in France. J Appl Microbiol 120:1208–1218 http://dx.doi.org/10.1111/jam.13083. [PubMed]
39. Ter Laak EA, Pijpers A, Noordergraaf JH, Schoevers EC, Verheijden JH. 1991. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents. Antimicrob Agents Chemother 35:228–233 http://dx.doi.org/10.1128/AAC.35.2.228. [PubMed]
40. Aarestrup FM, Friis NF. 1998. Antimicrobial susceptibility testing of Mycoplasma hyosynoviae isolated from pigs during 1968 to 1971 and during 1995 and 1996. Vet Microbiol 61:33–39 http://dx.doi.org/10.1016/S0378-1135(98)00169-2.
41. Hannan PC, O’Hanlon PJ, Rogers NH. 1989. In vitro evaluation of various quinolone antibacterial agents against veterinary mycoplasmas and porcine respiratory bacterial pathogens. Res Vet Sci 46:202–211. [PubMed]
42. Kobayashi H, Morozumi T, Munthali G, Mitani K, Ito N, Yamamoto K. 1996. Macrolide susceptibility of Mycoplasma hyorhinis isolated from piglets. Antimicrob Agents Chemother 40:1030–1032. [PubMed]
43. Kobayashi H, Nakajima H, Shimizu Y, Eguchi M, Hata E, Yamamoto K. 2005. Macrolides and lincomycin susceptibility of Mycoplasma hyorhinis and variable mutation of domain II and V in 23S ribosomal RNA. J Vet Med Sci 67:795–800 http://dx.doi.org/10.1292/jvms.67.795. [PubMed]
44. CLSI. 2013. VET01-A4: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 4th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
45. CLSI. 2015. VET01S: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
46. CLSI. 1999. M26A: Methods for determining bactericidal activity of antibacterial agents. Approved guideline. Clinical and Laboratory Standards Institute, Wayne, PA.
47. Kleven SH, Anderson DP. 1971. In vitro activity of various antibiotics against Mycoplasma synoviae. Avian Dis 15:551–557 http://dx.doi.org/10.2307/1588731. [PubMed]
48. Ball HJ, Craig Reilly GA, Bryson DG. 1995. Antibiotic susceptibility in Mycoplasma bovis strains in Northern Ireland. Ir Vet J 48:316–318.
49. Ayling RD, Baker SE, Peek ML, Simon AJ, Nicholas RA. 2000. Comparison of in vitro activity of danofloxacin, florfenicol, oxytetracycline, spectinomycin and tilmicosin against recent field isolates of Mycoplasma bovis. Vet Rec 146:745–747 http://dx.doi.org/10.1136/vr.146.26.745. [PubMed]
50. Tavío MM, Poveda C, Assunção P, Ramírez AS, Poveda JB. 2014. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae. Vet Rec 175:539 http://dx.doi.org/10.1136/vr.102458. [PubMed]
51. Taylor-Robinson D. 1996. Cidal activity testing, p 199–204. In Tully JG, Razin S (ed), Molecular and Diagnostic Procedures in Mycoplasmology, vol II, Diagnostic Procedures. Academic Press, London, UK.
52. Hayes MM, Foo HH, Timenetsky J, Lo SC. 1995. In vitro antibiotic susceptibility testing of clinical isolates of Mycoplasma penetrans from patients with AIDS. Antimicrob Agents Chemother 39:1386–1387 http://dx.doi.org/10.1128/AAC.39.6.1386. [PubMed]
53. Ikejima H, Yamamoto H, Ishida K, Kaku M, Shimada J. 2000. Evaluation of in-vitro activity of new quinolones, macrolides, and minocycline against Mycoplasma pneumoniae. J Infect Chemother 6:148–150 http://dx.doi.org/10.1007/s101560070013. [PubMed]
54. Hamamoto K, Shimizu T, Fujimoto N, Zhang Y, Arai S. 2001. In vitro activities of moxifloxacin and other fluoroquinolones against Mycoplasma pneumoniae. Antimicrob Agents Chemother 45:1908–1910 http://dx.doi.org/10.1128/AAC.45.6.1908-1910.2001. [PubMed]
55. Waites KB, Crabb DM, Bing X, Duffy LB. 2003. In vitro susceptibilities to and bactericidal activities of garenoxacin (BMS-284756) and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 47:161–165 http://dx.doi.org/10.1128/AAC.47.1.161-165.2003. [PubMed]
56. Assunção P, Antunes NT, Rosales RS, de la Fe C, Poveda C, Poveda JB, Davey HM. 2006. Flow cytometric method for the assessment of the minimal inhibitory concentrations of antibacterial agents to Mycoplasma agalactiae. Cytometry A 69:1071–1076 http://dx.doi.org/10.1002/cyto.a.20331. [PubMed]
57. Assunção P, Antunes NT, Rosales RS, Poveda C, Poveda JB, Davey HM. 2006. Flow cytometric determination of the effects of antibacterial agents on Mycoplasma agalactiae, Mycoplasma putrefaciens, Mycoplasma capricolum subsp. capricolum, and Mycoplasma mycoides subsp. mycoides large colony type. Antimicrob Agents Chemother 50:2845–2849 http://dx.doi.org/10.1128/AAC.01582-05. [PubMed]
58. Soehnlen MK, Kunze ME, Karunathilake KE, Henwood BM, Kariyawasam S, Wolfgang DR, Jayarao BM. 2011. In vitro antimicrobial inhibition of Mycoplasma bovis isolates submitted to the Pennsylvania Animal Diagnostic Laboratory using flow cytometry and a broth microdilution method. J Vet Diagn Invest 23:547–551 http://dx.doi.org/10.1177/1040638711404155. [PubMed]
59. Assunção P, Antunes NT, Rosales RS, Poveda C, de la Fe C, Poveda JB, Davey HM. 2007. Application of flow cytometry for the determination of minimal inhibitory concentration of several antibacterial agents on Mycoplasma hyopneumoniae. J Appl Microbiol 102:1132–1137. [PubMed]
60. Wick WE. 1964. Influence of antibiotic stability on the results of in vitro testing procedures. J Bacteriol 87:1162–1170. [PubMed]
61. Lallemand EA, Lacroix MZ, Toutain PL, Boullier S, Ferran AA, Bousquet-Melou A. 2016. In vitro degradation of antimicrobials during use of broth microdilution method can increase the measured minimal inhibitory and minimal bactericidal concentrations. Front Microbiol 7:2051 http://dx.doi.org/10.3389/fmicb.2016.02051. [PubMed]
62. Tanner AC, Wu CC. 1992. Adaptation of the Sensititre broth microdilution technique to antimicrobial susceptibility testing of Mycoplasma gallisepticum. Avian Dis 36:714–717 http://dx.doi.org/10.2307/1591770. [PubMed]
63. Tanner AC, Erickson BZ, Ross RF. 1993. Adaptation of the Sensititre broth microdilution technique to antimicrobial susceptibility testing of Mycoplasma hyopneumoniae. Vet Microbiol 36:301–306 http://dx.doi.org/10.1016/0378-1135(93)90096-P.
64. Rosenbusch RF, Kinyon JM, Apley M, Funk ND, Smith S, Hoffman LJ. 2005. In vitro antimicrobial inhibition profiles of Mycoplasma bovis isolates recovered from various regions of the United States from 2002 to 2003. J Vet Diagn Invest 17:436–441 http://dx.doi.org/10.1177/104063870501700505. [PubMed]
65. Hendrick SH, Bateman KG, Rosengren LB. 2013. The effect of antimicrobial treatment and preventive strategies on bovine respiratory disease and genetic relatedness and antimicrobial resistance of Mycoplasma bovis isolates in a western Canadian feedlot. Can Vet J 54:1146–1156. [PubMed]
66. Wu CC, Shryock TR, Lin TL, Faderan M, Veenhuizen MF. 2000. Antimicrobial susceptibility of Mycoplasma hyorhinis. Vet Microbiol 76:25–30 http://dx.doi.org/10.1016/S0378-1135(00)00221-2.
67. Kleven SH. 2003. Mycoplasmosis, p 719–721. In Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (ed), Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.
68. Kleven SH. 2003. Mycoplasma synoviae infection, p 756–766. In Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (ed), Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.
69. Feberwee A, de Wit JJ, Landman WJ. 2009. Induction of eggshell apex abnormalities by Mycoplasma synoviae: field and experimental studies. Avian Pathol 38:77–85 http://dx.doi.org/10.1080/03079450802662772. [PubMed]
70. Chin RP, Ghazikhanian GY, Kempf I. 2003. Mycoplasma meleagridis infection, p 744–756. In Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (ed), Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.
71. Bradbury JM, Kleven SH. 2003. Mycoplasma iowae infection, p 766–771. In Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE (ed), Diseases of Poultry, 11th ed. Iowa State Press, Ames, IA.
72. Levisohn S. 1981. Antibiotic sensitivity patterns in field isolates of Mycoplasma gallisepticum as a guide to chemotherapy. Isr J Med Sci 17:661–666. [PubMed]
73. Jordan FT, Knight D. 1984. The minimum inhibitory concentration of kitasamycin, tylosin and tiamulin for Mycoplasma gallisepticum and their protective effect on infected chicks. Avian Pathol 13:151–162 http://dx.doi.org/10.1080/03079458408418520. [PubMed]
74. Jordan FT, Gilbert S, Knight DL, Yavari CA. 1989. Effects of Baytril, tylosin and tiamulin on avian mycoplasmas. Avian Pathol 18:659–673 http://dx.doi.org/10.1080/03079458908418640. [PubMed]
75. Hannan PC, Windsor GD, de Jong A, Schmeer N, Stegemann M. 1997. Comparative susceptibilities of various animal-pathogenic mycoplasmas to fluoroquinolones. Antimicrob Agents Chemother 41:2037–2040. [PubMed]
76. Wang C, Ewing M, Aarabi SY. 2001. In vitro susceptibility of avian mycoplasmas to enrofloxacin, sarafloxacin, tylosin, and oxytetracycline. Avian Dis 45:456–460 http://dx.doi.org/10.2307/1592988.
77. Pakpinyo S, Sasipreeyajan J. 2007. Molecular characterization and determination of antimicrobial resistance of Mycoplasma gallisepticum isolated from chickens. Vet Microbiol 125:59–65 http://dx.doi.org/10.1016/j.vetmic.2007.05.011. [PubMed]
78. Gerchman I, Levisohn S, Mikula I, Manso-Silván L, Lysnyansky I. 2011. Characterization of in vivo-acquired resistance to macrolides of Mycoplasma gallisepticum strains isolated from poultry. Vet Res (Faisalabad) 42:90 http://dx.doi.org/10.1186/1297-9716-42-90. [PubMed]
79. Gharaibeh S, Al-Rashdan M. 2011. Change in antimicrobial susceptibility of Mycoplasma gallisepticum field isolates. Vet Microbiol 150:379–383 http://dx.doi.org/10.1016/j.vetmic.2011.02.005. [PubMed]
80. Lysnyansky I, Gerchman I, Levisohn S, Mikula I, Feberwee A, Ferguson NM, Noormohammadi AH, Spergser J, Windsor HM. 2012. Discrepancy between minimal inhibitory concentration to enrofloxacin and mutations present in the quinolone-resistance determining regions of Mycoplasma gallisepticum field strains. Vet Microbiol 160:222–226 http://dx.doi.org/10.1016/j.vetmic.2012.05.002. [PubMed]
81. Cerdá RO, Giacoboni GI, Xavier JA, Sansalone PL, Landoni MF. 2002. In vitro antibiotic susceptibility of field isolates of Mycoplasma synoviae in Argentina. Avian Dis 46:215–218 http://dx.doi.org/10.1637/0005-2086(2002)046[0215:IVASOF]2.0.CO;2.
82. Lysnyansky I, Gerchman I, Flaminio B, Catania S. 2015. Decreased susceptibility to macrolide-lincosamide in Mycoplasma synoviae is associated with mutations in 23S ribosomal RNA. Microb Drug Resist 21:581–589 http://dx.doi.org/10.1089/mdr.2014.0290. [PubMed]
83. Le Carrou J, Reinhardt AK, Kempf I, Gautier-Bouchardon AV. 2006. Persistence of Mycoplasma synoviae in hens after two enrofloxacin treatments and detection of mutations in the parC gene. Vet Res 37:145–154 http://dx.doi.org/10.1051/vetres:2005046. [PubMed]
84. Ross RF. 1999. Mycoplasmal diseases, p 537–551. In Straw BE, D’allaire S, Mengeling WL, Taylor DJ (ed), Diseases of Swine, 8th ed. Iowa State University Press, Ames, IA.
