1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Guido J. Bakker1, Max Nieuwdorp2
  • Editors: Robert Allen Britton5, Patrice D. Cani6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Internal and Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands; 2: Department of Internal and Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands; 3: Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 4: Department of Internal Medicine, VU University Medical Center, Amsterdam, Netherlands; 5: Baylor College of Medicine, Houston, TX; 6: Université catholique de Louvain, Brussels, Belgium
  • Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0008-2017
  • Received 24 July 2016 Accepted 17 January 2017 Published 25 August 2017
  • Guido Bakker, g.j.bakker@amc.nl
image of Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond <span class="jp-italic">Clostridium difficile</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/BAD-0008-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/4/BAD-0008-2017-2.gif
  • Abstract:

    The human intestinal tract contains trillions of bacteria, collectively called the gut microbiota. Recent insights have linked the gut microbiota to a plethora of diseases, including infection (CDI), inflammatory bowel disease (IBD), and metabolic diseases such as obesity, type 2 diabetes (T2D), and nonalcoholic steatohepatitis (NASH). Fecal microbiota transplantation (FMT) is currently tested as a therapeutic option in various diseases and can also help to dissect association from causality with respect to gut microbiota and disease. In CDI, FMT has been shown to be superior to antibiotic treatment. For IBD, T2D, and NASH, several placebo-controlled randomized controlled trials are under way. Moreover, techniques and standardization are developing. With the extension of FMT as a treatment modality in diseases other than CDI, a whole new treatment option may be emerging. Moreover, correlating alterations in specific strains to disease outcome may prove pivotal in finding new bacterial targets. Thus, although causality of the gut microbiota in various diseases still needs to be proven, FMT may prove to be a powerful tool providing us with diagnostic and therapeutic leads.

  • Citation: Bakker G, Nieuwdorp M. 2017. Fecal Microbiota Transplantation: Therapeutic Potential for a Multitude of Diseases beyond . Microbiol Spectrum 5(4):BAD-0008-2017. doi:10.1128/microbiolspec.BAD-0008-2017.

References

1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–1638. http://dx.doi.org/10.1126/science.1110591 [PubMed]
2. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. 2013. The long-term stability of the human gut microbiota. Science 341:1237439. http://dx.doi.org/10.1126/science.1237439 [PubMed]
3. Jernberg C, Löfmark S, Edlund C, Jansson JK. 2010. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156:3216–3223. http://dx.doi.org/10.1099/mic.0.040618-0 [PubMed]
4. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. 2009. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375. http://dx.doi.org/10.1128/IAI.01520-08 [PubMed]
5. Britton RA, Young VB. 2014. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology 146:1547–1553. http://dx.doi.org/10.1053/j.gastro.2014.01.059 [PubMed]
6. Zhang F, Luo W, Shi Y, Fan Z, Ji G. 2012. Should we standardize the 1,700-year-old fecal microbiota transplantation? American J Gastroenterol 107:1755; author reply, 107:1755–1756.
7. Lewin RA. 1999. Merde: excursions in scientific, cultural, and socio-historical coprology. Random House Inc, New York, NY.
8. Eiseman B, Silen W, Bascom GS, Kauvar AJ. 1958. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44:854–859. [PubMed]
9. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. http://dx.doi.org/10.1056/NEJMoa1205037 [PubMed]
10. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA, Russell G, Surawicz C, Fecal Microbiota Transplantation Workgroup. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9:1044–1049 http://dx.doi.org/10.1016/j.cgh.2011.08.014. [PubMed]
11. König J, Siebenhaar A, Högenauer C, Arkkila P, Nieuwdorp M, Norén T, Ponsioen CY, Rosien U, Rossen NG, Satokari R, Stallmach A, de Vos W, Keller J, Brummer RJ. 2017. Consensus report: faecal microbiota transfer—clinical applications and procedures. Aliment Pharmacol Ther 45:222–239. http://dx.doi.org/10.1111/apt.13868 [PubMed]
12. Kassam Z, Lee CH, Hunt RH. 2014. Review of the emerging treatment of Clostridium difficile infection with fecal microbiota transplantation and insights into future challenges. Clin Lab Med 34:787–798. http://dx.doi.org/10.1016/j.cll.2014.08.007 [PubMed]
13. Gough E, Shaikh H, Manges AR. 2011. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002 http://dx.doi.org/10.1093/cid/cir632. [PubMed]
14. Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL. 2016. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214:173–181. http://dx.doi.org/10.1093/infdis/jiv766 [PubMed]
15. Seres Therapeutics. 2016. Seres Therapeutics announces interim results from SER-109 phase 2 ECOSPOR study in multiply recurrent Clostridium difficile infection. http://ir.serestherapeutics.com/phoenix.zhtml?c=254006&p=irol-newsArticle&ID=2190006. Accessed 6 October 2016.
16. Ott SJ, Musfeldt M, Timmis KN, Hampe J, Wenderoth DF, Schreiber S. 2004. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn Microbiol Infect Dis 50:237–245 http://dx.doi.org/10.1016/j.diagmicrobio.2004.08.012. [PubMed]
17. Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, Alm EJ, Gevers D, Russell GH, Hohmann EL. 2014. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 58:1515–1522. http://dx.doi.org/10.1093/cid/ciu135 [PubMed]
18. Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, