1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Hubert Plovier1, Patrice D. Cani3
  • Editors: Robert Allen Britton5, Patrice D. Cani6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: WELBIO—Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; 2: Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; 3: WELBIO—Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; 4: Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; 5: Baylor College of Medicine, Houston, TX 77030; 6: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.BAD-0002-2016
  • Received 09 November 2016 Accepted 01 December 2016 Published 09 June 2017
  • Patrice Cani, patrice.cani@uclouvain.be
image of Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/BAD-0002-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/BAD-0002-2016-2.gif
  • Abstract:

    Malnutrition is the cause of major public health concerns worldwide. On the one hand, obesity and associated pathologies (also known as the metabolic syndrome) affect more than 10% of the world population. Such pathologies might arise from an elevated inflammatory tone. We have discovered that the inflammatory properties of high-fat diets were linked to the translocation of lipopolysaccharide (LPS). We proposed a mechanism associating the gut microbiota with the onset of insulin resistance and low-grade inflammation, a phenomenon that we called “metabolic endotoxemia.” We and others have shown that bacteria as well as host-derived immune-related elements control microbial communities and eventually contribute to the phenotype observed during diet-induced obesity, diabetes, and metabolic inflammation. On the other hand, undernutrition is one of the leading causes of death in children. A diet poor in energy and/or nutrients causes incomplete development of the gut microbiota and may profoundly affect energy absorption, initiating stunted growth, edema, and diarrhea. In this review, we discuss how changes in microbiota composition are associated with obesity and undernutrition. We also highlight that opposite consequences exist in terms of energy absorption from the diet (obesity versus undernutrition), but interestingly the two situations share similar defects in term of diversity, functionality, and inflammatory potential.

  • Citation: Plovier H, Cani P. 2017. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiol Spectrum 5(3):BAD-0002-2016. doi:10.1128/microbiolspec.BAD-0002-2016.

References

1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science 336:1262–1267. http://dx.doi.org/10.1126/science.1223813 [PubMed]
2. Cani PD, Delzenne NM. 2009. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9:737–743. http://dx.doi.org/10.1016/j.coph.2009.06.016
3. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. http://dx.doi.org/10.1038/nature11552 [PubMed]
4. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. 2016. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 12:133–143. http://dx.doi.org/10.1038/nrendo.2015.211
5. Cani PD, Everard A. 2016. Talking microbes: when gut bacteria interact with diet and host organs. Mol Nutr Food Res 60:58–66. http://dx.doi.org/10.1002/mnfr.201500406 [PubMed]
6. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and Child Nutrition Study Group. 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–451. http://dx.doi.org/10.1016/S0140-6736(13)60937-X
7. Sender R, Fuchs S, Milo R. 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340. http://dx.doi.org/10.1016/j.cell.2016.01.013
8. Qin J, et al, MetaHIT Consortium. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. http://dx.doi.org/10.1038/nature08821
9. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, Bork P, Wang J, MetaHIT Consortium. 2014. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. http://dx.doi.org/10.1038/nbt.2942
10. Salazar N, Arboleya S, Valdés L, Stanton C, Ross P, Ruiz L, Gueimonde M, de Los Reyes-Gavilán CG. 2014. The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Front Genet 5:406. http://dx.doi.org/10.3389/fgene.2014.00406
11. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723. http://dx.doi.org/10.1073/pnas.0407076101
12. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F. 2016. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351:854–857. http://dx.doi.org/10.1126/science.aad8588
13. Wichmann A, Allahyar A, Greiner TU, Plovier H, Lundén GÖ, Larsson T, Drucker DJ, Delzenne NM, Cani PD, Bäckhed F. 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14:582–590. http://dx.doi.org/10.1016/j.chom.2013.09.012
14. Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson JO. 2013. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 154:3643–3651. http://dx.doi.org/10.1210/en.2012-2151
15. Cani PD, Delzenne NM. 2011. The gut microbiome as therapeutic target. Pharmacol Ther 130:202–212. http://dx.doi.org/10.1016/j.pharmthera.2011.01.012
16. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075. http://dx.doi.org/10.1073/pnas.0504978102
17. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. http://dx.doi.org/10.1038/4441022a
18. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. http://dx.doi.org/10.1038/nature05414
19. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. http://dx.doi.org/10.2337/db06-1491 [PubMed]
20. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germfree mice. Proc Natl Acad Sci USA 104:979–984. http://dx.doi.org/10.1073/pnas.0605374104
21. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085. http://dx.doi.org/10.1371/journal.pone.0009085
22. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, Lepage P, Klopp C, Mariette J, Bouchez O, Perez L, Courtney M, Marre M, Klopp P, Lantieri O, Doré J, Charles M, Balkau B, Burcelin R, D.E.S.I.R. Study Group. 2011. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54:3055–3061. http://dx.doi.org/10.1007/s00125-011-2329-8 [PubMed]
23. Qin J, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. http://dx.doi.org/10.1038/nature11450
24. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. http://dx.doi.org/10.1038/nature12198
25. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K, MICRO-Obes Consortium. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436. http://dx.doi.org/10.1136/gutjnl-2014-308778
26. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, Doré J, Zucker JD, Clément K, Ehrlich SD, ANR MicroObes consortium. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–588. http://dx.doi.org/10.1038/nature12480
27. Le Chatelier E, et al, MetaHIT consortium. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. http://dx.doi.org/10.1038/nature12506
28. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Igor Costea P, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O, MetaHIT consortium. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. http://dx.doi.org/10.1038/nature15766
29. Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. 2015. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 58:2206–2217. http://dx.doi.org/10.1007/s00125-015-3712-7
30. Tilg H, Kaser A. 2011. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132. http://dx.doi.org/10.1172/JCI58109
31. Tilg H, Moschen AR. 2014. Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521. http://dx.doi.org/10.1136/gutjnl-2014-306928
32. Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C. 2015. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol 6:1151. http://dx.doi.org/10.3389/fmicb.2015.01151
33. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214. http://dx.doi.org/10.1126/science.1241214
34. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM. 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56. http://dx.doi.org/10.1016/j.cmet.2007.10.013 [PubMed]
35. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626. http://dx.doi.org/10.1038/nature11400
36. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zárate Rodriguez JG, Rogers AB, Robine N, Loke P, Blaser MJ. 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721. http://dx.doi.org/10.1016/j.cell.2014.05.052
37. Vreugdenhil AC, Rousseau CH, Hartung T, Greve JW, van ’t Veer C, Buurman WA. 2003. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170:1399–1405. http://dx.doi.org/10.4049/jimmunol.170.3.1399
38. Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM, Cani PD. 2010. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6:392. http://dx.doi.org/10.1038/msb.2010.46
39. Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, André M, Valet P, Courtney M, Casteilla L, Burcelin R. 2013. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab 2:281–291. http://dx.doi.org/10.1016/j.molmet.2013.06.005
40. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Martines D. 2007. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–G525. http://dx.doi.org/10.1152/ajpgi.00024.2006
41. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, François P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD. 2011. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786. http://dx.doi.org/10.2337/db11-0227
42. Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD. 2011. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2:149. http://dx.doi.org/10.3389/fmicb.2011.00149
43. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. 2008. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481. http://dx.doi.org/10.2337/db07-1403
44. Erridge C, Attina T, Spickett CM, Webb DJ. 2007. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292. [PubMed]
45. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, Ferriéres J. 2008. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87:1219–1223. [PubMed]
46. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V. 2011. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34:392–397. http://dx.doi.org/10.2337/dc10-1676
47. Lassenius MI, Pietiläinen KH, Kaartinen K, Pussinen PJ, Syrjänen J, Forsblom C, Pörsti I, Rissanen A, Kaprio J, Mustonen J, Groop PH, Lehto M, FinnDiane Study Group. 2011. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34:1809–1815. http://dx.doi.org/10.2337/dc10-2197 [PubMed]
48. Laugerette F, Vors C, Géloën A, Chauvin MA, Soulage C, Lambert-Porcheron S, Peretti N, Alligier M, Burcelin R, Laville M, Vidal H, Michalski MC. 2011. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22:53–59. http://dx.doi.org/10.1016/j.jnutbio.2009.11.011
49. Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarné F, Monsan P, Valet P, Roques C, Amar J, Bouloumié A, Théodorou V, Burcelin R. 2012. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61:543–553. http://dx.doi.org/10.1136/gutjnl-2011-301012 [PubMed]
50. Moreno-Navarrete JM, Escoté X, Ortega F, Serino M, Campbell M, Michalski MC, Laville M, Xifra G, Luche E, Domingo P, Sabater M, Pardo G, Waget A, Salvador J, Giralt M, Rodriguez-Hermosa JI, Camps M, Kolditz CI, Viguerie N, Galitzky J, Decaunes P, Ricart W, Frühbeck G, Villarroya F, Mingrone G, Langin D, Zorzano A, Vidal H, Vendrell J, Burcelin R, Vidal-Puig A, Fernández-Real JM. 2013. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia 56:2524–2537. http://dx.doi.org/10.1007/s00125-013-3015-9 [PubMed]
51. Gu Y, Yu S, Park JY, Harvatine K, Lambert JD. 2014. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. J Nutr Biochem 25:439–445. http://dx.doi.org/10.1016/j.jnutbio.2013.12.004
52. Wang JH, Bose S, Kim GC, Hong SU, Kim JH, Kim JE, Kim H. 2014. Flos Lonicera ameliorates obesity and associated endotoxemia in rats through modulation of gut permeability and intestinal microbiota. PLoS One 9:e86117. http://dx.doi.org/10.1371/journal.pone.0086117
53. Kaliannan K, Hamarneh SR, Economopoulos KP, Nasrin Alam S, Moaven O, Patel P, Malo NS, Ray M, Abtahi SM, Muhammad N, Raychowdhury A, Teshager A, Mohamed MM, Moss AK, Ahmed R, Hakimian S, Narisawa S, Millán JL, Hohmann E, Warren HS, Bhan AK, Malo MS, Hodin RA. 2013. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA 110:7003–7008. http://dx.doi.org/10.1073/pnas.1220180110
54. Peng X, Nie Y, Wu J, Huang Q, Cheng Y. 2015. Juglone prevents metabolic endotoxemia-induced hepatitis and neuroinflammation via suppressing TLR4/NF-κB signaling pathway in high-fat diet rats. Biochem Biophys Res Commun 462:245–250. http://dx.doi.org/10.1016/j.bbrc.2015.04.124
55. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, Copeland JK, Ahn J, Prescott D, Rasmussen BA, Chng MH, Engleman EG, Girardin SE, Lam TK, Croitoru K, Dunn S, Philpott DJ, Guttman DS, Woo M, Winer S, Winer DA. 2015. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab 21:527–542. http://dx.doi.org/10.1016/j.cmet.2015.03.001
56. Varma MC, Kusminski CM, Azharian S, Gilardini L, Kumar S, Invitti C, McTernan PG. 2016. Metabolic endotoxaemia in childhood obesity. BMC Obes 3:3. http://dx.doi.org/10.1186/s40608-016-0083-7
