1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp. of animal origin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Carmen Torres1, Carla Andrea Alonso2, Laura Ruiz-Ripa3, Ricardo León-Sampedro4, Rosa Del Campo6, Teresa M. Coque8
  • Editors: Frank Møller Aarestrup10, Stefan Schwarz11, Jianzhong Shen12, Lina Cavaco13
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain; 2: Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain; 3: Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain; 4: Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; 5: Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; 6: Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; 7: Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; 8: Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain; 9: Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; 10: Technical University of Denmark, Lyngby, Denmark; 11: Freie Universität Berlin, Berlin, Germany; 12: China Agricultural University, Beijing, China; 13: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
  • Received 29 March 2018 Accepted 05 April 2018 Published 26 July 2018
  • Carmel Torres, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Enterococcus</span> spp. of animal origin
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in spp. of animal origin, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0032-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0032-2018-2.gif
  • Abstract:

    Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, is an important opportunistic pathogen, especially the species and , causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as and , is highlighted. The molecular epidemiology and the population structure of and isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.

  • Citation: Torres C, Alonso C, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque T. 2018. Antimicrobial Resistance in spp. of animal origin. Microbiol Spectrum 6(4):ARBA-0032-2018. doi:10.1128/microbiolspec.ARBA-0032-2018.

References

1. Boehm AB, Sassoubre LM. 2014. Enterococci as indicators of environmental fecal contamination. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Eye and Ear Infirmary, Boston, MA. [PubMed]
2. Tyson GH, Nyirabahizi E, Crarey E, Kabera C, Lam C, Rice-Trujillo C, McDermott PF, Tate H. 2017. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002–2014. Appl Environ Microbiol 84:e01902–e01917. [PubMed]
3. Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278 http://dx.doi.org/10.1038/nrmicro2761. [PubMed]
4. European Centre for Disease Prevention and Control (ECDC). 2011. Annual epidemiological report on communicable diseases in Europe. Euro Surveill 16:20012.
5. Iaria C, Stassi G, Costa GB, Di Leo R, Toscano A, Cascio A. 2005. Enterococcal meningitis caused by Enterococcus casseliflavus. First case report. BMC Infect Dis 5:3 http://dx.doi.org/10.1186/1471-2334-5-3. [PubMed]
6. Canalejo E, Ballesteros R, Cabezudo J, García-Arata MI, Moreno J. 2008. Bacteraemic spondylodiscitis caused by Enterococcus hirae. Eur J Clin Microbiol Infect Dis 27:613–615 http://dx.doi.org/10.1007/s10096-008-0476-8. [PubMed]
7. Mastroianni A. 2009. Enterococcus raffinosus endocarditis. First case and literature review. Infez Med 17:14–20. [PubMed]
8. Antonello VS, Zenkner FM, França J, Santos BR. 2010. Enterococcus gallinarum meningitis in an immunocompetent host: a case report. Rev Inst Med Trop São Paulo 52:111–112 http://dx.doi.org/10.1590/S0036-46652010000200009. [PubMed]
9. Escribano JA, Solivera J, Vidal E, Rivin E, Lozano J. 2013. Otogenic cerebellar abscess by Enterococcus avium, a very rare infectious agent. J Neurol Surg A Cent Eur Neurosurg 74(Suppl 1):e155–e158 http://dx.doi.org/10.1055/s-0032-1333418. [PubMed]
10. Kenzaka T, Takamura N, Kumabe A, Takeda K. 2013. A case of subacute infective endocarditis and blood access infection caused by Enterococcus durans. BMC Infect Dis 13:594 http://dx.doi.org/10.1186/1471-2334-13-594. [PubMed]
11. Lebreton F, Willems RJL, Gilmore MS. 2014. Enterococcus diversity, origins in nature, and gut colonization. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Eye and Ear Infirmary, Boston, MA.
12. Aarestrup FM, Butaye P, Witte W. 2002. Nonhuman reservoirs of enterococci, p 1281–1289. In Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB (ed), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC.
13. Aarestrup FM (ed). 2006. Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
14. Stalker MJ, Brash ML, Weisz A, Ouckama RM, Slavic D. 2010. Arthritis and osteomyelitis associated with Enterococcus cecorum infection in broiler and broiler breeder chickens in Ontario, Canada. J Vet Diagn Invest 22:643–645 http://dx.doi.org/10.1177/104063871002200426.
15. Dolka B, Chrobak-Chmiel D, Makrai L, Szeleszczuk P. 2016. Phenotypic and genotypic characterization of Enterococcus cecorum strains associated with infections in poultry. BMC Vet Res 12:129 http://dx.doi.org/10.1186/s12917-016-0761-1. [PubMed]
16. Kak V, Chow JM. 2002. Acquired antibiotic resistances in enterococci, p 355–383. In Gilmore MS, Clewell B, Courvalin P, Dunny GM, Murray BM, Rice LB (ed), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC.
17. Hollenbeck BL, Rice LB. 2012. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433 http://dx.doi.org/10.4161/viru.21282. [PubMed]
18. Miller WR, Munita JM, Arias CA. 2014. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 12:1221–1236 http://dx.doi.org/10.1586/14787210.2014.956092. [PubMed]
19. Courvalin P. 2006. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34 http://dx.doi.org/10.1086/491711. [PubMed]
20. Nilsson O. 2012. Vancomycin resistant enterococci in farm animals: occurrence and importance. Infect Ecol Epidemiol 2:16959 http://dx.doi.org/10.3402/iee.v2i0.16959. [PubMed]
21. Cattoir V, Leclercq R. 2013. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother 68:731–742 http://dx.doi.org/10.1093/jac/dks469. [PubMed]
22. Ahmed MO, Baptiste KE. 2017. Vancomycin-resistant enterococci: a review of antimicrobial resistant mechanisms and perspectives of human and animal health. Microb Drug Resist. Epub ahead of print. doi:10.1089/mdr.2017.0147.
23. Chow JW. 2000. Aminoglycoside resistance in enterococci. Clin Infect Dis 31:586–589 http://dx.doi.org/10.1086/313949. [PubMed]
24. Hammerum AM, Lester CH, Heuer OE. 2010. Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Foodborne Pathog Dis 7:1137–1146 http://dx.doi.org/10.1089/fpd.2010.0552. [PubMed]
25. Bortolaia V, Espinosa-Gongora C, Guardabassi L. 2016. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect 22:130–140 http://dx.doi.org/10.1016/j.cmi.2015.12.003. [PubMed]
26. Hammerum AM. 2012. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625 http://dx.doi.org/10.1111/j.1469-0691.2012.03829.x. [PubMed]
27. Bortolaia V, Guardabassi L. 2015. Zoonotic transmission of antimicrobial resistant enterococci: a threat to public health or an overemphasized risk? p 407–431. In Sing A (ed), Zoonoses: Infections Affecting Humans and Animals. Focus on Public Health Aspects. Springer, New York, NY. http://dx.doi.org/10.1007/978-94-017-9457-2_16
28. Stiles ME, Holzapfel WH. 1997. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36:1–29 http://dx.doi.org/10.1016/S0168-1605(96)01233-0.
29. Lund B, Adamsson I, Edlund C. 2002. Gastrointestinal transit survival of an Enterococcus faecium probiotic strain administered with or without vancomycin. Int J Food Microbiol 77:109–115 http://dx.doi.org/10.1016/S0168-1605(02)00047-8.
30. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24 http://dx.doi.org/10.1016/j.ijfoodmicro.2005.06.026. [PubMed]
31. Zhong Z, Zhang W, Song Y, Liu W, Xu H, Xi X, Menghe B, Zhang H, Sun Z. 2017. Comparative genomic analysis of the genus Enterococcus. Microbiol Res 196:95–105 http://dx.doi.org/10.1016/j.micres.2016.12.009. [PubMed]
32. Schleifer KH, Kilpper-Balz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:31–34 http://dx.doi.org/10.1099/00207713-34-1-31.
33. Parte AC. 2014. LPSN: list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(D1):D613–D616 http://dx.doi.org/10.1093/nar/gkt1111. [PubMed]
34. De Graef EM, Devriese LA, Vancanneyt M, Baele M, Collins MD, Lefebvre K, Swings J, Haesebrouck F. 2003. Description of Enterococcus canis sp. nov. from dogs and reclassification of Enterococcus porcinus Teixeira et al. 2001 as a junior synonym of Enterococcus villorum Vancanneyt et al. 2001. Int J Syst Evol Microbiol 53:1069–1074 http://dx.doi.org/10.1099/ijs.0.02549-0. [PubMed]
35. Law-Brown J, Meyers PR. 2003. Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the red-billed woodhoopoe, Phoeniculus purpureus. Int J Syst Evol Microbiol 53:683–685 http://dx.doi.org/10.1099/ijs.0.02334-0.
36. Fortina MG, Ricci G, Mora D, Manachini PL. 2004. Molecular analysis of artisanal Italian cheeses reveals Enterococcus italicus sp. nov. Int J Syst Evol Microbiol 54:1717–1721 http://dx.doi.org/10.1099/ijs.0.63190-0. [PubMed]
37. Švec P, Vancanneyt M, Koort J, Naser SM, Hoste B, Vihavainen E, Vandamme P, Swings J, Björkroth J. 2005. Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol 55:2479–2484 http://dx.doi.org/10.1099/ijs.0.63851-0. [PubMed]
38. Tanasupawat S, Sukontasing S, Lee JS. 2008. Enterococcus thailandicus sp. nov., isolated from fermented sausage (‘mum’) in Thailand. Int J Syst Evol Microbiol 58:1630–1634 http://dx.doi.org/10.1099/ijs.0.65535-0. [PubMed]
39. Švec P, Vandamme P, Bryndová H, Holochová P, Kosina M, Maslanová I, Sedlácek I. 2012. Enterococcus plantarum sp. nov., isolated from plants. Int J Syst Evol Microbiol 62:1499–1505 http://dx.doi.org/10.1099/ijs.0.033357-0. [PubMed]
40. Niemi RM, Ollinkangas T, Paulin L, Švec P, Vandamme P, Karkman A, Kosina M, Lindström K. 2012. Enterococcus rivorum sp. nov., from water of pristine brooks. Int J Syst Evol Microbiol 62:2169–2173 http://dx.doi.org/10.1099/ijs.0.038257-0. [PubMed]
41. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P, Cleenwerck I, De Vos P, Bergeron MG. 2012. Enterococcus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 62:1314–1320 http://dx.doi.org/10.1099/ijs.0.029033-0. [PubMed]
42. Sedláček I, Holochová P, Mašlaňová I, Kosina M, Spröer C, Bryndová H, Vandamme P, Rudolf I, Hubálek Z, Švec P. 2013. Enterococcus ureilyticus sp. nov. and Enterococcus rotai sp. nov., two urease-producing enterococci from the environment. Int J Syst Evol Microbiol 63:502–510 http://dx.doi.org/10.1099/ijs.0.041152-0. [PubMed]
43. Mundt JO. 1963. Occurrence of enterococci in animals in a wild environment. Appl Microbiol 11:136–140. [PubMed]
44. Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, Aarestrup F, Seyfarth AM, Blanch AR, Vilanova X, Taylor H, Caplin J, Moreno MA, Dominguez L, Herrero IA, Möllby R. 2003. Comparison of enterococcal populations in animals, humans, and the environment: a European study. Int J Food Microbiol 88:133–145 http://dx.doi.org/10.1016/S0168-1605(03)00176-4.
45. Devriese LA, Ceyssens K, Haesebrouck F. 1991a. Characteristics of Enterococcus cecorum strains from the intestines of different animal species. Lett Appl Microbiol 12:137–139 http://dx.doi.org/10.1111/j.1472-765X.1991.tb00524.x.
46. Devriese LA, Laurier L, De Herdt P, Haesebrouck F. 1992. Enterococcal and streptococcal species isolated from faeces of calves, young cattle and dairy cows. J Appl Bacteriol 72:29–31 http://dx.doi.org/10.1111/j.1365-2672.1992.tb04877.x. [PubMed]
47. Scupham AJ, Patton TG, Bent E, Bayles DO. 2008. Comparison of the cecal microbiota of domestic and wild turkeys. Microb Ecol 56:322–331 http://dx.doi.org/10.1007/s00248-007-9349-4. [PubMed]
48. Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM, Chen S. 2002. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol Ecol 41:171–179 http://dx.doi.org/10.1111/j.1574-6941.2002.tb00978.x. [PubMed]
49. Devriese LA, Hommez J, Wijfels R, Haesebrouck F. 1991. Composition of the enterococcal and streptococcal intestinal flora of poultry. J Appl Bacteriol 71:46–50 http://dx.doi.org/10.1111/j.1365-2672.1991.tb04585.x. [PubMed]
50. Kojima A, Morioka A, Kijima M, Ishihara K, Asai T, Fujisawa T, Tamura Y, Takahashi T. 2010. Classification and antimicrobial susceptibilities of Enterococcus species isolated from apparently healthy food-producing animals in Japan. Zoonoses Public Health 57:137–141 http://dx.doi.org/10.1111/j.1863-2378.2008.01204.x. [PubMed]