85. Paes JA, Lorenzatto KR, de Moraes SN, Moura H, Barr JR, Ferreira HB. 2017. Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis. J Proteomics 154:69–77 http://dx.doi.org/10.1016/j.jprot.2016.12.002. [PubMed]
86. Zimmermann BJ, Ross RF. 1975. Determination of sensitivity of Mycoplasma hyosynoviae to tylosin and selected antibacterial drugs by a microtiter technique. Can J Comp Med 39:17–21. [PubMed]
87. Friis NF, Szancer J. 1994. Sensitivity of certain porcine and bovine mycoplasmas to antimicrobial agents in a liquid medium test compared to a disc assay. Acta Vet Scand 35:389–394. [PubMed]
88. Inamoto T, Takahashi H, Yamamoto K, Nakai Y, Ogimoto K. 1994. Antibiotic susceptibility of Mycoplasma hyopneumoniae isolated from swine. J Vet Med Sci 56:393–394 http://dx.doi.org/10.1292/jvms.56.393. [PubMed]
89. Hannan PC, Windsor HM, Ripley PH. 1997. In vitro susceptibilities of recent field isolates of Mycoplasma hyopneumoniae and Mycoplasma hyosynoviae to valnemulin (Econor), tiamulin and enrofloxacin and the in vitro development of resistance to certain antimicrobial agents in Mycoplasma hyopneumoniae. Res Vet Sci 63:157–160 http://dx.doi.org/10.1016/S0034-5288(97)90010-2.
90. Bousquet E, Morvan H, Aitken I, Morgan JH. 1997. Comparative in vitro activity of doxycycline and oxytetracycline against porcine respiratory pathogens. Vet Rec 141:37–40 http://dx.doi.org/10.1136/vr.141.2.37. [PubMed]
91. Vicca J, Stakenborg T, Maes D, Butaye P, Peeters J, de Kruif A, Haesebrouck F. 2004. In vitro susceptibilities of Mycoplasma hyopneumoniae field isolates. Antimicrob Agents Chemother 48:4470–4472 http://dx.doi.org/10.1128/AAC.48.11.4470-4472.2004. [PubMed]
92. Stakenborg T, Vicca J, Butaye P, Maes D, Minion FC, Peeters J, De Kruif A, Haesebrouck F. 2005. Characterization of in vivo acquired resistance of Mycoplasma hyopneumoniae to macrolides and lincosamides. Microb Drug Resist 11:290–294 http://dx.doi.org/10.1089/mdr.2005.11.290. [PubMed]
93. Thongkamkoon P, Narongsak W, Kobayashi H, Pathanasophon P, Kishima M, Yamamoto K. 2013. In vitro susceptibility of Mycoplasma hyopneumoniae field isolates and occurrence of fluoroquinolone, macrolides and lincomycin resistance. J Vet Med Sci 75:1067–1070 http://dx.doi.org/10.1292/jvms.12-0520. [PubMed]
94. Kobayashi H, Sonmez N, Morozumi T, Mitani K, Ito N, Shiono H, Yamamoto K. 1996. In vitro susceptibility of Mycoplasma hyosynoviae and M. hyorhinis to antimicrobial agents. J Vet Med Sci 58:1107–1111 http://dx.doi.org/10.1292/jvms.58.11_1107. [PubMed]
95. Maunsell FP, Woolums AR, Francoz D, Rosenbusch RF, Step DL, Wilson DJ, Janzen ED. 2011. Mycoplasma bovis infections in cattle. J Vet Intern Med 25:772–783 http://dx.doi.org/10.1111/j.1939-1676.2011.0750.x. [PubMed]
96. Nicholas RA. 2011. Bovine mycoplasmosis: silent and deadly. Vet Rec 168:459–462 http://dx.doi.org/10.1136/vr.d2468. [PubMed]
97. Bergonier D, Berthelot X, Poumarat F. 1997. Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control. Rev Sci Tech 16:848–873 http://dx.doi.org/10.20506/rst.16.3.1062. [PubMed]