57. Radilla-Vázquez RB, Parra-Rojas I, Martínez-Hernández NE, Márquez-Sandoval YF, Illades-Aguiar B, Castro-Alarcón N. 2016. Gut microbiota and metabolic endotoxemia in young obese Mexican subjects. Obes Facts 9:1–11. http://dx.doi.org/10.1159/000442479
58. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:658–668. http://dx.doi.org/10.1016/j.cmet.2015.07.026
59. Bevins CL, Salzman NH. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368. http://dx.doi.org/10.1038/nrmicro2546
60. Pott J, Hornef M. 2012. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 13:684–698. http://dx.doi.org/10.1038/embor.2012.96 [PubMed]
61. Hooper LV, Macpherson AJ. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169. http://dx.doi.org/10.1038/nri2710
62. Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD. 2012. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev 245:132–146. http://dx.doi.org/10.1111/j.1600-065X.2011.01072.x
63. Cani PD, Everard A, Duparc T. 2013. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13:935–940. http://dx.doi.org/10.1016/j.coph.2013.09.008
64. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103. http://dx.doi.org/10.1136/gut.2008.165886
65. Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD. 2014. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8:2116–2130. http://dx.doi.org/10.1038/ismej.2014.45
66. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103. http://dx.doi.org/10.1136/gut.2008.165886
67. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. http://dx.doi.org/10.1073/pnas.1219451110
68. Everard A, Geurts L, Caesar R, Van Hul M, Matamoros S, Duparc T, Denis RG, Cochez P, Pierard F, Castel J, Bindels LB, Plovier H, Robine S, Muccioli GG, Renauld JC, Dumoutier L, Delzenne NM, Luquet S, Bäckhed F, Cani PD. 2014. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 5:5648. http://dx.doi.org/10.1038/ncomms6648
69. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV. 2011. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258. http://dx.doi.org/10.1126/science.1209791
70. Sommer F, Adam N, Johansson ME, Xia L, Hansson GC, Bäckhed F. 2014. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 9:e85254. http://dx.doi.org/10.1371/journal.pone.0085254
71. Johansson ME, Larsson JM, Hansson GC. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665. http://dx.doi.org/10.1073/pnas.1006451107
72. Lluch J, Servant F, Païssé S, Valle C, Valière S, Kuchly C, Vilchez G, Donnadieu C, Courtney M, Burcelin R, Amar J, Bouchez O, Lelouvier B. 2015. The characterization of novel tissue microbiota using an optimized 16s metagenomic sequencing pipeline. PLoS One 10:e0142334. http://dx.doi.org/10.1371/journal.pone.0142334
73. Bowman KA, Broussard EK, Surawicz CM. 2015. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol 8:285–291. [PubMed]
74. Vrieze, A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913-6.e7. http://dx.doi.org/10.1053/j.gastro.2012.06.031
75. Firouzi S, Barakatun-Nisak MY, Ismail A, Majid HA, Nor Azmi K. 2013. Role of probiotics in modulating glucose homeostasis: evidence from animal and human studies. Int J Food Sci Nutr 64:780–786. http://dx.doi.org/10.3109/09637486.2013.775227 [PubMed]
76. Bernardeau M, Vernoux JP. 2013. Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clin Microbiol Infect 19:321–330. http://dx.doi.org/10.1111/1469-0691.12130
77. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD. 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7:639–646. http://dx.doi.org/10.1038/nrendo.2011.126
78. Ben Salah R, Trabelsi I, Hamden K, Chouayekh H, Bejar S. 2013. Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe 23:55–61. http://dx.doi.org/10.1016/j.anaerobe.2013.07.003 [PubMed]
79. Jung SP, Lee KM, Kang JH, Yun SI, Park HO, Moon Y, Kim JY. 2013. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med 34:80–89. http://dx.doi.org/10.4082/kjfm.2013.34.2.80
80. Kadooka Y, Sato M, Ogawa A, Miyoshi M, Uenishi H, Ogawa H, Ikuyama K, Kagoshima M, Tsuchida T. 2013. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr 110:1696–1703. http://dx.doi.org/10.1017/S0007114513001037 [PubMed]
81. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO. 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8:e54617. http://dx.doi.org/10.1371/journal.pone.0054617
82. Kondo S, Kamei A, Xiao JZ, Iwatsuki K, Abe K. 2013. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microbes 4:247–251. http://dx.doi.org/10.3920/BM2012.0019
83. Okubo T, Takemura N, Yoshida A, Sonoyama K. 2013. KK/Ta mice administered Lactobacillus plantarum strain no. 14 have lower adiposity and higher insulin sensitivity. Biosci Microbiota Food Health 32:93–100. http://dx.doi.org/10.12938/bmfh.32.93
84. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, Sung MK, McGregor RA, Choi MS. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8:e59470. http://dx.doi.org/10.1371/journal.pone.0059470
85. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perrotta A, Bhela S, Varian BJ, Ibrahim YM, Lakritz JR, Kearney SM, Chatzigiagkos A, Hafler DA, Alm EJ, Erdman SE. 2013. Microbial reprogramming inhibits Western diet-associated obesity. PLoS One 8:e68596. http://dx.doi.org/10.1371/journal.pone.0068596
86. Sakai T, Taki T, Nakamoto A, Shuto E, Tsutsumi R, Toshimitsu T, Makino S, Ikegami S. 2013. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 59:144–147. http://dx.doi.org/10.3177/jnsv.59.144
87. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. 2013. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097. http://dx.doi.org/10.1074/jbc.M113.452516
88. Yoo SR, Kim YJ, Park DY, Jung UJ, Jeon SM, Ahn YT, Huh CS, McGregor R, Choi MS. 2013. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring) 21:2571–2578. http://dx.doi.org/10.1002/oby.20428
89. Karlsson Videhult F, Öhlund I, Stenlund H, Hernell O, West CE. 2014. Probiotics during weaning: a follow-up study on effects on body composition and metabolic markers at school age. Eur J Nutr 54:355–363. [PubMed]
90. Lindsay KL, Kennelly M, Culliton M, Smith T, Maguire OC, Shanahan F, Brennan L, McAuliffe FM. 2014. Probiotics in obese pregnancy do not reduce maternal fasting glucose: a double-blind, placebo-controlled, randomized trial (Probiotics in Pregnancy Study). Am J Clin Nutr 99:1432–1439. http://dx.doi.org/10.3945/ajcn.113.079723
91. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. 2014. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53:599–606. http://dx.doi.org/10.1007/s00394-013-0568-9
92. Moya-Pérez A, Romo-Vaquero M, Tomás-Barberán F, Sanz Y, García-Conesa MT. 2014. Hepatic molecular responses to Bifidobacterium pseudocatenulatum CECT 7765 in a mouse model of diet-induced obesity. Nutr Metab Cardiovasc Dis 24:57–64. http://dx.doi.org/10.1016/j.numecd.2013.04.011
93. Ogawa A, Kadooka Y, Kato K, Shirouchi B, Sato M. 2014. Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis 13:36. http://dx.doi.org/10.1186/1476-511X-13-36
94. Park JE, Oh SH, Cha YS. 2014. Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J Appl Microbiol 116:145–156. http://dx.doi.org/10.1111/jam.12354 [PubMed]
95. Plaza-Diaz J, Gomez-Llorente C, Abadia-Molina F, Saez-Lara MJ, Campaña-Martin L, Muñoz-Quezada S, Romero F, Gil A, Fontana L. 2014. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats. PLoS One 9:e98401. http://dx.doi.org/10.1371/journal.pone.0098401
96. Reichold A, Brenner SA, Spruss A, Förster-Fromme K, Bergheim I, Bischoff SC. 2014. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25:118–125. http://dx.doi.org/10.1016/j.jnutbio.2013.09.011
97. Ritze Y, Bárdos G, Claus A, Ehrmann V, Bergheim I, Schwiertz A, Bischoff SC. 2014. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One 9:e80169. http://dx.doi.org/10.1371/journal.pone.0080169
98. Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, Ngom-Bru C, Berger B, Philippe L, Ammon-Zuffrey C, Leone P, Chevrier G, St-Amand E, Marette A, Doré J, Tremblay A. 2014. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr 111:1507–1519. http://dx.doi.org/10.1017/S0007114513003875
99. Toral M, Gómez-Guzmán M, Jiménez R, Romero M, Sánchez M, Utrilla MP, Garrido-Mesa N, Rodríguez-Cabezas ME, Olivares M, Gálvez J, Duarte J. 2014. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice. Clin Sci (Lond) 127:33–45. http://dx.doi.org/10.1042/CS20130339
100. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JE, Strissel K, Zhao L, Obin M, Shen J. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9:1–15. [PubMed]
101. Cani PD, Van Hul M. 2015. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol 32:21–27. http://dx.doi.org/10.1016/j.copbio.2014.10.006
102. Minami J, Kondo S, Yanagisawa N, Odamaki T, Xiao JZ, Abe F, Nakajima S, Hamamoto Y, Saitoh S, Shimoda T. 2015. Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J Nutr Sci 4:e17. http://dx.doi.org/10.1017/jns.2015.5
103. Moya-Pérez A, Neef A, Sanz Y. 2015. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One 10:e0126976. http://dx.doi.org/10.1371/journal.pone.0126976
104. Pothuraju R, Sharma RK, Kavadi PK, Chagalamarri J, Jangra S, Bhakri G, De S. 2016. Anti-obesity effect of milk fermented by Lactobacillus plantarum NCDC 625 alone and in combination with herbs on high fat diet fed C57BL/6J mice. Benef Microbes 7:375–385. http://dx.doi.org/10.3920/BM2015.0083 [PubMed]
105. Park S, Bae JH. 2015. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 35:566–575. http://dx.doi.org/10.1016/j.nutres.2015.05.008
106. Karimi G, Sabran MR, Jamaluddin R, Parvaneh K, Mohtarrudin N, Ahmad Z, Khazaai H, Khodavandi A. 2015. The anti-obesity effects of Lactobacillus casei strain Shirota versus Orlistat on high fat diet-induced obese rats. Food Nutr Res 59:29273. http://dx.doi.org/10.3402/fnr.v59.29273
107. Ukibe K, Miyoshi M, Kadooka Y. 2015. Administration of Lactobacillus gasseri SBT2055 suppresses macrophage infiltration into adipose tissue in diet-induced obese mice. Br J Nutr 114:1180–1187. http://dx.doi.org/10.1017/S0007114515002627 [PubMed]
108. Novotny Núñez I, Maldonado Galdeano C, de Moreno de LeBlanc A, Perdigón G. 2015. Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model. Nutrition 31:1000–1007. http://dx.doi.org/10.1016/j.nut.2015.02.006
109. Wu M, McNulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J, Latreille P, Kerstetter RA, Terrapon N, Henrissat B, Osterman AL, Gordon JI. 2015. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science 350:aac5992. http://dx.doi.org/10.1126/science.aac5992
110. Ivanovic N, Minic R, Dimitrijevic L, Radojevic Skodric S, Zivkovic I, Djordjevic B. 2015. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct 6:558–565. http://dx.doi.org/10.1039/C4FO00843J [CrossRef]
111. Druart C, Alligier M, Salazar N, Neyrinck AM, Delzenne NM. 2014. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv Nutr 5:624S–633S. http://dx.doi.org/10.3945/an.114.005835
112. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R. 2009. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106:2365–2370. http://dx.doi.org/10.1073/pnas.0812600106
113. Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20:2257–2261. http://dx.doi.org/10.1038/oby.2012.110
114. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. 2013. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8:e71108. http://dx.doi.org/10.1371/journal.pone.0071108
115. Derrien M, Vaughan EE, Plugge CM, de Vos WM. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476. http://dx.doi.org/10.1099/ijs.0.02873-0 [PubMed]
116. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735. http://dx.doi.org/10.1136/gutjnl-2012-303839
117. Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, Mehrabian M, Pan C, Knight R, Gunsalus R, Drake TA, Eskin E, Lusis AJ. 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res 25:1558–1569. http://dx.doi.org/10.1101/gr.194118.115
118. Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 5:e01011–e01014. http://dx.doi.org/10.1128/mBio.01011-14
119. Xu L, Wang Y, Wang Y, Fu J, Sun M, Mao Z, Vandenplas Y. 2016. A double-blinded randomized trial on growth and feeding tolerance with Saccharomyces boulardii CNCM I-745 in formula-fed preterm infants. J Pediatr (Rio J) 92:296–301. http://dx.doi.org/10.1016/j.jped.2015.08.013
120. Williams CD, Oxon BM, Lond H. 1973. Kwashiorkor. A nutritional disease of children associated with a maize diet by Cicely D. Williams from the Lancet, Nov. 16, 1935, p. 1151. Nutr Rev 31:350–351. http://dx.doi.org/10.1111/j.1753-4887.1973.tb07044.x
121. Brewster DR, Manary MJ, Menzies IS, O’Loughlin EV, Henry RL. 1997. Intestinal permeability in kwashiorkor. Arch Dis Child 76:236–241. http://dx.doi.org/10.1136/adc.76.3.236
122. World Health Organization. 2007. Community-based management of severe acute malnutrition: a joint statement of the World Health Organization, World Food Programme, the United Nations System Standing Committee on Nutrition, and the United Nations Children’s Fund. World Health Organization, Geneva, Switzerland.