51. Iweriebor BC, Obi LC, Okoh AI. 2016. Macrolide, glycopeptide resistance and virulence genes in Enterococcus species isolates from dairy cattle. J Med Microbiol 65:641–648 http://dx.doi.org/10.1099/jmm.0.000275. [PubMed]
52. Beukers AG, Zaheer R, Cook SR, Stanford K, Chaves AV, Ward MP, McAllister TA. 2015. Effect of in-feed administration and withdrawal of tylosin phosphate on antibiotic resistance in enterococci isolated from feedlot steers. Front Microbiol 6:483 http://dx.doi.org/10.3389/fmicb.2015.00483. [PubMed]
53. Hwang IY, Ku HO, Lim SK, Park CK, Jung GS, Jung SC, Nam HM. 2009. Species distribution and resistance patterns to growth-promoting antimicrobials of enterococci isolated from pigs and chickens in Korea. J Vet Diagn Invest 21:858–862 http://dx.doi.org/10.1177/104063870902100616. [PubMed]
54. Vancanneyt M, Snauwaert C, Cleenwerck I, Baele M, Descheemaeker P, Goossens H, Pot B, Vandamme P, Swings J, Haesebrouck F, Devriese LA. 2001. Enterococcus villorum sp. nov., an enteroadherent bacterium associated with diarrhoea in piglets. Int J Syst Evol Microbiol 51:393–400 http://dx.doi.org/10.1099/00207713-51-2-393. [PubMed]
55. Liu Y, Wang Y, Schwarz S, Li Y, Shen Z, Zhang Q, Wu C, Shen J. 2013. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother 57:42–48 http://dx.doi.org/10.1128/AAC.01605-12. [PubMed]
56. Devriese LA, Cruz Colque JI, De Herdt P, Haesebrouck F. 1992. Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats. J Appl Bacteriol 73:421–425 http://dx.doi.org/10.1111/j.1365-2672.1992.tb04998.x. [PubMed]
57. Rodrigues J, Poeta P, Martins A, Costa D. 2002. The importance of pets as reservoirs of resistant Enterococcus strains, with special reference to vancomycin. J Vet Med B Infect Dis Vet Public Health 49:278–280 http://dx.doi.org/10.1046/j.1439-0450.2002.00561.x. [PubMed]
58. Jackson CR, Fedorka-Cray PJ, Davis JA, Barrett JB, Frye JG. 2009. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J Appl Microbiol 107:1269–1278 http://dx.doi.org/10.1111/j.1365-2672.2009.04310.x. [PubMed]
59. Ben Said L, Dziri R, Sassi N, Lozano C, Ben Slama K, Ouzari I, Torres C, Klibi N. 2017. Species distribution, antibiotic resistance and virulence traits in canine and feline enterococci in Tunisia. Acta Vet Hung 65:173–184 http://dx.doi.org/10.1556/004.2017.018. [PubMed]
60. Naser SM, Vancanneyt M, De Graef E, Devriese LA, Snauwaert C, Lefebvre K, Hoste B, Svec P, Decostere A, Haesebrouck F, Swings J. 2005. Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int J Syst Evol Microbiol 55:2177–2182 http://dx.doi.org/10.1099/ijs.0.63752-0. [PubMed]
61. Baele M, Devriese LA, Butaye P, Haesebrouck F. 2002. Composition of enterococcal and streptococcal flora from pigeon intestines. J Appl Microbiol 92:348–351 http://dx.doi.org/10.1046/j.1365-2672.2002.01537.x. [PubMed]
62. Splichalova P, Svec P, Ghosh A, Zurek L, Oravcova V, Radimersky T, Bohus M, Literak I. 2015. Prevalence, diversity and characterization of enterococci from three coraciiform birds. Antonie van Leeuwenhoek 107:1281–1289 http://dx.doi.org/10.1007/s10482-015-0422-6. [PubMed]
63. Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R, Igrejas G. 2012. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J Med Microbiol 61:837–843 http://dx.doi.org/10.1099/jmm.0.038364-0. [PubMed]
64. Silva N, Igrejas G, Rodrigues P, Rodrigues T, Gonçalves A, Felgar AC, Pacheco R, Gonçalves D, Cunha R, Poeta P. 2011. Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathol 40:473–479 http://dx.doi.org/10.1080/03079457.2011.599061. [PubMed]
65. Marinho C, Silva N, Pombo S, Santos T, Monteiro R, Gonçalves A, Micael J, Rodrigues P, Costa AC, Igrejas G, Poeta P. 2013. Echinoderms from Azores islands: an unexpected source of antibiotic resistant Enterococcus spp. and Escherichia coli isolates. Mar Pollut Bull 69:122–127 http://dx.doi.org/10.1016/j.marpolbul.2013.01.017. [PubMed]
66. Medeiros AW, Blaese Amorim D, Tavares M, de Moura TM, Franco AC, d’Azevedo PA, Frazzon J, Frazzon AP. 2017. Enterococcus species diversity in fecal samples of wild marine species as determined by real-time PCR. Can J Microbiol 63:129–136 http://dx.doi.org/10.1139/cjm-2016-0427. [PubMed]
67. Farnleitner AH, Ryzinska-Paier G, Reischer GH, Burtscher MM, Knetsch S, Kirschner AK, Dirnböck T, Kuschnig G, Mach RL, Sommer R. 2010. Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. J Appl Microbiol 109:1599–1608.
68. Radhouani H, Igrejas G, Carvalho C, Pinto L, Gonçalves A, Lopez M, Sargo R, Cardoso L, Martinho A, Rego V, Rodrigues R, Torres C, Poeta P. 2011. Clonal lineages, antibiotic resistance and virulence factors in vancomycin-resistant enterococci isolated from fecal samples of red foxes (Vulpes vulpes). J Wildl Dis 47:769–773 http://dx.doi.org/10.7589/0090-3558-47.3.769. [PubMed]
69. Lozano C, González-Barrio D, García JT, Ceballos S, Olea PP, Ruiz-Fons F, Torres C. 2015. Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet Microbiol 177:168–174 http://dx.doi.org/10.1016/j.vetmic.2015.02.025. [PubMed]
70. Fontana R, Aldegheri M, Ligozzi M, Lopez H, Sucari A, Satta G. 1994. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 38:1980–1983 http://dx.doi.org/10.1128/AAC.38.9.1980. [PubMed]
71. Ligozzi M, Pittaluga F, Fontana R. 1996. Modification of penicillin-binding protein 5 associated with high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 40:354–357. [PubMed]
72. Montealegre MC, Roh JH, Rae M, Davlieva MG, Singh KV, Shamoo Y, Murray BE. 2016. Differential penicillin-binding protein 5 (PBP5) levels in the Enterococcus faecium clades with different levels of ampicillin resistance. Antimicrob Agents Chemother 61:e02034-16. [PubMed]
73. Jureen R, Top J, Mohn SC, Harthug S, Langeland N, Willems RJ. 2003. Molecular characterization of ampicillin-resistant Enterococcus faecium isolates from hospitalized patients in Norway. J Clin Microbiol 41:2330–2336 http://dx.doi.org/10.1128/JCM.41.6.2330-2336.2003. [PubMed]
74. Poeta P, Costa D, Igrejas G, Sáenz Y, Zarazaga M, Rodrigues J, Torres C. 2007. Polymorphisms of the pbp5 gene and correlation with ampicillin resistance in Enterococcus faecium isolates of animal origin. J Med Microbiol 56:236–240 http://dx.doi.org/10.1099/jmm.0.46778-0. [PubMed]
75. Klibi N, Sáenz Y, Zarazaga M, Ben Slama K, Masmoudi A, Ruiz-Larrea F, Boudabous A, Torres C. 2008. Polymorphism in pbp5 gene detected in clinical Enterococcus faecium strains with different ampicillin MICs from a Tunisian hospital. J Chemother 20:436–440 http://dx.doi.org/10.1179/joc.2008.20.4.436. [PubMed]
76. Kristich CJ, Rice LB, Arias CA. 2014. Enterococcal infection treatment and antibiotic resistance, In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Eye and Ear Infirmary, Boston: MA.
77. Galloway-Peña JR, Rice LB, Murray BE. 2011. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob Agents Chemother 55:3272–3277 http://dx.doi.org/10.1128/AAC.00099-11. [PubMed]
78. Pietta E, Montealegre MC, Roh JH, Cocconcelli PS, Murray BE. 2014. Enterococcus faecium PBP5-S/R, the missing link between PBP5-S and PBP5-R. Antimicrob Agents Chemother 58:6978–6981 http://dx.doi.org/10.1128/AAC.03648-14. [PubMed]
79. Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJ, Earl AM, Gilmore MS. 2013. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 4:e00534-13 http://dx.doi.org/10.1128/mBio.00534-13. [PubMed]
80. Ono S, Muratani T, Matsumoto T. 2005. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother 49:2954–2958 http://dx.doi.org/10.1128/AAC.49.7.2954-2958.2005. [PubMed]
81. Murray BE, Lopardo HA, Rubeglio EA, Frosolono M, Singh KV. 1992. Intrahospital spread of a single gentamicin-resistant, beta-lactamase-producing strain of Enterococcus faecalis in Argentina. Antimicrob Agents Chemother 36:230–232 http://dx.doi.org/10.1128/AAC.36.1.230. [PubMed]
82. Coudron PE, Markowitz SM, Wong ES. 1992. Isolation of a beta-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium. Antimicrob Agents Chemother 36:1125–1126 http://dx.doi.org/10.1128/AAC.36.5.1125. [PubMed]
83. Sarti M, Campanile F, Sabia C, Santagati M, Gargiulo R, Stefani S. 2012. Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol 50:169–172 http://dx.doi.org/10.1128/JCM.05640-11. [PubMed]
84. Rice LB, Carias LL, Rudin S, Lakticová V, Wood A, Hutton-Thomas R. 2005. Enterococcus faecium low-affinity pbp5 is a transferable determinant. Antimicrob Agents Chemother 49:5007–5012 http://dx.doi.org/10.1128/AAC.49.12.5007-5012.2005. [PubMed]
85. Novais C, Freitas AR, Silveira E, Antunes P, Silva R, Coque TM, Peixe L. 2013. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. J Antimicrob Chemother 68:2746–2754 http://dx.doi.org/10.1093/jac/dkt289. [PubMed]
86. Novais C, Tedim AP, Lanza VF, Freitas AR, Silveira E, Escada R, Roberts AP, Al-Haroni M, Baquero F, Peixe L, Coque TM. 2016. Co-diversification of Enterococcus faecium core genomes and PBP5: evidences of pbp5 horizontal transfer. Front Microbiol 7:1581 http://dx.doi.org/10.3389/fmicb.2016.01581. [PubMed]
87. Barlow RS, McMillan KE, Duffy LL, Fegan N, Jordan D, Mellor GE. 2017. Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter. PLoS One 12:e0177728 http://dx.doi.org/10.1371/journal.pone.0177728. [PubMed]
88. Poeta P, Costa D, Rodrigues J, Torres C. 2006. Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal. Int J Antimicrob Agents 27:131–137 http://dx.doi.org/10.1016/j.ijantimicag.2005.09.018. [PubMed]
89. Damborg P, Top J, Hendrickx AP, Dawson S, Willems RJ, Guardabassi L. 2009. Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Appl Environ Microbiol 75:2360–2365 http://dx.doi.org/10.1128/AEM.02035-08. [PubMed]
90. Gonçalves A, Igrejas G, Radhouani H, Correia S, Pacheco R, Santos T, Monteiro R, Guerra A, Petrucci-Fonseca F, Brito F, Torres C, Poeta P. 2013. Antimicrobial resistance in faecal enterococci and Escherichia coli isolates recovered from Iberian wolf. Lett Appl Microbiol 56:268–274 http://dx.doi.org/10.1111/lam.12044. [PubMed]
91. Barros J, Igrejas G, Andrade M, Radhouani H, López M, Torres C, Poeta P. 2011. Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. A potential bioindicator of marine contamination? Mar Pollut Bull 62:1245–1248 http://dx.doi.org/10.1016/j.marpolbul.2011.03.021. [PubMed]
92. Gonçalves A, Igrejas G, Radhouani H, Santos T, Monteiro R, Pacheco R, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P. 2013. Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Sci Total Environ 456-457:115–119 http://dx.doi.org/10.1016/j.scitotenv.2013.03.073. [PubMed]
93. DANMAP. 2014. Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. www.danmap.org.
94. Swedres-Svarm. 2015. Consumption of antibiotics and occurrence of antibiotic resistance in Sweden. Solna/Uppsala, Sweden.
95. NethMap-MARAN. 2015. Monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2014. Nigmegen. SWAB. https://www.swab.nl/nethmap
96. Uttley AH, George RC, Naidoo J, Woodford N, Johnson AP, Collins CH, Morrison D, Gilfillan AJ, Fitch LE, Heptonstall J. 1989. High-level vancomycin-resistant enterococci causing hospital infections. Epidemiol Infect 103:173–181 http://dx.doi.org/10.1017/S0950268800030478.
97. Leclercq R, Derlot E, Duval J, Courvalin P. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161 http://dx.doi.org/10.1056/NEJM198807213190307. [PubMed]
98. European Centre for Disease Prevention and Control. 2017. Antimicrobial resistance surveillance in Europe 2016. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC, Stockholm, Sweden.
99. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S, Leclercq R, Courvalin P, Cattoir V. 2011. d-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612 http://dx.doi.org/10.1128/AAC.00714-11. [PubMed]
100. Boyd DA, Du T, Hizon R, Kaplen B, Murphy T, Tyler S, Brown S, Jamieson F, Weiss K, Mulvey MR. 2006. VanG-type vancomycin-resistant Enterococcus faecalis strains isolated in Canada. Antimicrob Agents Chemother 50:2217–2221 http://dx.doi.org/10.1128/AAC.01541-05. [PubMed]
101. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. 2008. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel d-Ala-d-Ser gene cluster, vanL. Antimicrob Agents Chemother 52:2667–2672 http://dx.doi.org/10.1128/AAC.01516-07. [PubMed]
102. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y, Zhu D, Hu F, Zhang Y, Wang F, Jacoby GA, Wang M. 2010. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 54:4643–4647 http://dx.doi.org/10.1128/AAC.01710-09. [PubMed]
103. Depardieu F, Foucault ML, Bell J, Dubouix A, Guibert M, Lavigne JP, Levast M, Courvalin P. 2009. New combinations of mutations in VanD-type vancomycin-resistant Enterococcus faecium, Enterococcus faecalis, and Enterococcus avium strains. Antimicrob Agents Chemother 53:1952–1963 http://dx.doi.org/10.1128/AAC.01348-08. [PubMed]
104. López M, Rezusta A, Seral C, Aspiroz C, Marne C, Aldea MJ, Ferrer I, Revillo MJ, Castillo FJ, Torres C. 2012. Detection and characterization of a ST6 clone of vanB2-Enterococcus faecalis from three different hospitals in Spain. Eur J Clin Microbiol Infect Dis 31:257–260 http://dx.doi.org/10.1007/s10096-011-1303-1. [PubMed]
105. Patel R, Piper K, Cockerill FR III, Steckelberg JM, Yousten AA. 2000. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother 44:705–709 http://dx.doi.org/10.1128/AAC.44.3.705-709.2000. [PubMed]
106. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. 2010. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554 http://dx.doi.org/10.1111/j.1469-0691.2010.03226.x. [PubMed]
107. Arthur M, Quintiliani R Jr. 2001. Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother 45:375–381 http://dx.doi.org/10.1128/AAC.45.2.375-381.2001. [PubMed]
108. Arthur M, Courvalin P. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37:1563–1571 http://dx.doi.org/10.1128/AAC.37.8.1563. [PubMed]
109. López M, Sáenz Y, Alvarez-Martínez MJ, Marco F, Robredo B, Rojo-Bezares B, Ruiz-Larrea F, Zarazaga M, Torres C. 2010. Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin. J Antimicrob Chemother 65:1570–1575 http://dx.doi.org/10.1093/jac/dkq192. [PubMed]
110. Werner G, Strommenger B, Witte W. 2008. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol 3:547–562 http://dx.doi.org/10.2217/17460913.3.5.547. [PubMed]
111. Patel R. 2003. Clinical impact of vancomycin-resistant enterococci. J Antimicrob Chemother 51(Suppl 3):iii13–iii21 http://dx.doi.org/10.1093/jac/dkg272. [PubMed]
112. Bager F, Madsen M, Christensen J, Aarestrup FM. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112 http://dx.doi.org/10.1016/S0167-5877(96)01119-1.
113. Aarestrup FM, Kruse H, Tast E, Hammerum AM, Jensen LB. 2000. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb Drug Resist 6:63–70 http://dx.doi.org/10.1089/mdr.2000.6.63. [PubMed]
114. Robredo B, Singh KV, Baquero F, Murray BE, Torres C. 1999. From vanA Enterococcus hirae to vanA Enterococcus faecium: a study of feed supplementation with avoparcin and tylosin in young chickens. Antimicrob Agents Chemother 43:1137–1143. [PubMed]
115. Klare I, Badstübner D, Konstabel C, Böhme G, Claus H, Witte W. 1999. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5:45–52 http://dx.doi.org/10.1089/mdr.1999.5.45. [PubMed]
116. Borgen K, Sørum M, Wasteson Y, Kruse H. 2001. VanA-type vancomycin-resistant enterococci (VRE) remain prevalent in poultry carcasses 3 years after avoparcin was banned. Int J Food Microbiol 64:89–94 http://dx.doi.org/10.1016/S0168-1605(00)00435-9.
117. Bortolaia V, Mander M, Jensen LB, Olsen JE, Guardabassi L. 2015. Persistence of vancomycin resistance in multiple clones of Enterococcus faecium isolated from Danish broilers 15 years after the ban of avoparcin. Antimicrob Agents Chemother 59:2926–2929 http://dx.doi.org/10.1128/AAC.05072-14. [PubMed]
118. Lauderdale TL, Shiau YR, Wang HY, Lai JF, Huang IW, Chen PC, Chen HY, Lai SS, Liu YF, Ho M. 2007. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ Microbiol 9:819–823 http://dx.doi.org/10.1111/j.1462-2920.2006.01189.x. [PubMed]
119. van Belkun A, van den Braak N, Thomassen R, Verbrugh H, Endtz H. 1996. Vancomycin-resistant enterococci in cats and dogs. Lancet 348:1038–1039 http://dx.doi.org/10.1016/S0140-6736(05)64973-2.
120. López M, Tenorio C, Torres C. 2013. Study of vancomycin resistance in faecal enterococci from healthy humans and dogs in Spain a decade after the avoparcin ban in Europe. Zoonoses Public Health 60:160–167 http://dx.doi.org/10.1111/j.1863-2378.2012.01502.x. [PubMed]
121. Donabedian SM, Perri MB, Abdujamilova N, Gordoncillo MJ, Naqvi A, Reyes KC, Zervos MJ, Bartlett P. 2010. Characterization of vancomycin-resistant Enterococcus faecium isolated from swine in three Michigan counties. J Clin Microbiol 48:4156–4160 http://dx.doi.org/10.1128/JCM.02346-09. [PubMed]
122. Gordoncillo MJ, Donabedian S, Bartlett PC, Perri M, Zervos M, Kirkwood R, Febvay C. 2013. Isolation and molecular characterization of vancomycin-resistant Enterococcus faecium from swine in Michigan, USA. Zoonoses Public Health 60:319–326 http://dx.doi.org/10.1111/zph.12008. [PubMed]
123. Centers for Disease Control and Prevention (CDC). 1993. Nosocomial enterococci resistant to vancomycin: United States, 1989–1993. MMWR Morb Mortal Wkly Rep 42:597–599. [PubMed]
124. Goossens H. 1998. Spread of vancomycin-resistant enterococci: differences between the United States and Europe. Infect Control Hosp Epidemiol 19:546–551 http://dx.doi.org/10.2307/30141778. [PubMed]
125. Johnsen PJ, Østerhus JI, Sletvold H, Sørum M, Kruse H, Nielsen K, Simonsen GS, Sundsfjord A. 2005. Persistence of animal and human glycopeptide-resistant enterococci on two Norwegian poultry farms formerly exposed to avoparcin is associated with a widespread plasmid-mediated vanA element within a polyclonal enterococcus faecium population. Appl Environ Microbiol 71:159–168 http://dx.doi.org/10.1128/AEM.71.1.159-168.2005. [PubMed]
126. van den Bogaard AE, Willems R, London N, Top J, Stobberingh EE. 2002. Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 49:497–505 http://dx.doi.org/10.1093/jac/49.3.497. [PubMed]
127. Sørum M, Johnsen PJ, Aasnes B, Rosvoll T, Kruse H, Sundsfjord A, Simonsen GS. 2006. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl Environ Microbiol 72:516–521 http://dx.doi.org/10.1128/AEM.72.1.516-521.2006. [PubMed]
128. Robredo B, Singh KV, Baquero F, Murray BE, Torres C. 2000. Vancomycin-resistant enterococci isolated from animals and food. Int J Food Microbiol 54:197–204 http://dx.doi.org/10.1016/S0168-1605(99)00195-6.
129. Nilsson O, Greko C, Top J, Franklin A, Bengtsson B. 2009. Spread without known selective pressure of a vancomycin-resistant clone of Enterococcus faecium among broilers. J Antimicrob Chemother 63:868–872 http://dx.doi.org/10.1093/jac/dkp045. [PubMed]
130. Ghidán A, Kaszanyitzky EJ, Dobay O, Nagy K, Amyes SG, Rozgonyi F. 2008a. Distribution and genetic relatedness of vancomycin-resistant enterococci (VRE) isolated from healthy slaughtered chickens in Hungary from 2001 to 2004. Acta Vet Hung 56:13–25 http://dx.doi.org/10.1556/AVet.56.2008.1.3. [PubMed]
131. Manson JM, Smith JM, Cook GM. 2004. Persistence of vancomycin-resistant enterococci in New Zealand broilers after discontinuation of avoparcin use. Appl Environ Microbiol 70:5764–5768 http://dx.doi.org/10.1128/AEM.70.10.5764-5768.2004. [PubMed]
132. Kolar M, Pantucek R, Bardon J, Cekanova L, Kesselova M, Sauer P, Vagnerova I, Koukalová D. 2005. Occurrence of vancomycin-resistant enterococci in humans and animals in the Czech Republic between 2002 and 2004. J Med Microbiol 54:965–967 http://dx.doi.org/10.1099/jmm.0.45824-0. [PubMed]
133. Jung WK, Lim JY, Kwon NH, Kim JM, Hong SK, Koo HC, Kim SH, Park YH. 2007. Vancomycin-resistant enterococci from animal sources in Korea. Int J Food Microbiol 113:102–107 http://dx.doi.org/10.1016/j.ijfoodmicro.2006.07.023. [PubMed]
134. Tremblay CL, Letellier A, Quessy S, Boulianne M, Daignault D, Archambault M. 2011. Multiple-antibiotic resistance of Enterococcus faecalis and Enterococcus faecium from cecal contents in broiler chicken and turkey flocks slaughtered in Canada and plasmid colocalization of tetO and ermB genes. J Food Prot 74:1639–1648 http://dx.doi.org/10.4315/0362-028X.JFP-10-451. [PubMed]
135. Boulianne M, Arsenault J, Daignault D, Archambault M, Letellier A, Dutil L. 2016. Drug use and antimicrobial resistance among Escherichia coli and Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec, Canada. Can J Vet Res 80:49–59. [PubMed]
136. Poeta P, Costa D, Rodrigues J, Torres C. 2005. Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. J Antimicrob Chemother 55:278–280 http://dx.doi.org/10.1093/jac/dkh549. [PubMed]
137. Ghidán A, Dobay O, Kaszanyitzky EJ, Samu P, Amyes SG, Nagy K, Rozgonyi F. 2008. Vancomycin resistant enterococci (VRE) still persist in slaughtered poultry in hungary 8 years after the ban on avoparcin. Acta Microbiol Immunol Hung 55:409–417 http://dx.doi.org/10.1556/AMicr.55.2008.4.5. [PubMed]
138. Tzavaras I, Siarkou VI, Zdragas A, Kotzamanidis C, Vafeas G, Bourtzi-Hatzopoulou E, Pournaras S, Sofianou D. 2012. Diversity of vanA-type vancomycin-resistant Enterococcus faecium isolated from broilers, poultry slaughterers and hospitalized humans in Greece. J Antimicrob Chemother 67:1811–1818 http://dx.doi.org/10.1093/jac/dks166. [PubMed]
139. Sting R, Richter A, Popp C, Hafez HM. 2013. Occurrence of vancomycin-resistant enterococci in turkey flocks. Poult Sci 92:346–351 http://dx.doi.org/10.3382/ps.2012-02652. [PubMed]
140. Obeng AS, Rickard H, Ndi O, Sexton M, Barton M. 2013. Comparison of antimicrobial resistance patterns in enterococci from intensive and free range chickens in Australia. Avian Pathol 42:45–54 http://dx.doi.org/10.1080/03079457.2012.757576. [PubMed]
141. Maasjost J, Mühldorfer K, Hafez HM, Hafez HM, Cortez de Jäckel S. 2015. Antimicrobial susceptibility patterns of Enterococcus faecalis an Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis 59:143–148 http://dx.doi.org/10.1637/10928-090314-RegR. [PubMed]
142. Stępień-Pyśniak D, Marek A, Banach T, Adaszek Ł, Pyzik E, Wilczyński J, Winiarczyk S. 2016. Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet Hung 64:148–163 http://dx.doi.org/10.1556/004.2016.016. [PubMed]
143. Bertelloni F, Salvadori C, Moni A, Cerri D, Mani P, Ebani VV. 2015. Antimicrobial resistance in Enterococcus spp. isolated from laying hens of backyard poultry floks. Ann Agric Environ Med 22:665–669 http://dx.doi.org/10.5604/12321966.1185771. [PubMed]
144. Nilsson O, Greko C, Bengtsson B. 2009. Environmental contamination by vancomycin resistant enterococci (VRE) in Swedish broiler production. Acta Vet Scand 51:49 http://dx.doi.org/10.1186/1751-0147-51-49. [PubMed]
145. Torres C, Tenorio C, Portillo A, García M, Martínez C, Del Campo R, Ruiz-Larrea F, Zarazaga M. 2003. Intestinal colonization by vanA- or vanB2-containing enterococcal isolates of healthy animals in Spain. Microb Drug Resist 9(Suppl 1):S47–S52 http://dx.doi.org/10.1089/107662903322541892. [PubMed]
146. Herrero IA, Teshager T, Garde J, Moreno MA, Domínguez L. 2000. Prevalence of vancomycin-resistant Enterococcus faecium (VREF) in pig faeces from slaughterhouses in Spain. Prev Vet Med 47:255–262 http://dx.doi.org/10.1016/S0167-5877(00)00171-9.
147. Iweriebor BC, Obi LC, Okoh AI. 2015. Virulence and antimicrobial resistance factors of Enterococcus spp. isolated from fecal samples from piggery farms in Eastern Cape, South Africa. BMC Microbiol 15:136 http://dx.doi.org/10.1186/s12866-015-0468-7. [PubMed]
148. Fard RM, Heuzenroeder MW, Barton MD. 2011. Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet Microbiol 148:276–282 http://dx.doi.org/10.1016/j.vetmic.2010.09.002. [PubMed]
149. Bustamante W, Alpízar A, Hernández S, Pacheco A, Vargas N, Herrera ML, Vargas A, Caballero M, García F. 2003. Predominance of vanA genotype among vancomycin-resistant Enterococcus isolates from poultry and swine in Costa Rica. Appl Environ Microbiol 69:7414–7419 http://dx.doi.org/10.1128/AEM.69.12.7414-7419.2003. [PubMed]
150. Kühn I, Iversen A, Finn M, Greko C, Burman LG, Blanch AR, Vilanova X, Manero A, Taylor H, Caplin J, Domínguez L, Herrero IA, Moreno MA, Möllby R. 2005. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl Environ Microbiol 71:5383–5390 http://dx.doi.org/10.1128/AEM.71.9.5383-5390.2005. [PubMed]