98. Ayling RD, Rosales RS, Barden G, Gosney FL. 2014. Changes in antimicrobial susceptibility of Mycoplasma bovis isolates from Great Britain. Vet Rec 175:486 http://dx.doi.org/10.1136/vr.102303. [PubMed]
99. Francoz D, Fortin M, Fecteau G, Messier S. 2005. Determination of Mycoplasma bovis susceptibilities against six antimicrobial agents using the E test method. Vet Microbiol 105:57–64 http://dx.doi.org/10.1016/j.vetmic.2004.10.006. [PubMed]
100. Gerchman I, Levisohn S, Mikula I, Lysnyansky I. 2009. In vitro antimicrobial susceptibility of Mycoplasma bovis isolated in Israel from local and imported cattle. Vet Microbiol 137:268–275 http://dx.doi.org/10.1016/j.vetmic.2009.01.028. [PubMed]
101. Hirose K, Kobayashi H, Ito N, Kawasaki Y, Zako M, Kotani K, Ogawa H, Sato H. 2003. Isolation of mycoplasmas from nasal swabs of calves affected with respiratory diseases and antimicrobial susceptibility of their isolates. J Vet Med B Infect Dis Vet Public Health 50:347–351 http://dx.doi.org/10.1046/j.1439-0450.2003.00681.x. [PubMed]
102. Kawai K, Higuchi H, Iwano H, Iwakuma A, Onda K, Sato R, Hayashi T, Nagahata H, Oshida T. 2014. Antimicrobial susceptibilities of Mycoplasma isolated from bovine mastitis in Japan. Anim Sci J 85:96–99 http://dx.doi.org/10.1111/asj.12144. [PubMed]
103. Kong LC, Gao D, Jia BY, Wang Z, Gao YH, Pei ZH, Liu SM, Xin JQ, Ma HX. 2016. Antimicrobial susceptibility and molecular characterization of macrolide resistance of Mycoplasma bovis isolates from multiple provinces in China. J Vet Med Sci 78:293–296 http://dx.doi.org/10.1292/jvms.15-0304. [PubMed]
104. Godinho KS. 2008. Susceptibility testing of tulathromycin: interpretative breakpoints and susceptibility of field isolates. Vet Microbiol 129:426–432 http://dx.doi.org/10.1016/j.vetmic.2007.11.033. [PubMed]
105. Kroemer S, Galland D, Guérin-Faublée V, Giboin H, Woehrlé-Fontaine F. 2012. Survey of marbofloxacin susceptibility of bacteria isolated from cattle with respiratory disease and mastitis in Europe. Vet Rec 170:53 http://dx.doi.org/10.1136/vr.100246. [PubMed]
106. Devriese LA, Haesebrouck F. 1991. Antibiotic susceptibility testing of Mycoplasma bovis using Tween 80 hydrolysis as an indicator of growth. Zentralbl Veterinarmed B 38:781–783.
107. Antunes NT, Tavío MM, Assunção P, Rosales RS, Poveda C, de la Fé C, Gil MC, Poveda JB. 2008. In vitro susceptibilities of field isolates of Mycoplasma agalactiae. Vet J 177:436–438 http://dx.doi.org/10.1016/j.tvjl.2007.05.008. [PubMed]
108. de Garnica ML, Rosales RS, Gonzalo C, Santos JA, Nicholas RA. 2013. Isolation, molecular characterization and antimicrobial susceptibilities of isolates of Mycoplasma agalactiae from bulk tank milk in an endemic area of Spain. J Appl Microbiol 114:1575–1581 http://dx.doi.org/10.1111/jam.12176. [PubMed]
109. Loria GR, Sammartino C, Nicholas RA, Ayling RD. 2003. In vitro susceptibilities of field isolates of Mycoplasma agalactiae to oxytetracycline, tylosin, enrofloxacin, spiramycin and lincomycin-spectinomycin. Res Vet Sci 75:3–7 http://dx.doi.org/10.1016/S0034-5288(03)00030-4.