123. Smythe PM. 1958. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 2:724–727. http://dx.doi.org/10.1016/S0140-6736(58)91336-9
124. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM, Manary MJ. 2013. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med 368:425–435. http://dx.doi.org/10.1056/NEJMoa1202851 [PubMed]
125. Isanaka S, Langendorf C, Berthé F, Gnegne S, Li N, Ousmane N, Harouna S, Hassane H, Schaefer M, Adehossi E, Grais RF. 2016. Routine amoxicillin for uncomplicated severe acute malnutrition in children. N Engl J Med 374:444–453. http://dx.doi.org/10.1056/NEJMoa1507024
126. Berkley JA, Ngari M, Thitiri J, Mwalekwa L, Timbwa M, Hamid F, Ali R, Shangala J, Mturi N, Jones KD, Alphan H, Mutai B, Bandika V, Hemed T, Awuondo K, Morpeth S, Kariuki S, Fegan G. 2016. Daily co-trimoxazole prophylaxis to prevent mortality in children with complicated severe acute malnutrition: a multicentre, double-blind, randomised placebo-controlled trial. Lancet Glob Health 4:e464–e473. http://dx.doi.org/10.1016/S2214-109X(16)30096-1
127. Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS. 2011. Metagenome of the gut of a malnourished child. Gut Pathog 3:7. http://dx.doi.org/10.1186/1757-4749-3-7
128. Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H, Alam NH, Endtz HP, Cravioto A, Ali SI, Nakaya T, Horii T, Iida T, Alam M. 2011. Gut microbiota of healthy and malnourished children in bangladesh. Front Microbiol 2:228. http://dx.doi.org/10.3389/fmicb.2011.00228
129. Ghosh TS, Gupta SS, Bhattacharya T, Yadav D, Barik A, Chowdhury A, Das B, Mande SS, Nair GB. 2014. Gut microbiomes of Indian children of varying nutritional status. PLoS One 9:e95547. http://dx.doi.org/10.1371/journal.pone.0095547
130. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554. http://dx.doi.org/10.1126/science.1229000
131. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk LG, Zhang Q, Province MA, Petri WA Jr, Ahmed T, Gordon JI. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417–421.
132. Walker WA, Iyengar RS. 2015. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr Res 77:220–228. [PubMed]
133. Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, Muehlbauer MJ, Ilkayeva O, Wu C, Struckmeyer T, Barile D, Mangani C, Jorgensen J, Fan YM, Maleta K, Dewey KG, Ashorn P, Newgard CB, Lebrilla C, Mills DA, Gordon JI. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–871. http://dx.doi.org/10.1016/j.cell.2016.01.024
134. Devkota S, Chang EB. 2015. Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig Dis 33:351–356. http://dx.doi.org/10.1159/000371687
135. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI. 2016. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:aad3311. http://dx.doi.org/10.1126/science.aad3311
136. Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T, Trehan I, Manary MJ, Liu TC, Stappenbeck TS, Maleta KM, Ashorn P, Dewey KG, Houpt ER, Hsieh CS, Gordon JI. 2015. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 7:276ra24. http://dx.doi.org/10.1126/scitranslmed.aaa4877
137. O’Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep 7:688–693. http://dx.doi.org/10.1038/sj.embor.7400731
microbiolspec.BAD-0002-2016.citations
cm/5/3
content/journal/microbiolspec/10.1128/microbiolspec.BAD-0002-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAD-0002-2016
2017-06-09
2017-07-23

Abstract:

Malnutrition is the cause of major public health concerns worldwide. On the one hand, obesity and associated pathologies (also known as the metabolic syndrome) affect more than 10% of the world population. Such pathologies might arise from an elevated inflammatory tone. We have discovered that the inflammatory properties of high-fat diets were linked to the translocation of lipopolysaccharide (LPS). We proposed a mechanism associating the gut microbiota with the onset of insulin resistance and low-grade inflammation, a phenomenon that we called “metabolic endotoxemia.” We and others have shown that bacteria as well as host-derived immune-related elements control microbial communities and eventually contribute to the phenotype observed during diet-induced obesity, diabetes, and metabolic inflammation. On the other hand, undernutrition is one of the leading causes of death in children. A diet poor in energy and/or nutrients causes incomplete development of the gut microbiota and may profoundly affect energy absorption, initiating stunted growth, edema, and diarrhea. In this review, we discuss how changes in microbiota composition are associated with obesity and undernutrition. We also highlight that opposite consequences exist in terms of energy absorption from the diet (obesity versus undernutrition), but interestingly the two situations share similar defects in term of diversity, functionality, and inflammatory potential.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Dysbiosis during undernutrition and the metabolic syndrome: two sides of the same coin? Gut microbiota composition is modified in people suffering from undernutrition as well as the metabolic syndrome, the two extremes of malnutrition. Changes in the composition are associated with opposite consequences in terms of energy absorption from the diet, but lead to similar defects in terms of ecological fitness and inflammatory potential.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.BAD-0002-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error