151. García-Migura L, Pleydell E, Barnes S, Davies RH, Liebana E. 2005. Characterization of vancomycin-resistant Enterococcusfaecium isolates from broiler poultry and pig farms in England and Wales. J Clin Microbiol 43:3283–3289 http://dx.doi.org/10.1128/JCM.43.7.3283-3289.2005. [PubMed]
152. Kempf I, Hellard G, Perrin-Guyomard A, Gicquel-Bruneau M, Sanders P, Leclercq R. 2008. Prevalence of high-level vancomycin-resistant enterococci in French broilers and pigs. Int J Antimicrob Agents 32:463–464 http://dx.doi.org/10.1016/j.ijantimicag.2008.04.029. [PubMed]
153. Liu Y, Liu K, Lai J, Wu C, Shen J, Wang Y. 2013. Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China. J Appl Microbiol 114:555–563 http://dx.doi.org/10.1111/jam.12054. [PubMed]
154. Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP. 2017. Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop Anim Health Prod 49:451–458 http://dx.doi.org/10.1007/s11250-016-1212-5. [PubMed]
155. Bekele B, Ashenafi M. 2010. Distribution of drug resistance among enterococci and Salmonella from poultry and cattle in Ethiopia. Trop Anim Health Prod 42:857–864 http://dx.doi.org/10.1007/s11250-009-9499-0. [PubMed]
156. Ho PL, Lai E, Chan PY, Lo WU, Chow KH. 2013. Rare occurrence of vancomycin-resistant Enterococcus faecium among livestock animals in China. J Antimicrob Chemother 68:2948–2949 http://dx.doi.org/10.1093/jac/dkt293. [PubMed]
157. Eisner A, Feierl G, Gorkiewicz G, Dieber F, Kessler HH, Marth E, Köfer J. 2005. High prevalence of VanA-type vancomycin-resistant enterococci in Austrian poultry. Appl Environ Microbiol 71:6407–6409 http://dx.doi.org/10.1128/AEM.71.10.6407-6409.2005. [PubMed]
158. Haenni M, Saras E, Châtre P, Meunier D, Martin S, Lepage G, Ménard MF, Lebreton P, Rambaud T, Madec JY. 2009. vanA in Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus detected in French cattle. Foodborne Pathog Dis 6:1107–1111 http://dx.doi.org/10.1089/fpd.2009.0303. [PubMed]
159. de Niederhäusern S, Sabia C, Messi P, Guerrieri E, Manicardi G, Bondi M. 2007. VanA-type vancomycin-resistant enterococci in equine and swine rectal swabs and in human clinical samples. Curr Microbiol 55:240–246 http://dx.doi.org/10.1007/s00284-007-0115-0. [PubMed]
160. Ramos S, Igrejas G, Rodrigues J, Capelo-Martínez JL, Poeta P. 2012. Genetic characterisation of antibiotic resistance and virulence factors in vanA-containing enterococci from cattle, sheep and pigs subsequent to the discontinuation of the use of avoparcin. Vet J 193:301–303 http://dx.doi.org/10.1016/j.tvjl.2011.12.007. [PubMed]
161. Hershberger E, Oprea SF, Donabedian SM, Perri M, Bozigar P, Bartlett P, Zervos MJ. 2005. Epidemiology of antimicrobial resistance in enterococci of animal origin. J Antimicrob Chemother 55:127–130 http://dx.doi.org/10.1093/jac/dkh508. [PubMed]
162. Song JY, Hwang IS, Eom JS, Cheong HJ, Bae WK, Park YH, Kim WJ. 2005. Prevalence and molecular epidemiology of vancomycin-resistant enterococci (VRE) strains isolated from animals and humans in Korea. Korean J Intern Med (Korean Assoc Intern Med) 20:55–62 http://dx.doi.org/10.3904/kjim.2005.20.1.55.
163. Lim SK, Kim TS, Lee HS, Nam HM, Joo YS, Koh HB. 2006. Persistence of vanA-type Enterococcus faecium in Korean livestock after ban on avoparcin. Microb Drug Resist 12:136–139 http://dx.doi.org/10.1089/mdr.2006.12.136. [PubMed]
164. Gonçalves A, Poeta P, Silva N, Araújo C, López M, Ruiz E, Uliyakina I, Direitinho J, Igrejas G, Torres C. 2010. Characterization of vancomycin-resistant enterococci isolated from fecal samples of ostriches by molecular methods. Foodborne Pathog Dis 7:1133–1136 http://dx.doi.org/10.1089/fpd.2010.0548. [PubMed]
165. Araújo C, Torres C, Gonçalves A, Carneiro C, López M, Radhouani H, Pardal M, Igrejas G, Poeta P. 2011. Genetic detection and multilocus sequence typing of vanA-containing Enterococcus strains from mullets fish (Liza ramada). Microb Drug Resist 17:357–361 http://dx.doi.org/10.1089/mdr.2010.0171. [PubMed]
166. Yoshimura H, Ishimaru M, Endoh YS, Suginaka M, Yamatani S. 1998. Isolation of glycopeptide-resistant enterococci from chicken in Japan. Antimicrob Agents Chemother 42:3333. [PubMed]
167. Butaye P, Van Damme K, Devriese LA, Van Damme L, Bael M, Lauwers S, Haesebrouck F. 2000. In vitro susceptibility of Enterococcus faecium isolated from food to growth-promoting and therapeutic antibiotics. Int J Food Microbiol 54:181–187 http://dx.doi.org/10.1016/S0168-1605(99)00198-1.
168. Harada T, Kawahara R, Kanki M, Taguchi M, Kumeda Y. 2012. Isolation and characterization of vanA genotype vancomycin-resistant Enterococcus cecorum from retail poultry in Japan. Int J Food Microbiol 153:372–377 http://dx.doi.org/10.1016/j.ijfoodmicro.2011.11.029. [PubMed]
169. Donado-Godoy P, Byrne BA, León M, Castellanos R, Vanegas C, Coral A, Arevalo A, Clavijo V, Vargas M, Romero Zuñiga JJ, Tafur M, Pérez-Gutierrez E, Smith WA. 2015. Prevalence, resistance patterns, and risk factors for antimicrobial resistance in bacteria from retail chicken meat in Colombia. J Food Prot 78:751–759 http://dx.doi.org/10.4315/0362-028X.JFP-14-349. [PubMed]
170. Kasimoglu-Dogru A, Gencay YE, Ayaz ND. 2010. Prevalence and antibiotic resistance profiles of Enterococcus species in chicken at slaughter level; absence of vanA and vanB genes in E. faecalis and E. faecium. Res Vet Sci 89:153–158 http://dx.doi.org/10.1016/j.rvsc.2010.02.005. [PubMed]
171. Harwood VJ, Brownell M, Perusek W, Whitlock JE. 2001. Vancomycin-resistant Enterococcus spp. isolated from wastewater and chicken feces in the United States. Appl Environ Microbiol 67:4930–4933 http://dx.doi.org/10.1128/AEM.67.10.4930-4933.2001. [PubMed]
172. Wilson IG, McAfee GG. 2002. Vancomycin-resistant enterococci in shellfish, unchlorinated waters, and chicken. Int J Food Microbiol 79:143–151 http://dx.doi.org/10.1016/S0168-1605(02)00063-6.
173. Novais C, Coque TM, Costa MJ, Sousa JC, Baquero F, Peixe LV. 2005. High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother 56:1139–1143 http://dx.doi.org/10.1093/jac/dki360. [PubMed]
174. Lemcke R, Bülte M. 2000. Occurrence of the vancomycin-resistant genes vanA, vanB, vanCl, vanC2 and vanC3 in Enterococcus strains isolated from poultry and pork. Int J Food Microbiol 60:185–194 http://dx.doi.org/10.1016/S0168-1605(00)00310-X.
175. Del Grosso M, Caprioli A, Chinzari P, Fontana MC, Pezzotti G, Manfrin A, Giannatale ED, Goffredo E, Pantosti A. 2000. Detection and characterization of vancomycin-resistant enterococci in farm animals and raw meat products in Italy. Microb Drug Resist 6:313–318 http://dx.doi.org/10.1089/mdr.2000.6.313. [PubMed]
176. Gambarotto K, Ploy MC, Dupron F, Giangiobbe M, Denis F. 2001. Occurrence of vancomycin-resistant enterococci in pork and poultry products from a cattle-rearing area of France. J Clin Microbiol 39:2354–2355 http://dx.doi.org/10.1128/JCM.39.6.2354-2355.2001. [PubMed]
177. Nomura T, Tanimoto K, Shibayama K, Arakawa Y, Fujimoto S, Ike Y, Tomita H. 2012. Identification of VanN-type vancomycin resistance in an Enterococcus faecium isolate from chicken meat in Japan. Antimicrob Agents Chemother 56:6389–6392 http://dx.doi.org/10.1128/AAC.00747-12. [PubMed]
178. Peters J, Mac K, Wichmann-Schauer H, Klein G, Ellerbroek L. 2003. Species distribution and antibiotic resistance patterns of enterococci isolated from food of animal origin in Germany. Int J Food Microbiol 88:311–314 http://dx.doi.org/10.1016/S0168-1605(03)00193-4.
179. Delpech G, Pourcel G, Schell C, De Luca M, Basualdo J, Bernstein J, Grenovero S, Sparo M. 2012. Antimicrobial resistance profiles of Enterococcus faecalis and Enterococcus faecium isolated from artisanal food of animal origin in Argentina. Foodborne Pathog Dis 9:939–944 http://dx.doi.org/10.1089/fpd.2012.1192. [PubMed]
180. Talebi M, Sadeghi J, Rahimi F, Pourshafie MR. 2015. Isolation and biochemical fingerprinting of vancomycin-resistant Enterococcus faecium from meat, chicken and cheese. Jundishapur J Microbiol 8:e15815 http://dx.doi.org/10.5812/jjm.8(4)2015.15815.
181. Gousia P, Economou V, Bozidis P, Papadopoulou C. 2015. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathog Dis 12:214–220 http://dx.doi.org/10.1089/fpd.2014.1832. [PubMed]
182. Pesavento G, Calonico C, Ducci B, Magnanini A, Lo Nostro A. 2014. Prevalence and antibiotic resistance of Enterococcus spp. isolated from retail cheese, ready-to-eat salads, ham, and raw meat. Food Microbiol 41:1–7 http://dx.doi.org/10.1016/j.fm.2014.01.008.
183. Sánchez Valenzuela A, Lavilla Lerma L, Benomar N, Gálvez A, Pérez Pulido R, Abriouel H. 2013. Phenotypic and molecular antibiotic resistance profile of Enterococcus faecalis and Enterococcus faecium isolated from different traditional fermented foods. Foodborne Pathog Dis 10:143–149 http://dx.doi.org/10.1089/fpd.2012.1279. [PubMed]
184. Pantosti A, Del Grosso M, Tagliabue S, Macrì A, Caprioli A. 1999.Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet 354:741–742 http://dx.doi.org/10.1016/S0140-6736(99)02395-8.
185. Hayes JR, English LL, Carter PJ, Proescholdt T, Lee KY, Wagner DD, White DG. 2003. Prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Appl Environ Microbiol 69:7153–7160 http://dx.doi.org/10.1128/AEM.69.12.7153-7160.2003. [PubMed]
186. Hiroi M, Kawamori F, Harada T, Sano Y, Miwa N, Sugiyama K, Hara-Kudo Y, Masuda T. 2012. Antibiotic resistance in bacterial pathogens from retail raw meats and food-producing animals in Japan. J Food Prot 75:1774–1782 http://dx.doi.org/10.4315/0362-028X.JFP-11-479. [PubMed]
187. Aslam M, Diarra MS, Checkley S, Bohaychuk V, Masson L. 2012. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int J Food Microbiol 156:222–230 http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.026.
188. López M, Sáenz Y, Rojo-Bezares B, Martínez S, del Campo R, Ruiz-Larrea F, Zarazaga M, Torres C. 2009. Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. Int J Food Microbiol 133:172–178 http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.020. [PubMed]
189. Jahan M, Krause DO, Holley RA. 2013. Antimicrobial resistance of Enterococcus species from meat and fermented meat products isolated by a PCR-based rapid screening method. Int J Food Microbiol 163:89–95 http://dx.doi.org/10.1016/j.ijfoodmicro.2013.02.017. [PubMed]
190. Guerrero-Ramos E, Molina-González D, Blanco-Morán S, Igrejas G, Poeta P, Alonso-Calleja C, Capita R. 2016a. Prevalence, antimicrobial resistance, and genotypic characterization of vancomycin-resistant enterococci in meat preparations. J Food Prot 79:748–756 http://dx.doi.org/10.4315/0362-028X.JFP-15-390. [PubMed]
191. Jamet E, Akary E, Poisson MA, Chamba JF, Bertrand X, Serror P. 2012. Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol 31:191–198 http://dx.doi.org/10.1016/j.fm.2012.03.009. [PubMed]
192. de Garnica ML, Valdezate S, Gonzalo C, Saez-Nieto JA. 2013. Presence of the vanC1 gene in a vancomycin-resistant Enterococcus faecalis strain isolated from ewe bulk tank milk. J Med Microbiol 62:494–495 http://dx.doi.org/10.1099/jmm.0.052274-0. [PubMed]
193. Osman KM, Ali MN, Radwan I, ElHofy F, Abed AH, Orabi A, Fawzy NM. 2016. Dispersion of the vancomycin resistance genes vanA and vanC of Enterococcus isolated from Nile Tilapia on retail sale: a public health hazard. Front Microbiol 7:1354 http://dx.doi.org/10.3389/fmicb.2016.01354. [PubMed]
194. Tansuphasiri U, Khaminthakul D, Pandii W. 2006. Antibiotic resistance of enterococci isolated from frozen foods and environmental water. Southeast Asian J Trop Med Public Health 37:162–170. [PubMed]
195. Simjee S, White DG, McDermott PF, Wagner DD, Zervos MJ, Donabedian SM, English LL, Hayes JR, Walker RD. 2002. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci. J Clin Microbiol 40:4659–4665 http://dx.doi.org/10.1128/JCM.40.12.4659-4665.2002. [PubMed]
196. Herrero IA, Fernández-Garayzábal JF, Moreno MA, Domínguez L. 2004. Dogs should be included in surveillance programs for vancomycin-resistant enterococci. J Clin Microbiol 42:1384–1385 http://dx.doi.org/10.1128/JCM.42.3.1384-1385.2004. [PubMed]
197. Ghosh A, Dowd SE, Zurek L. 2011. Dogs leaving the ICU carry a very large multi-drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS One 6:e22451 http://dx.doi.org/10.1371/journal.pone.0022451. [PubMed]
198. Kataoka Y, Umino Y, Ochi H, Harada K, Sawada T. 2014. Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J Vet Med Sci 76:1399–1402 http://dx.doi.org/10.1292/jvms.13-0576. [PubMed]
199. Abdel-Moein KA, El-Hariri MD, Wasfy MO, Samir A. 2017. Occurrence of ampicillin-resistant Enterococcus faecium carrying esp gene in pet animals: an upcoming threat for pet lovers. J Glob Antimicrob Resist 9:115–117 http://dx.doi.org/10.1016/j.jgar.2017.02.011. [PubMed]
200. Oliveira M, Tavares M, Gomes D, Touret T, São Braz B, Tavares L, Semedo-Lemsaddek T. 2016. Virulence traits and antibiotic resistance among enterococci isolated from dogs with periodontal disease. Comp Immunol Microbiol Infect Dis 46:27–31 http://dx.doi.org/10.1016/j.cimid.2016.04.002. [PubMed]
201. Gulhan T, Boynukara B, Ciftci A, Sogut MU, Findik A. 2015. Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production. Majallah-i Tahqiqat-i Dampizishki-i Iran 16:261–266.
202. Moura I, Radhouani H, Torres C, Poeta P, Igrejas G. 2010. Detection and genetic characterisation of vanA-containing Enterococcus strains in healthy Lusitano horses. Equine Vet J 42:181–183 http://dx.doi.org/10.2746/042516409X480386. [PubMed]
203. Mallon DJ, Corkill JE, Hazel SM, Wilson JS, French NP, Bennett M, Hart CA. 2002. Excretion of vancomycin-resistant enterococci by wild mammals. Emerg Infect Dis 8:636–638 http://dx.doi.org/10.3201/eid0806.010247. [PubMed]
204. Lozano C, González-Barrio D, García JT, Ceballos S, Olea PP, Ruiz-Fons F, Torres C. 2015. Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet Microbiol 177:168–174 http://dx.doi.org/10.1016/j.vetmic.2015.02.025. [PubMed]
205. Nowakiewicz A, Ziółkowska G, Zięba P, Kostruba A. 2014. Undomesticated animals as a reservoir of multidrug-resistant Enterococcus in eastern Poland. J Wildl Dis 50:645–650 http://dx.doi.org/10.7589/2013-09-240. [PubMed]
206. Lozano C, González-Barrio D, Camacho MC, Lima-Barbero JF, de la Puente J, Höfle U, Torres C. 2016. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 72:813–820 http://dx.doi.org/10.1007/s00248-015-0648-x.
207. Silva N, Igrejas G, Rodrigues P, Rodrigues T, Gonçalves A, Felgar AC, Pacheco R, Gonçalves D, Cunha R, Poeta P. 2011. Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathol 40:473–479 http://dx.doi.org/10.1080/03079457.2011.599061. [PubMed]
208. Silva N, Igrejas G, Felgar A, Gonçalves A, Pacheco R, Poeta P. 2012. Molecular characterization of vanA-containing Enterococcus from migratory birds: song thrush (Turdus philomelos). Braz J Microbiol 43:1026–1029 http://dx.doi.org/10.1590/S1517-83822012000300026. [PubMed]
209. Santos T, Silva N, Igrejas G, Rodrigues P, Micael J, Rodrigues T, Resendes R, Gonçalves A, Marinho C, Gonçalves D, Cunha R, Poeta P. 2013. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 24:25–31 http://dx.doi.org/10.1016/j.anaerobe.2013.09.004. [PubMed]
210. Klibi N, Ben Amor I, Rahmouni M, Dziri R, Douja G, Ben Said L, Lozano C, Boudabous A, Ben Slama K, Mansouri R, Torres C. 2015. Diversity of species and antibiotic resistance among fecal enterococci from wild birds in Tunisia. Detection of vanA-containing Enterococcus faecium isolates. Eur J Wildl Res 61:319–323 http://dx.doi.org/10.1007/s10344-014-0884-2.
211. Oravcova V, Zurek L, Townsend A, Clark AB, Ellis JC, Cizek A, Literak I. 2014. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ Microbiol 16:939–949 http://dx.doi.org/10.1111/1462-2920.12213. [PubMed]
212. Roberts MC, No DB, Marzluff JM, Delap JH, Turner R. 2016. Vancomycin resistant Enterococcus spp. from crows and their environment in metropolitan Washington State, USA: is there a correlation between VRE positive crows and the environment? Vet Microbiol 194:48–54 http://dx.doi.org/10.1016/j.vetmic.2016.01.022. [PubMed]
213. Oravcova V, Janecko N, Ansorge A, Masarikova M, Literak I. 2014. First record of vancomycin-resistant Enterococcus faecium in Canadian wildlife. Environ Microbiol Rep 6:210–211 http://dx.doi.org/10.1111/1758-2229.12141. [PubMed]
214. Oravcova V, Hadelova D, Literak I. 2016. Vancomycin-resistant Enterococcus faecium with vanA gene isolated for the first time from wildlife in Slovakia. Vet Microbiol 194:43–47 http://dx.doi.org/10.1016/j.vetmic.2015.11.027. [PubMed]
215. Poeta P, Costa D, Igrejas G, Rojo-Bezares B, Sáenz Y, Zarazaga M, Ruiz-Larrea F, Rodrigues J, Torres C. 2007. Characterization of vanA-containing Enterococcus faecium isolates carrying Tn5397-like and Tn916/Tn1545-like transposons in wild boars (Sus Scrofa). Microb Drug Resist 13:151–156 http://dx.doi.org/10.1089/mdr.2007.759. [PubMed]
216. Radhouani H, Poeta P, Pinto L, Miranda J, Coelho C, Carvalho C, Rodrigues J, López M, Torres C, Vitorino R, Domingues P, Igrejas G. 2010. Proteomic characterization of vanA-containing Enterococcus recovered from seagulls at the Berlengas Natural Reserve, W Portugal. Proteome Sci 8:48 http://dx.doi.org/10.1186/1477-5956-8-48.
217. Barros J, Andrade M, Radhouani H, López M, Igrejas G, Poeta P, Torres C. 2012. Detection of vanA-containing Enterococcus species in faecal microbiota of gilthead seabream (Sparus aurata). Microbes Environ 27:509–511 http://dx.doi.org/10.1264/jsme2.ME11346. [PubMed]
218. Figueiredo N, Radhouani H, Gonçalves A, Rodrigues J, Carvalho C, Igrejas G, Poeta P. 2009. Genetic characterization of vancomycin-resistant enterococci isolates from wild rabbits. J Basic Microbiol 49:491–494 http://dx.doi.org/10.1002/jobm.200800387. [PubMed]
219. da Silva VL, Caçador NC, da Silva CS, Fontes CO, Garcia GD, Nicoli JR, Diniz CG. 2012. Occurrence of multidrug-resistant and toxic-metal tolerant enterococci in fresh feces from urban pigeons in Brazil. Microbes Environ 27:179–185 http://dx.doi.org/10.1264/jsme2.ME11296. [PubMed]
220. Radhouani H, Pinto L, Coelho C, Sargo R, Araújo C, López M, Torres C, Igrejas G, Poeta P. 2010. MLST and a genetic study of antibiotic resistance and virulence factors in vanA-containing Enterococcus from buzzards (Buteo buteo). Lett Appl Microbiol 50:537–541 http://dx.doi.org/10.1111/j.1472-765X.2010.02807.x. [PubMed]
221. Silva V, Igrejas G, Carvalho I, Peixoto F, Cardoso L, Pereira JE, Del Campo R, Poeta P. 2018. Genetic characterization of vanA-Enterococcus faecium isolates from wild red-legged partridges in Portugal. Microb Drug Resist 24:89–94 http://dx.doi.org/10.1089/mdr.2017.0040. [PubMed]
222. Radhouani H, Igrejas G, Carvalho C, Pinto L, Gonçalves A, Lopez M, Sargo R, Cardoso L, Martinho A, Rego V, Rodrigues R, Torres C, Poeta P. 2011. Clonal lineages, antibiotic resistance and virulence factors in vancomycin-resistant enterococci isolated from fecal samples of red foxes (Vulpes vulpes). J Wildl Dis 47:769–773 http://dx.doi.org/10.7589/0090-3558-47.3.769. [PubMed]
223. Gonçalves A, Igrejas G, Radhouani H, López M, Guerra A, Petrucci-Fonseca F, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P. 2011. Detection of vancomycin-resistant enterococci from faecal samples of Iberian wolf and Iberian lynx, including Enterococcus faecium strains of CC17 and the new singleton ST573. Sci Total Environ 410-411:266–268 http://dx.doi.org/10.1016/j.scitotenv.2011.09.074. [PubMed]
224. Katakweba AA, Møller KS, Muumba J, Muhairwa AP, Damborg P, Rosenkrantz JT, Minga UM, Mtambo MM, Olsen JE. 2015. Antimicrobial resistance in faecal samples from buffalo, wildebeest and zebra grazing together with and without cattle in Tanzania. J Appl Microbiol 118:966–975 http://dx.doi.org/10.1111/jam.12738. [PubMed]
225. Tejedor Junco MT, González-Martin M, Rodríguez González NF, Gutierrez C. 2015. Identification, antimicrobial susceptibility, and virulence factors of Enterococcus spp. strains isolated from Camels in Canary Islands, Spain. Vet Ital 51:179–183. [PubMed]
226. Guerrero-Ramos E, Cordero J, Molina-González D, Poeta P, Igrejas G, Alonso-Calleja C, Capita R. 2016. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol 53(Pt B):156–164 http://dx.doi.org/10.1016/j.fm.2015.09.007.
227. Klare I, Fleige C, Geringer U, Thürmer A, Bender J, Mutters NT, Mischnik A, Werner G. 2015. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J Glob Antimicrob Resist 3:128–131 http://dx.doi.org/10.1016/j.jgar.2015.02.007. [PubMed]
228. Herrero IA, Issa NC, Patel R. 2002. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N Engl J Med 346:867–869 http://dx.doi.org/10.1056/NEJM200203143461121. [PubMed]
229. Si H, Zhang WJ, Chu S, Wang XM, Dai L, Hua X, Dong Z, Schwarz S, Liu S. 2015. Novel plasmid-borne multidrug resistance gene cluster including lsa(E) from a linezolid-resistant Enterococcus faecium isolate of swine origin. Antimicrob Agents Chemother 59:7113–7116 http://dx.doi.org/10.1128/AAC.01394-15. [PubMed]
230. Mendes RE, Deshpande LM, Jones RN. 2014. Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 17:1–12 http://dx.doi.org/10.1016/j.drup.2014.04.002. [PubMed]
231. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
232. Liu Y, Wang Y, Wu C, Shen Z, Schwarz S, Du XD, Dai L, Zhang W, Zhang Q, Shen J. 2012. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother 56:1650–1654 http://dx.doi.org/10.1128/AAC.06091-11. [PubMed]
233. Liu Y, Wang Y, Schwarz S, Wang S, Chen L, Wu C, Shen J. 2014. Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis. J Antimicrob Chemother 69:892–898 http://dx.doi.org/10.1093/jac/dkt459. [PubMed]
234. Filsner PHLN, de Almeida LM, Moreno M, Moreno LZ, Matajira CEC, Silva KC, Pires C, Cerdeira LT, Sacramento AG, Mamizuka EM, Lincopan N, Moreno AM. 2017. Identification of the cfr methyltransferase gene in Enterococcus faecalis isolated from swine: first report in Brazil. J Glob Antimicrob Resist 8:192–193 http://dx.doi.org/10.1016/j.jgar.2017.02.002. [PubMed]
235. Liu Y, Wang Y, Dai L, Wu C, Shen J. 2014. First report of multiresistance gene cfr in Enterococcus species casseliflavus and gallinarum of swine origin. Vet Microbiol 170:352–357 http://dx.doi.org/10.1016/j.vetmic.2014.02.037. [PubMed]
236. Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J. 2015. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70:2182–2190 http://dx.doi.org/10.1093/jac/dkv116. [PubMed]
237. He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Feßler AT, Zhang R, Wu C, Shen J, Wang Y. 2016. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 71:1466–1473 http://dx.doi.org/10.1093/jac/dkw016. [PubMed]
238. Tamang MD, Moon DC, Kim SR, Kang HY, Lee K, Nam HM, Jang GC, Lee HS, Jung SC, Lim SK. 2017. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Vet Microbiol 201:252–256 http://dx.doi.org/10.1016/j.vetmic.2017.01.035. [PubMed]
239. Cavaco LM, Korsgaard H, Kaas RS, Seyfarth AM, Leekitcharoenphon P, Hendriksen RS. 2017. First detection of linezolid resistance due to the optrA gene in enterococci isolated from food products in Denmark. J Glob Antimicrob Resist 9:128–129 http://dx.doi.org/10.1016/j.jgar.2017.04.001. [PubMed]
240. Cavaco LM, Bernal JF, Zankari E, Léon M, Hendriksen RS, Perez-Gutierrez E, Aarestrup FM, Donado-Godoy P. 2017. Detection of linezolid resistance due to the optrA gene in Enterococcus faecalis from poultry meat from the American continent (Colombia). J Antimicrob Chemother 72:678–683. [PubMed]
241. Freitas AR, Elghaieb H, León-Sampedro R, Abbassi MS, Novais C, Coque TM, Hassen A, Peixe L. 2017. Detection of optrA in the African continent (Tunisia) within a mosaic Enterococcus faecalis plasmid from urban wastewaters. J Antimicrob Chemother 72:3245–3251 http://dx.doi.org/10.1093/jac/dkx321. [PubMed]
242. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. 2012. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 56:3917–3922 http://dx.doi.org/10.1128/AAC.00419-12. [PubMed]
243. Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE. 2015. Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium recovered from human specimens in the United States: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 59:6256–6261 http://dx.doi.org/10.1128/AAC.01473-15. [PubMed]
244. Bender JK, Fleige C, Klare I, Fiedler S, Mischnik A, Mutters NT, Dingle KE, Werner G. 2016. Detection of a cfr(B) variant in German Enterococcus faecium clinical isolates and the impact on linezolid resistance in Enterococcus spp. PLoS One 11:e0167042 http://dx.doi.org/10.1371/journal.pone.0167042. [PubMed]
245. Lazaris A, Coleman DC, Kearns AM, Pichon B, Kinnevey PM, Earls MR, Boyle B, O’Connell B, Brennan GI, Shore AC. 2017. Novel multiresistance cfr plasmids in linezolid-resistant methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (VRE) from a hospital outbreak: co-location of cfr and optrA in VRE. J Antimicrob Chemother 72:3252–3257 http://dx.doi.org/10.1093/jac/dkx292. [PubMed]
246. Morroni G, Brenciani A,Simoni S, Vignaroli C, Mingoia M, Giovanetti E. 2017. Nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 20004 to 2014. Front Microbiol 8:1631. [PubMed]
247. Cai J, Wang Y, Schwarz S, Lv H, Li Y, Liao K, Yu S, Zhao K, Gu D, Wang X, Zhang R, Shen J. 2015. Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010–2014. Clin Microbiol Infect 21:1095.e1–1095.e4 http://dx.doi.org/10.1016/j.cmi.2015.08.007. [PubMed]
248. Cui L, Wang Y, Lv Y, Wang S, Song Y, Li Y, Liu J, Xue F, Yang W, Zhang J. 2016. Nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus isolates in China from 2004 to 2014. Antimicrob Agents Chemother 60:7490–7493. [PubMed]
249. Del Campo R, Galán JC, Tenorio C, Ruiz-Garbajosa P, Zarazaga M, Torres C, Baquero F. 2005. New aac(6&prime;)-I genes in Enterococcus hirae and Enterococcus durans: effect on beta-lactam/aminoglycoside synergy. J Antimicrob Chemother 55:1053–1055 http://dx.doi.org/10.1093/jac/dki138. [PubMed]
250. Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y, Courvalin P. 2011. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 17:251–262 http://dx.doi.org/10.1261/rna.2233511. [PubMed]
251. Bager F, Emborg HD (ed). 1998. DANMAP 1997. Consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. National Food Institute, Technical University of Denmark, Søborg, Denmark.
252. Donabedian SM, Thal LA, Hershberger E, Perri MB, Chow JW, Bartlett P, Jones R, Joyce K, Rossiter S, Gay K, Johnson J, Mackinson C, Debess E, Madden J, Angulo F, Zervos MJ. 2003. Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol 41:1109–1113 http://dx.doi.org/10.1128/JCM.41.3.1109-1113.2003. [PubMed]
253. Werner G, Coque TM, Franz CM, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. 2013. Antibiotic resistant enterococci: tales of a drug resistance gene trafficker. Int J Med Microbiol 303:360–379 http://dx.doi.org/10.1016/j.ijmm.2013.03.001. [PubMed]
254. Klibi N, Ben Lagha A, Ben Slama K, Boudabous A, Torres C. 2013. Faecal enterococci from camels in Tunisia: species, antibiotic resistance and virulent genes. Vet Rec 172:213 http://dx.doi.org/10.1136/vr.100910. [PubMed]
255. Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, del Campo R, Hernández PE, Herranz C, Cintas LM. 2013. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:15 http://dx.doi.org/10.1186/1471-2180-13-15. [PubMed]
256. Araújo C, Muñoz-Atienza E, Hernández PE, Herranz C, Cintas LM, Igrejas G, Poeta P. 2015. Evaluation of Enterococcus spp. from rainbow trout (Oncorhynchus mykiss, Walbaum), feed, and rearing environment against fish pathogens. Foodborne Pathog Dis 12:311–322 http://dx.doi.org/10.1089/fpd.2014.1906. [PubMed]
257. Di Cesare A, Pasquaroli S, Vignaroli C, Paroncini P, Luna GM, Manso E, Biavasco F. 2014. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains. Environ Microbiol Rep 6:184–190 http://dx.doi.org/10.1111/1758-2229.12125. [PubMed]
258. Li P, Wu D, Liu K, Suolang S, He T, Liu X, Wu C, Wang Y, Lin D. 2014. Investigation of antimicrobial resistance in Escherichia coli and enterococci isolated from Tibetan pigs. PLoS One 9:e95623 http://dx.doi.org/10.1371/journal.pone.0095623. [PubMed]
259. Pantozzi FL, Ibar MP, Nievas VF, Vigo GB, Moredo FA, Giacoboni GI. 2014. Wild-type minimal inhibitory concentration distributions in bacteria of animal origin in Argentina. Rev Argent Microbiol 46:34–40 http://dx.doi.org/10.1016/S0325-7541(14)70045-8.
260. Usui M, Ozawa S, Onozato H, Kuge R, Obata Y, Uemae T, Ngoc PT, Heriyanto A, Chalemchaikit T, Makita K, Muramatsu Y, Tamura Y. 2014. Antimicrobial susceptibility of indicator bacteria isolated from chickens in Southeast Asian countries (Vietnam, Indonesia and Thailand). J Vet Med Sci 76:685–692 http://dx.doi.org/10.1292/jvms.13-0423.
261. Klibi N, Aouini R, Borgo F, Ben Said L, Ferrario C, Dziri R, Boudabous A, Torres C, Ben Slama K. 2015. Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann Microbiol 65:695–702 http://dx.doi.org/10.1007/s13213-014-0908-x.
262. Ayeni FA, Odumosu BT, Oluseyi AE, Ruppitsch W. 2016. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J Pharm Bioallied Sci 8:69–73 http://dx.doi.org/10.4103/0975-7406.171729. [PubMed]
263. Boss R, Overesch G, Baumgartner A. 2016. Antimicrobial resistance of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. J Food Prot 79:1240–1246 http://dx.doi.org/10.4315/0362-028X.JFP-15-463. [PubMed]
264. Wu X, Hou S, Zhang Q, Ma Y, Zhang Y, Kan W, Zhao X. 2016. Prevalence of virulence and resistance to antibiotics in pathogenic enterococci isolated from mastitic cows. J Vet Med Sci 78:1663–1668 http://dx.doi.org/10.1292/jvms.15-0718. [PubMed]
265. Beshiru A, Igbinosa IH, Omeje FI, Ogofure AG, Eyong MM, Igbinosa EO. 2017. Multi-antibiotic resistant and putative virulence gene signatures in Enterococcus species isolated from pig farms environment. Microb Pathog 104:90–96 http://dx.doi.org/10.1016/j.micpath.2017.01.020. [PubMed]
266. Carvalho I, Campo RD, Sousa M, Silva N, Carrola J, Marinho C, Santos T, Carvalho S, Nóvoa M, Quaresma M, Pereira JE, Cobo M, Igrejas G, Poeta P. 2017. Antimicrobial-resistant Escherichia coli and Enterococcus spp. isolated from Miranda donkey (Equus asinus): an old problem from a new source with a different approach. J Med Microbiol 66:191–202 http://dx.doi.org/10.1099/jmm.0.000423. [PubMed]
267. Kataoka Y, Ito C, Kawashima A, Ishii M, Yamashiro S, Harada K, Ochi H, Sawada T. 2013. Identification and antimicrobial susceptibility of enterococci isolated from dogs and cats subjected to differing antibiotic pressures. J Vet Med Sci 75:749–753 http://dx.doi.org/10.1292/jvms.12-0243. [PubMed]
268. Chung YS, Kwon KH, Shin S, Kim JH, Park YH, Yoon JW. 2014. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea. J Microbiol Biotechnol 24:386–393 http://dx.doi.org/10.4014/jmb.1310.10088. [PubMed]
269. Iseppi R, Messi P, Anacarso I, Bondi M, Sabia C, Condò C, de Niederhausern S. 2015. Antimicrobial resistance and virulence traits in Enterococcus strains isolated from dogs and cats. New Microbiol 38:369–378. [PubMed]
270. Radhouani H, Igrejas G, Gonçalves A, Pacheco R, Monteiro R, Sargo R, Brito F, Torres C, Poeta P. 2013. Antimicrobial resistance and virulence genes in Escherichia coli and enterococci from red foxes (Vulpes vulpes). Anaerobe 23:82–86 http://dx.doi.org/10.1016/j.anaerobe.2013.06.013. [PubMed]
271. Semedo-Lemsaddek T, Nóbrega CS, Ribeiro T, Pedroso NM, Sales-Luís T, Lemsaddek A, Tenreiro R, Tavares L, Vilela CL, Oliveira M. 2013. Virulence traits and antibiotic resistance among enterococci isolated from Eurasian otter (Lutra lutra). Vet Microbiol 163:378–382 http://dx.doi.org/10.1016/j.vetmic.2012.12.032. [PubMed]
272. Doud CW, Scott HM, Zurek L. 2014. Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities. Microb Ecol 67:380–391 http://dx.doi.org/10.1007/s00248-013-0337-6. [PubMed]
273. Santestevan NA, de Angelis Zvoboda D, Prichula J, Pereira RI, Wachholz GR, Cardoso LA, de Moura TM, Medeiros AW, de Amorin DB, Tavares M, d’Azevedo PA, Franco AC, Frazzon J, Frazzon AP. 2015. Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World J Microbiol Biotechnol 31:1935–1946 http://dx.doi.org/10.1007/s11274-015-1938-7. [PubMed]
274. Prichula J, Pereira RI, Wachholz GR, Cardoso LA, Tolfo NC, Santestevan NA, Medeiros AW, Tavares M, Frazzon J, d’Azevedo PA, Frazzon AP. 2016. Resistance to antimicrobial agents among enterococci isolated from fecal samples of wild marine species in the southern coast of Brazil. Mar Pollut Bull 105:51–57 http://dx.doi.org/10.1016/j.marpolbul.2016.02.071. [PubMed]
275. Ben Said L, Hamdaoui M, Klibi A, Ben Slama K, Torres C, Klibi N. 2017. Diversity of species and antibiotic resistance in enterococci isolated from seafood in Tunisia. Ann Microbiol 67:135–141 http://dx.doi.org/10.1007/s13213-016-1246-y.
276. Chaiwong T, Srivoramas T, Panya M, Wanram S, Panomket P. 2014. Antibiotic resistance patterns of Enterococcus spp. isolated from Musca domestica and Chrysomya megacephala in ubon Ratchathani. J Med Assoc Thai 97(Suppl 4):S1–S6. [PubMed]
277. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
278. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830. [PubMed]
279. Roberts MC. 2005. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203 http://dx.doi.org/10.1016/j.femsle.2005.02.034. [PubMed]
280. Franke AE, Clewell DB. 1980. Evidence for conjugal transfer of a Streptococcus faecalis tranposon (Tn916) from a chromosomal site in the absence of plasmid DNA. Cold Spring Harb Symp Quant Biol 46:7780.
281. Aarestrup FM, Seyfarth AM, Emborg HD, Pedersen K, Hendriksen RS, Bager F. 2001. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob Agents Chemother 45:2054–2059 http://dx.doi.org/10.1128/AAC.45.7.2054-2059.2001. [PubMed]
282. Portillo A, Ruiz-Larrea F, Zarazaga M, Alonso A, Martinez JL, Torres C. 2000. Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother 44:967–971 http://dx.doi.org/10.1128/AAC.44.4.967-971.2000. [PubMed]
283. Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R. 1999. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 43:925–929. [PubMed]
284. Roberts MC. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24 http://dx.doi.org/10.1111/j.1574-6976.1996.tb00251.x.
285. Hooper DC. 2002. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2:530–538 http://dx.doi.org/10.1016/S1473-3099(02)00369-9.
286. López M, Tenorio C, Del Campo R, Zarazaga M, Torres C. 2011. Characterization of the mechanisms of fluoroquinolone resistance in vancomycin-resistant enterococci of different origins. J Chemother 23:87–91 http://dx.doi.org/10.1179/joc.2011.23.2.87. [PubMed]
287. Arsène S, Leclercq R. 2007. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother 51:3254–3258 http://dx.doi.org/10.1128/AAC.00274-07. [PubMed]
288. Jonas BM, Murray BE, Weinstock GM. 2001. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother 45:3574–3579 http://dx.doi.org/10.1128/AAC.45.12.3574-3579.2001. [PubMed]
289. Oyamada Y, Ito H, Fujimoto K, Asada R, Niga T, Okamoto R, Inoue M, Yamagishi J. 2006. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. J Med Microbiol 55:729–736 http://dx.doi.org/10.1099/jmm.0.46303-0. [PubMed]
290. Werner G, Fleige C, Ewert B, Laverde-Gomez JA, Klare I, Witte W. 2010. High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents 35:119–125 http://dx.doi.org/10.1016/j.ijantimicag.2009.10.012. [PubMed]
291. Guzman Prieto AM, van Schaik W, Rogers MR, Coque TM, Baquero F, Corander J, Willems RJ. 2016. Global emergence and dissemination of enterococci as nosocomial pathogens: attack of the clones? Front Microbiol 7:788 http://dx.doi.org/10.3389/fmicb.2016.00788. [PubMed]
292. van den Bogaard AE, Jensen LB, Stobberingh EE. 1997. Vancomycin-resistant enterococci in turkeys and farmers. N Engl J Med 337:1558–1559 http://dx.doi.org/10.1056/NEJM199711203372117. [PubMed]
293. Klein G, Pack A, Reuter G. 1998. Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl Environ Microbiol 64:1825–1830. [PubMed]
294. Butaye P, Devriese LA, Goossens H, Ieven M, Haesebrouck F. 1999. Enterococci with acquired vancomycin resistance in pigs and chickens of different age groups. Antimicrob Agents Chemother 43:365–366. [PubMed]
295. Klare I, Heier H, Claus H, Böhme G, Marin S, Seltmann G, Hakenbeck R, Antanassova V, Witte W. 1995. Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb Drug Resist 1:265–272 http://dx.doi.org/10.1089/mdr.1995.1.265. [PubMed]
296. Wegener HC, Madsen M, Nielsen N, Aarestrup FM. 1997. Isolation of vancomycin resistant Enterococcus faecium from food. Int J Food Microbiol 35:57–66 http://dx.doi.org/10.1016/S0168-1605(96)01221-4.
297. Balzereit-Scheuerlein F, Stephan R. 2001. Prevalence of colonisation and resistance patterns of vancomycin-resistant enterococci in healthy, non-hospitalised persons in Switzerland. Swiss Med Wkly 131:280–282. [PubMed]