110. Filioussis G, Petridou E, Giadinis ND, Kritas SK. 2014. In vitro susceptibilities of caprine Mycoplasma agalactiae field isolates to six antimicrobial agents using the E test methodology. Vet J 202:654–656 http://dx.doi.org/10.1016/j.tvjl.2014.08.024. [PubMed]
111. Prats-van der Ham M, Tatay-Dualde J, de la Fe C, Paterna A, Sánchez A, Corrales JC, Contreras A, Gómez-Martín Á. 2017. Molecular resistance mechanisms of Mycoplasma agalactiae to macrolides and lincomycin. Vet Microbiol 211:135–140 http://dx.doi.org/10.1016/j.vetmic.2017.10.012. [PubMed]
112. Tatay-Dualde J, Prats-van der Ham M, de la Fe C, Paterna A, Sánchez A, Corrales JC, Contreras A, Gómez-Martín Á. 2017. Mutations in the quinolone resistance determining region conferring resistance to fluoroquinolones in Mycoplasma agalactiae. Vet Microbiol 207:63–68 http://dx.doi.org/10.1016/j.vetmic.2017.06.003. [PubMed]
113. Regnier A, Laroute V, Gautier-Bouchardon A, Gayrard V, Picard-Hagen N, Toutain PL. 2013. Florfenicol concentrations in ovine tear fluid following intramuscular and subcutaneous administration and comparison with the minimum inhibitory concentrations against mycoplasmal strains potentially involved in infectious keratoconjunctivitis. Am J Vet Res 74:268–274 http://dx.doi.org/10.2460/ajvr.74.2.268. [PubMed]
114. Paterna A, Sánchez A, Gómez-Martín A, Corrales JC, De la Fe C, Contreras A, Amores J. 2013. Short communication: in vitro antimicrobial susceptibility of Mycoplasma agalactiae strains isolated from dairy goats. J Dairy Sci 96:7073–7076 http://dx.doi.org/10.3168/jds.2012-6492. [PubMed]
115. Gautier-Bouchardon AV, Reinhardt AK, Kobisch M, Kempf I. 2002. In vitro development of resistance to enrofloxacin, erythromycin, tylosin, tiamulin and oxytetracycline in Mycoplasma gallisepticum, Mycoplasma iowae and Mycoplasma synoviae. Vet Microbiol 88:47–58 http://dx.doi.org/10.1016/S0378-1135(02)00087-1.
116. Sulyok KM, Kreizinger Z, Wehmann E, Lysnyansky I, Bányai K, Marton S, Jerzsele Á, Rónai Z, Turcsányi I, Makrai L, Jánosi S, Nagy SA, Gyuranecz M. 2017. Mutations associated with decreased susceptibility to seven antimicrobial families in field and laboratory-derived Mycoplasma bovis strains. Antimicrob Agents Chemother 61:e01983-16. [PubMed]
117. Wu CM, Wu H, Ning Y, Wang J, Du X, Shen J. 2005. Induction of macrolide resistance in Mycoplasma gallisepticum in vitro and its resistance-related mutations within domain V of 23S rRNA. FEMS Microbiol Lett 247:199–205 http://dx.doi.org/10.1016/j.femsle.2005.05.012. [PubMed]
118. Le Carrou J, Laurentie M, Kobisch M, Gautier-Bouchardon AV. 2006. Persistence of Mycoplasma hyopneumoniae in experimentally infected pigs after marbofloxacin treatment and detection of mutations in the parC gene. Antimicrob Agents Chemother 50:1959–1966 http://dx.doi.org/10.1128/AAC.01527-05. [PubMed]
119. Khalil D, Becker CAM, Tardy F. 2017. Monitoring the decrease in susceptibility to ribosomal RNAs targeting antimicrobials and its molecular basis in clinical Mycoplasma bovis isolates over time. Microb Drug Resist 23:799–811.
120. Leclercq R. 2002. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492 http://dx.doi.org/10.1086/324626. [PubMed]
121. Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S. 2004. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Antimicrob Agents Chemother 48:3677–3683 http://dx.doi.org/10.1128/AAC.48.10.3677-3683.2004. [PubMed]
122. Poehlsgaard J, Andersen NM, Warrass R, Douthwaite S. 2012. Visualizing the 16-membered ring macrolides tildipirosin and tilmicosin bound to their ribosomal site. ACS Chem Biol 7:1351–1355 http://dx.doi.org/10.1021/cb300105p. [PubMed]
123. Lerner U, Amram E, Ayling RD, Mikula I, Gerchman I, Harrus S, Teff D, Yogev D, Lysnyansky I. 2014. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis. Vet Microbiol 168:365–371 http://dx.doi.org/10.1016/j.vetmic.2013.11.033. [PubMed]
124. Andersen NM, Poehlsgaard J, Warrass R, Douthwaite S. 2012. Inhibition of protein synthesis on the ribosome by tildipirosin compared with other veterinary macrolides. Antimicrob Agents Chemother 56:6033–6036 http://dx.doi.org/10.1128/AAC.01250-12. [PubMed]
125. Razin A, Razin S. 1980. Methylated bases in mycoplasmal DNA. Nucleic Acids Res 8:1383–1390 http://dx.doi.org/10.1093/nar/8.6.1383. [PubMed]
126. Luo W, Tu AH, Cao Z, Yu H, Dybvig K. 2009. Identification of an isoschizomer of the HhaI DNA methyltransferase in Mycoplasma arthritidis. FEMS Microbiol Lett 290:195–198 http://dx.doi.org/10.1111/j.1574-6968.2008.01428.x. [PubMed]
127. Wojciechowski M, Czapinska H, Bochtler M. 2013. CpG underrepresentation and the bacterial CpG-specific DNA methyltransferase M.MpeI. Proc Natl Acad Sci USA 110:105–110 http://dx.doi.org/10.1073/pnas.1207986110. [PubMed]
128. Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L. 2013. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 9:e1003191 http://dx.doi.org/10.1371/journal.pgen.1003191. [PubMed]
129. Lu C, Ye T, Zhu G, Feng P, Ma H, Lu R, Lai W. 2010. Phenotypic and genetic characteristics of macrolide and lincosamide resistant Ureaplasma urealyticum isolated in Guangzhou, China. Curr Microbiol 61:44–49 http://dx.doi.org/10.1007/s00284-009-9574-9.
130. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–1154 http://dx.doi.org/10.1016/S0092-8674(00)00216-6.
131. Amram E, Mikula I, Schnee C, Ayling RD, Nicholas RA, Rosales RS, Harrus S, Lysnyansky I. 2015. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis. Antimicrob Agents Chemother 59:796–802 http://dx.doi.org/10.1128/AAC.03876-14. [PubMed]
132. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. 2014. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445 http://dx.doi.org/10.1016/j.tim.2014.04.007. [PubMed]
133. Reinhardt AK, Bébéar CM, Kobisch M, Kempf I, Gautier-Bouchardon AV. 2002. Characterization of mutations in DNA gyrase and topoisomerase IV involved in quinolone resistance of Mycoplasma gallisepticum mutants obtained in vitro. Antimicrob Agents Chemother 46:590–593 http://dx.doi.org/10.1128/AAC.46.2.590-593.2002. [PubMed]
134. Reinhardt AK, Kempf I, Kobisch M, Gautier-Bouchardon AV. 2002. Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target of enrofloxacin and impact of mutations in topoisomerases on resistance level. J Antimicrob Chemother 50:589–592 http://dx.doi.org/10.1093/jac/dkf158. [PubMed]
135. Reinhardt AK. 2002. Résistance aux fluoroquinolones liées à la cible chez Mycoplasma gallisepticum: sélection de mutants et analyse des mécanismes génétiques. Thesis, University of Rennes 1, Rennes, France.
136. Lysnyansky I, Gerchman I, Perk S, Levisohn S. 2008. Molecular characterization and typing of enrofloxacin-resistant clinical isolates of Mycoplasma gallisepticum. Avian Dis 52:685–689 http://dx.doi.org/10.1637/8386-063008-RESNOTE.1. [PubMed]
137. Vicca J, Maes D, Stakenborg T, Butaye P, Minion F, Peeters J, de Kruif A, Decostere A, Haesebrouck F. 2007. Resistance mechanism against fluoroquinolones in Mycoplasma hyopneumoniae field isolates. Microb Drug Resist 13:166–170 http://dx.doi.org/10.1089/mdr.2007.716. [PubMed]
138. Lysnyansky I, Mikula I, Gerchman I, Levisohn S. 2009. Rapid detection of a point mutation in the parC gene associated with decreased susceptibility to fluoroquinolones in Mycoplasma bovis. Antimicrob Agents Chemother 53:4911–4914 http://dx.doi.org/10.1128/AAC.00703-09. [PubMed]
139. Sato T, Okubo T, Usui M, Higuchi H, Tamura Y. 2013. Amino acid substitutions in GyrA and ParC are associated with fluoroquinolone resistance in Mycoplasma bovis isolates from Japanese dairy calves. J Vet Med Sci 75:1063–1065 http://dx.doi.org/10.1292/jvms.12-0508. [PubMed]
140. Mustafa R, Qi J, Ba X, Chen Y, Hu C, Liu X, Tu L, Peng Q, Chen H, Guo A. 2013. In vitro quinolones susceptibility analysis of Chinese Mycoplasma bovis isolates and their phylogenetic scenarios based upon QRDRs of DNA topoisomerases revealing a unique transition in ParC. Pak Vet J 33:364–369.