298. Van der Auwera P, Pensart N, Korten V, Murray BE, Leclercq R. 1996. Influence of oral glycopeptides on the fecal flora of human volunteers: selection of highly glycopeptide-resistant enterococci. J Infect Dis 173:1129–1136 http://dx.doi.org/10.1093/infdis/173.5.1129. [PubMed]
299. del Campo R, Ruiz-Garbajosa P, Sánchez-Moreno MP, Baquero F, Torres C, Cantón R, Coque TM. 2003. Antimicrobial resistance in recent fecal enterococci from healthy volunteers and food handlers in Spain: genes and phenotypes. Microb Drug Resist 9:47–60 http://dx.doi.org/10.1089/107662903764736346. [PubMed]
300. Bates J, Jordens Z, Selkon JB. 1993. Evidence for an animal origin of vancomycin-resistant enterococci. Lancet 342:490–491 http://dx.doi.org/10.1016/0140-6736(93)91613-Q.
301. Nannini E, Murray BE. 2006. Vancomycin resistant enterococci, p 155–188. In Fong IW, Drlica K (ed), Reemergence of Established Pathogens in the 21st Century. Kluwer Academic, New York, NY.
302. Freitas AR, Novais C, Ruiz-Garbajosa P, Coque TM, Peixe L. 2009. Dispersion of multidrug-resistant Enterococcus faecium isolates belonging to major clonal complexes in different Portuguese settings. Appl Environ Microbiol 75:4904–4908 http://dx.doi.org/10.1128/AEM.02945-08. [PubMed]
303. Freitas AR, Novais C, Ruiz-Garbajosa P, Coque TM, Peixe L. 2009. Clonal expansion within clonal complex 2 and spread of vancomycin-resistant plasmids among different genetic lineages of Enterococcus faecalis from Portugal. J Antimicrob Chemother 63:1104–1111 http://dx.doi.org/10.1093/jac/dkp103. [PubMed]
304. Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, Donabedian S, Jensen LB, Francia MV, Baquero F, Peixe L. 2011. Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol 49:925–931 http://dx.doi.org/10.1128/JCM.01750-10. [PubMed]
305. Robredo B, Singh KV, Torres C, Murray BE. 2000. Streptogramin resistance and shared pulsed-field gel electrophoresis patterns in vanA-containing Enterococcus faecium and Enterococcus hirae isolated from humans and animals in Spain. Microb Drug Resist 6:305–311 http://dx.doi.org/10.1089/mdr.2000.6.305. [PubMed]
306. Daniel DS, Lee SM, Dykes GA, Rahman S. 2015. Public health risks of multiple-drug-resistant Enterococcus spp. in Southeast Asia. Appl Environ Microbiol 81:6090–6097 http://dx.doi.org/10.1128/AEM.01741-15. [PubMed]
307. Seo KS, Lim JY, Yoo HS, Bae WK, Park YH. 2005. Comparison of vancomycin-resistant enterococci isolates from human, poultry and pigs in Korea. Vet Microbiol 106:225–233 http://dx.doi.org/10.1016/j.vetmic.2004.11.017. [PubMed]
308. Howden BP, Holt KE, Lam MM, Seemann T, Ballard S, Coombs GW, Tong SY, Grayson ML, Johnson PD, Stinear TP. 2013. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio 4:e00412-13 http://dx.doi.org/10.1128/mBio.00412-13. [PubMed]
309. Hammerum AM, Lester CH, Neimann J, Porsbo LJ, Olsen KE, Jensen LB, Emborg HD, Wegener HC, Frimodt-Moller N. 2004. A vancomycin-resistant Enterococcus faecium isolate from a Danish healthy volunteer, detected 7 years after the ban of avoparcin, is possibly related to pig isolates. J Antimicrob Chemother 53:547–549 http://dx.doi.org/10.1093/jac/dkh101. [PubMed]
310. van den Bogaard AE, Stobberingh EE. 2000. Epidemiology of resistanceto antibiotics. Links between animals and humans. Int J Antimicrob Agents 14:327–335 http://dx.doi.org/10.1016/S0924-8579(00)00145-X.
311. Willems RJ, Top J, van Den Braak N, van Belkum A, Endtz H, Mevius D, Stobberingh E, van Den Bogaard A, van Embden JD. 2000. Host specificity of vancomycin-resistant Enterococcus faecium. J Infect Dis 182:816–823 http://dx.doi.org/10.1086/315752. [PubMed]
312. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ. 2002. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971 http://dx.doi.org/10.1128/JCM.40.6.1963-1971.2002. [PubMed]
313. Willems RJ, Top J, van Schaik W, Leavis H, Bonten M, Sirén J, Hanage WP, Corander J. 2012. Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151-12 http://dx.doi.org/10.1128/mBio.00151-12. [PubMed]
314. Tedim AP, Ruiz-Garbajosa P, Corander J, Rodríguez CM, Cantón R, Willems RJ, Baquero F, Coque TM. 2015. Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 81:1820–1831 http://dx.doi.org/10.1128/AEM.03661-14. [PubMed]
315. Bruinsma N, Willems RJ, van den Bogaard AE, van Santen-Verheuvel M, London N, Driessen C, Stobberingh EE. 2002. Different levels of genetic homogeneity in vancomycin-resistant and -susceptible Enterococcus faecium isolates from different human and animal sources analyzed by amplified-fragment length polymorphism. Antimicrob Agents Chemother 46:2779–2783 http://dx.doi.org/10.1128/AAC.46.9.2779-2783.2002. [PubMed]
316. Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ. 2005. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828 http://dx.doi.org/10.3201/1106.041204. [PubMed]
317. Hwang IY, Ku HO, Lim SK, Lee KJ, Park CK, Jung GS, Jung SC, Park YH, Nam HM. 2010. Distribution of streptogramin resistance genes and genetic relatedness among quinupristin/dalfopristin-resistant Enterococcus faecium recovered from pigs and chickens in Korea. Res Vet Sci 89:1–4 http://dx.doi.org/10.1016/j.rvsc.2010.01.011. [PubMed]
318. Donabedian SM, Perri MB, Vager D, Hershberger E, Malani P, Simjee S, Chow J, Vergis EN, Muder RR, Gay K, Angulo FJ, Bartlett P, Zervos MJ. 2006. Quinupristin-dalfopristin resistance in Enterococcus faecium isolates from humans, farm animals, and grocery store meat in the United States. J Clin Microbiol 44:3361–3365 http://dx.doi.org/10.1128/JCM.02412-05. [PubMed]
319. De Graef EM, Decostere A, De Leener E, Goossens H, Baele M, Haesebrouck F. 2007. Prevalence and mechanism of resistance against macrolides, lincosamides, and streptogramins among Enterococcus faecium isolates from food-producing animals and hospital patients in Belgium. Microb Drug Resist 13:135–141 http://dx.doi.org/10.1089/mdr.2007.718. [PubMed]
320. Cha JO, Jung YH, Lee HR, Yoo JI, Lee YS. 2012. Comparison of genetic epidemiology of vancomycin-resistant Enterococcus faecium isolates from humans and poultry. J Med Microbiol 61:1121–1128 http://dx.doi.org/10.1099/jmm.0.037549-0. [PubMed]
321. Stobberingh E, van den Bogaard A, London N, Driessen C, Top J, Willems R. 1999. Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans? Antimicrob Agents Chemother 43:2215–2221. [PubMed]
322. Simonsen GS, Haaheim H, Dahl KH, Kruse H, Løvseth A, Olsvik O, Sundsfjord A. 1998. Transmission of VanA-type vancomycin-resistant enterococci and vanA resistance elements between chicken and humans at avoparcin-exposed farms. Microb Drug Resist 4:313–318 http://dx.doi.org/10.1089/mdr.1998.4.313. [PubMed]
323. De Leener E, Martel A, De Graef EM, Top J, Butaye P, Haesebrouck F, Willems R, Decostere A. 2005. Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm(B) genes. Appl Environ Microbiol 71:2766–2770 http://dx.doi.org/10.1128/AEM.71.5.2766-2770.2005. [PubMed]
324. Aarestrup FM, Carstensen B. 1998. Effect of tylosin used as a growth promoter on the occurrence of macrolide-resistant enterococci and staphylococci in pigs. Microb Drug Resist 4:307–312 http://dx.doi.org/10.1089/mdr.1998.4.307. [PubMed]
325. Bager F, Madsen M, Christensen J, Aarestrup FM. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112 http://dx.doi.org/10.1016/S0167-5877(96)01119-1.
326. Boerlin P, Wissing A, Aarestrup FM, Frey J, Nicolet J. 2001. Antimicrobial growth promoter ban and resistance to macrolides and vancomycin in enterococci from pigs. J Clin Microbiol 39:4193–4195 http://dx.doi.org/10.1128/JCM.39.11.4193-4195.2001. [PubMed]
327. Novais C, Coque TM, Boerlin P, Herrero I, Moreno MA, Dominguez L, Peixe L. 2005. Vancomycin-resistant Enterococcus faecium clone in swine, Europe. Emerg Infect Dis 11:1985–1987 http://dx.doi.org/10.3201/eid1112.050822. [PubMed]
328. Novais C, Freitas AR, Sousa JC, Baquero F, Coque TM, Peixe LV. 2008. Diversity of Tn1546 and its role in the dissemination of vancomycin-resistant enterococci in Portugal. Antimicrob Agents Chemother 52:1001–1008 http://dx.doi.org/10.1128/AAC.00999-07. [PubMed]
329. Hasman H, Aarestrup FM. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother 46:1410–1416 http://dx.doi.org/10.1128/AAC.46.5.1410-1416.2002. [PubMed]
330. Amachawadi RG, Shelton NW, Shi X, Vinasco J, Dritz SS, Tokach MD, Nelssen JL, Scott HM, Nagaraja TG. 2011. Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol 77:5597–5603 http://dx.doi.org/10.1128/AEM.00364-11. [PubMed]
331. Silveira E, Freitas AR, Antunes P, Barros M, Campos J, Coque TM, Peixe L, Novais C. 2014. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages. J Antimicrob Chemother 69:899–906 http://dx.doi.org/10.1093/jac/dkt479. [PubMed]
332. Freitas AR, Tedim AP, Novais C, Ruiz-Garbajosa P, Werner G, Laverde-Gomez JA, Cantón R, Peixe L, Baquero F, Coque TM. 2010. Global spread of the hyl(Efm) colonization-virulence gene in megaplasmids of the Enterococcus faecium CC17 polyclonal subcluster. Antimicrob Agents Chemother 54:2660–2665 http://dx.doi.org/10.1128/AAC.00134-10. [PubMed]
333. Getachew Y, Hassan L, Zakaria Z, Abdul Aziz S. 2013. Genetic variability of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis isolates from humans, chickens, and pigs in Malaysia. Appl Environ Microbiol 79:4528–4533 http://dx.doi.org/10.1128/AEM.00650-13.
334. Damborg P, Sørensen AH, Guardabassi L. 2008. Monitoring of antimicrobial resistance in healthy dogs: first report of canine ampicillin-resistant Enterococcus faecium clonal complex 17. Vet Microbiol 132:190–196 http://dx.doi.org/10.1016/j.vetmic.2008.04.026. [PubMed]
335. de Regt MJ, van Schaik W, van Luit-Asbroek M, Dekker HA, van Duijkeren E, Koning CJ, Bonten MJ, Willems RJ. 2012. Hospital and community ampicillin-resistant Enterococcus faecium are evolutionarily closely linked but have diversified through niche adaptation. PLoS One 7:e30319 http://dx.doi.org/10.1371/journal.pone.0030319. [PubMed]
336. van den Bunt G, Top J, Hordijk J, de Greeff SC, Mughini-Gras L, Corander J, van Pelt W, Bonten MJM, Fluit AC, Willems RJL. Intestinal carriage of ampicillin- and vancomycin-resistant Enterococcus faecium in humans, dogs and cats in the Netherlands. J Antimicrob Chemother. Epub ahead of print. doi:10.1093/jac/dkx455.
337. Marques C, Belas A, Franco A, Aboim C, Gama LT, Pomba C. 2018. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother 73:377–384 http://dx.doi.org/10.1093/jac/dkx401. [PubMed]
338. Ruiz-Garbajosa P, Bonten MJM, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJL. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228 http://dx.doi.org/10.1128/JCM.02596-05. [PubMed]
339. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2:e582 http://dx.doi.org/10.1371/journal.pone.0000582. [PubMed]
340. Kuch A, Willems RJL, Werner G, Coque TM, Hammerum AM, Sundsfjord A, Klare I, Ruiz-Garbajosa P, Simonsen GS, van Luit-Asbroek M, Hryniewicz W, Sadowy E. 2012. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J Antimicrob Chemother 67:551–558 http://dx.doi.org/10.1093/jac/dkr544. [PubMed]
341. Chen MY, Lira F, Liang HQ, Wu RT, Duan JH, Liao XP, Martínez JL, Liu YH, Sun J. 2016. Multilevel selection of bcrABDR-mediated bacitracin resistance in Enterococcus faecalis from chicken farms. Sci Rep 6:34895 http://dx.doi.org/10.1038/srep34895. [PubMed]
342. Petersen A, Christensen H, Philipp H-C, Bisgaard M. 2009. Clonality of Enterococcus faecalis associated with amyloid arthropathy in chickens evaluated by multilocus sequence typing (MLST). Vet Microbiol 134:392–395 http://dx.doi.org/10.1016/j.vetmic.2008.08.014. [PubMed]
343. Ruiz-Garbajosa P, Cantón R, Pintado V, Coque TM, Willems R, Baquero F, del Campo R. 2006. Genetic and phenotypic differences among Enterococcus faecalis clones from intestinal colonisation and invasive disease. Clin Microbiol Infect 12:1193–1198 http://dx.doi.org/10.1111/j.1469-0691.2006.01533.x. [PubMed]
344. Raven KE, Reuter S, Gouliouris T, Reynolds R, Russell JE, Brown NM, Török ME, Parkhill J, Peacock SJ. 2016. Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nat Microbiol 1:15033 http://dx.doi.org/10.1038/nmicrobiol.2015.33.
345. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS. 2012. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3:e00318-11. [PubMed]
346. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F. 2014. Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: from Commensals to Leading Causes of Drug Resistant Infection. Eye and Ear Infirmary, Boston, MA.