141. Raherison S, Gonzalez P, Renaudin H, Charron A, Bébéar C, Bébéar CM. 2005. Increased expression of two multidrug transporter-like genes is associated with ethidium bromide and ciprofloxacin resistance in Mycoplasma hominis. Antimicrob Agents Chemother 49:421–424 http://dx.doi.org/10.1128/AAC.49.1.421-424.2005. [PubMed]
142. Antunes NT, Assunção P, Poveda JB, Tavío MM. 2015. Mechanisms involved in quinolone resistance in Mycoplasma mycoides subsp. capri. Vet J 204:327–332 http://dx.doi.org/10.1016/j.tvjl.2015.04.018. [PubMed]
143. Yan K, Madden L, Choudhry AE, Voigt CS, Copeland RA, Gontarek RR. 2006. Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. Antimicrob Agents Chemother 50:3875–3881 http://dx.doi.org/10.1128/AAC.00184-06. [PubMed]
144. Li BB, Shen JZ, Cao XY, Wang Y, Dai L, Huang SY, Wu CM. 2010. Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum. FEMS Microbiol Lett 308:144–149.
145. Waites KB, Schelonka RL, Xiao L, Grigsby PL, Novy MJ. 2009. Congenital and opportunistic infections: ureaplasma species and Mycoplasma hominis. Semin Fetal Neonatal Med 14:190–199 http://dx.doi.org/10.1016/j.siny.2008.11.009. [PubMed]
146. Nir-Paz R, Saraya T, Shimizu T, Van Rossum A, Bébéar C. 2017. Editorial: Mycoplasma pneumoniae clinical manifestations, microbiology, and immunology. Front Microbiol 8:1916 http://dx.doi.org/10.3389/fmicb.2017.01916.
147. Pereyre S, Laurier Nadalié C, Bébéar C, Arfeuille C, Beby-Defaux A, Berçot B, Boisset S, Bourgeois N, Carles M-J, Decré D, Garand A-L, Gibaud S-A, Grob A, Jeannot K, Kempf M, Moreau F, Petitjean-Lecherbonnier J, Prère M-F, Salord H, Verhoeven P, investigator group. 2017. Mycoplasma genitalium and Trichomonas vaginalis in France: a point prevalence study in people screened for sexually transmitted diseases. Clin Microbiol Infect 23:122.e1–122.e7 http://dx.doi.org/10.1016/j.cmi.2016.10.028. [PubMed]
148. Aarestrup FM, Friis NF, Szancer J. 1998. Antimicrobial susceptibility of Mycoplasma hyorhinis in a liquid medium compared to a disc assay. Acta Vet Scand 39:145–147. [PubMed]
149. Lysnyansky I, Ayling RD. 2016. Mycoplasma bovis: mechanisms of resistance and trends in antimicrobial susceptibility. Front Microbiol 7:595 http://dx.doi.org/10.3389/fmicb.2016.00595. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0030-2018
2018-07-12
2018-10-17

Abstract:

Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic species of major veterinary interest: and in poultry; , , and in swine; in cattle; and in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics . Resistance frequencies vary according to the species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, -selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that information can be used to provide advice on selection of treatments.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Main pathogenic species in humans and livestock animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 2

Examples of methods used (culture media, methods and measurement, expression of results) for the determination of antimicrobial activities toward animal mycoplasmas

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 3

MIC values (range in μg/ml) for various antimicrobials against avian species ( and )

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 4

MIC values (range in μg/ml) for various antimicrobials against swine species (, , and )

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 5

MIC values (range in μg/ml) for various antimicrobials against ruminant species ( and )

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 6

Mutations in the 23S rRNA genes and in the ribosomal proteins L4 and L22 conferring resistance in animal species

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018
Generic image for table
TABLE 7

mutations in DNA-gyrase (GyrA and GyrB) and topoisomerase IV (ParC and ParE) associated with fluoroquinolone resistance in animal species

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0030-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error