347. Jensen LB, Garcia-Migura L, Valenzuela AJS, Løhr M, Hasman H, Aarestrup FM. 2010. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43 http://dx.doi.org/10.1016/j.mimet.2009.10.012. [PubMed]
348. Wardal E, Gawryszewska I, Hryniewicz W, Sadowy E. 2013. Abundance and diversity of plasmid-associated genes among clinical isolates of Enterococcus faecalis. Plasmid 70:329–342 http://dx.doi.org/10.1016/j.plasmid.2013.07.003. [PubMed]
349. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJC, Yoo HS, Zhang C, Zhang Y, Sobral BW. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42(D1):D581–D591 http://dx.doi.org/10.1093/nar/gkt1099. [PubMed]
350. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903 http://dx.doi.org/10.1128/AAC.02412-14. [PubMed]
351. Johnsen PJ, Townsend JP, Bøhn T, Simonsen GS, Sundsfjord A, Nielsen KM. 2011. Retrospective evidence for a biological cost of vancomycin resistance determinants in the absence of glycopeptide selective pressures. J Antimicrob Chemother 66:608–610 http://dx.doi.org/10.1093/jac/dkq512. [PubMed]
352. Freitas AR, Tedim AP, Francia MV, Jensen LB, Novais C, Peixe L, Sánchez-Valenzuela A, Sundsfjord A, Hegstad K, Werner G, Sadowy E, Hammerum AM, Garcia-Migura L, Willems RJ, Baquero F, Coque TM. 2016. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J Antimicrob Chemother 71:3351–3366 http://dx.doi.org/10.1093/jac/dkw312. [PubMed]
353. Lanza VF, Tedim AP, Martínez JL, Baquero F, Coque TM. 2015. The plasmidome of Firmicutes: impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr 3:PLAS-0039-2014.
354. Sletvold H, Johnsen PJ, Hamre I, Simonsen GS, Sundsfjord A, Nielsen KM. 2008. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter. Plasmid 60:75–85 http://dx.doi.org/10.1016/j.plasmid.2008.04.002. [PubMed]
355. Sletvold H, Johnsen PJ, Wikmark OG, Simonsen GS, Sundsfjord A, Nielsen KM. 2010. Tn1546 is part of a larger plasmid-encoded genetic unit horizontally disseminated among clonal Enterococcus faecium lineages. J Antimicrob Chemother 65:1894–1906 http://dx.doi.org/10.1093/jac/dkq219. [PubMed]
356. Garcia-Migura L, Hasman H, Svendsen C, Jensen LB. 2008. Relevance of hot spots in the evolution and transmission of Tn1546 in glycopeptide-resistant Enterococcus faecium (GREF) from broiler origin. J Antimicrob Chemother 62:681–687 http://dx.doi.org/10.1093/jac/dkn265. [PubMed]
357. Moura TM, Cassenego AP, Campos FS, Ribeiro AM, Franco AC, d’Azevedo PA, Frazzon J, Frazzon AP. 2013. Detection of vanC1 gene transcription in vancomycin-susceptible Enterococcus faecalis. Mem Inst Oswaldo Cruz 108:453–456 http://dx.doi.org/10.1590/S0074-0276108042013009. [PubMed]
358. Schwaiger K, Bauer J, Hörmansdorfer S, Mölle G, Preikschat P, Kämpf P, Bauer-Unkauf I, Bischoff M, Hölzel C. 2012. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis. Microb Drug Resist 18:434–439 http://dx.doi.org/10.1089/mdr.2011.0227. [PubMed]
359. Batista Xavier D, Moreno Bernal FE, Titze-de-Almeida R. 2006. Absence of VanA- and VanB-containing enterococci in poultry raised on nonintensive production farms in Brazil. Appl Environ Microbiol 72:3072–3073 http://dx.doi.org/10.1128/AEM.72.4.3072-3073.2006. [PubMed]
360. Mammina C, Di Noto AM, Costa A, Nastasi A. 2005. VanB-VanC1 Enterococcus gallinarum, Italy. Emerg Infect Dis 11:1491–1492 http://dx.doi.org/10.3201/eid1109.050282. [PubMed]
361. Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. 2015. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 16:282 http://dx.doi.org/10.1186/s12864-015-1407-6. [PubMed]
362. Teuber M, Schwarz F, Perreten V. 2003. Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Int J Food Microbiol 88:325–329 http://dx.doi.org/10.1016/S0168-1605(03)00195-8.
363. Schwarz FV, Perreten V, Teuber M. 2001. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 46:170–187 http://dx.doi.org/10.1006/plas.2001.1544. [PubMed]
364. Werner G, Hildebrandt B, Witte W. 2003. Linkage of erm(B) and aadE-sat4-aphA-3 in multiple-resistant Enterococcus faecium isolates of different ecological origins. Microb Drug Resist 9(Suppl 1):S9–S16 http://dx.doi.org/10.1089/107662903322541847. [PubMed]
365. Khan AA, Nawaz MS, Khan SA, Steele R. 2002. Detection and characterization of erythromycin-resistant methylase genes in Gram-positive bacteria isolated from poultry litter. Appl Microbiol Biotechnol 59:377–381 http://dx.doi.org/10.1007/s00253-002-1013-9. [PubMed]
366. Thumu SC, Halami PM. 2014. Phenotypic expression, molecular characterization and transferability of erythromycin resistance genes in Enterococcus spp. isolated from naturally fermented food. J Appl Microbiol 116:689–699 http://dx.doi.org/10.1111/jam.12386. [PubMed]
367. Schwaiger K, Bauer J. 2008. Detection of the erythromycin rRNA methylase gene erm(A) in Enterococcus faecalis. Antimicrob Agents Chemother 52:2994–2995 http://dx.doi.org/10.1128/AAC.00230-08. [PubMed]
368. Werner G, Hildebrandt B, Klare I, Witte W. 2000. Linkage of determinants for streptogramin A, macrolide-lincosamide-streptogramin B, and chloramphenicol resistance on a conjugative plasmid in Enterococcus faecium and dissemination of this cluster among streptogramin-resistant enterococci. Int J Med Microbiol 290:543–548 http://dx.doi.org/10.1016/S1438-4221(00)80020-X.
369. Werner G, Klare I, Heier H, Hinz KH, Böhme G, Wendt M, Witte W. 2000. Quinupristin/dalfopristin-resistant enterococci of the satA (vatD) and satG (vatE) genotypes from different ecological origins in Germany. Microb Drug Resist 6:37–47 http://dx.doi.org/10.1089/mdr.2000.6.37. [PubMed]
370. Hammerum AM, Flannagan SE, Clewell DB, Jensen LB. 2001. Indication of transposition of a mobile DNA element containing the vat(D) and erm(B) genes in Enterococcus faecium. Antimicrob Agents Chemother 45:3223–3225 http://dx.doi.org/10.1128/AAC.45.11.3223-3225.2001. [PubMed]
371. Jackson CR, Fedorka-Cray PJ, Barrett JB, Hiott LM, Woodley TA. 2007. Prevalence of streptogramin resistance in enterococci from animals: identification of vatD from animal sources in the USA. Int J Antimicrob Agents 30:60–66 http://dx.doi.org/10.1016/j.ijantimicag.2007.03.010. [PubMed]
372. Jensen LB, Hammerum AM, Aarestrup FM. 2000. Linkage of vat(E) and erm(B) in streptogamin-resistant Enterococcus faecium isolates from Europe. Antimicrob Agents Chemother 44:2231–2232 http://dx.doi.org/10.1128/AAC.44.8.2231-2232.2000. [PubMed]
373. Jensen LB, Hammerum AM, Bager F, Aarestrup FM. 2002. Streptogramin resistance among Enterococcus faecium isolated from production animals in Denmark in 1997. Microb Drug Resist 8:369–374 http://dx.doi.org/10.1089/10766290260469642. [PubMed]
374. Sørensen TL, Blom M, Monnet DL, Frimodt-Møller N, Poulsen RL, Espersen F. 2001. Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. N Engl J Med 345:1161–1166 http://dx.doi.org/10.1056/NEJMoa010692. [PubMed]
375. Smith DL, Johnson JA, Harris AD, Furuno JP, Perencevich EN, Morris JG Jr. 2003. Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium. Lancet Infect Dis 3:241–249 http://dx.doi.org/10.1016/S1473-3099(03)00581-4.
376. Li XS, Dong WC, Wang XM, Hu GZ, Wang YB, Cai BY, Wu CM, Wang Y, Du XD. 2014. Presence and genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in enterococci of human and swine origin. J Antimicrob Chemother 69:1424–1426 http://dx.doi.org/10.1093/jac/dkt502. [PubMed]
377. Wang XM, Li XS, Wang YB, Wei FS, Zhang SM, Shang YH, Du XD. 2015. Characterization of a multidrug resistance plasmid from Enterococcus faecium that harbours a mobilized bcrABDR locus. J Antimicrob Chemother 70:609–611 http://dx.doi.org/10.1093/jac/dku416. [PubMed]
378. Zhu XQ, Wang XM, Li H, Shang YH, Pan YS, Wu CM, Wang Y, Du XD, Shen JZ. 2017. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. J Antimicrob Chemother 72:993–997. [PubMed]
379. Liu H, Wang Y, Wu C, Schwarz S, Shen Z, Jeon B, Ding S, Zhang Q, Shen J. 2012. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother 67:322–325 http://dx.doi.org/10.1093/jac/dkr481. [PubMed]
380. Novais C, Campos J, Freitas AR, Barros M, Silveira E, Coque TM, Antunes P, Peixe L. 2018. Water supply and feed as sources of antimicrobial-resistant Enterococcus spp. in aquacultures of rainbow trout (Oncorhyncus mykiss), Portugal. Sci Total Environ 625:1102–1112 http://dx.doi.org/10.1016/j.scitotenv.2017.12.265.
381. Aarestrup FM, Hasman H, Jensen LB, Moreno M, Herrero IA, Domínguez L, Finn M, Franklin A. 2002. Antimicrobial resistance among enterococci from pigs in three European countries. Appl Environ Microbiol 68:4127–4129 http://dx.doi.org/10.1128/AEM.68.8.4127-4129.2002. [PubMed]
382. Amachawadi RG, Scott HM, Alvarado CA, Mainini TR, Vinasco J, Drouillard JS, Nagaraja TG. 2013. Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Appl Environ Microbiol 79:4369–4375 http://dx.doi.org/10.1128/AEM.00503-13. [PubMed]
383. Kim J, Lee S, Choi S. 2012. Copper resistance and its relationship to erythromycin resistance in Enterococcus isolates from bovine milk samples in Korea. J Microbiol 50:540–543 http://dx.doi.org/10.1007/s12275-012-1579-6. [PubMed]
384. Hasman H, Kempf I, Chidaine B, Cariolet R, Ersbøll AK, Houe H, Bruun Hansen HC, Aarestrup FM. 2006. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 72:5784–5789 http://dx.doi.org/10.1128/AEM.02979-05. [PubMed]
385. Amachawadi RG, Scott HM, Vinasco J, Tokach MD, Dritz SS, Nelssen JL, Nagaraja TG. 2015. Effects of in-feed copper, chlortetracycline, and tylosin on the prevalence of transferable copper resistance gene, tcrB, among fecal enterococci of weaned piglets. Foodborne Pathog Dis 12:670–678 http://dx.doi.org/10.1089/fpd.2015.1961. [PubMed]
386. Pasquaroli S, Di Cesare A, Vignaroli C, Conti G, Citterio B, Biavasco F. 2014. Erythromycin- and copper-resistant Enterococcus hirae from marine sediment and co-transfer of erm(B) and tcrB to human Enterococcus faecalis. Diagn Microbiol Infect Dis 80:26–28 http://dx.doi.org/10.1016/j.diagmicrobio.2014.06.002. [PubMed]
387. Zhang S, Wang D, Wang Y, Hasman H, Aarestrup FM, Alwathnani HA, Zhu YG, Rensing C. 2015. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Stand Genomic Sci 10:35 http://dx.doi.org/10.1186/s40793-015-0021-1. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0032-2018
2018-07-26
2018-08-16

Abstract:

Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, is an important opportunistic pathogen, especially the species and , causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as and , is highlighted. The molecular epidemiology and the population structure of and isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Plasmid gene content of 67 and 47 genomes of animal origin from the NCBI whole-genome database. Plasmid data were obtained by the PlasmidFinder bioinformatics tool. The genomes from the database were classified by source, extracting the isolate information from the Pathosystems Resource Integration Center (PATRIC) database ( 344 ). Reps, replicases.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Summary of reports about detection of VRE with acquired mechanisms of resistance in healthy food-producing animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Generic image for table
TABLE 2

Summary of reports about detection of VRE with acquired mechanisms of resistance in food samples of animal origin

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Generic image for table
TABLE 3

Summary of reports about detection of VRE with acquired mechanisms of resistance in companion and free-living animals

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Generic image for table
TABLE 4

Mechanisms implicated in linezolid resistance in enterococci of animals, food of animal origin, and the environment

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Generic image for table
TABLE 5

Summary of articles on the antimicrobial resistance in isolated from animals from 2013 to 2017

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018
Generic image for table
TABLE 6

isolates with animal source from the Genbank database included in the plasmid genes screening

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0032-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error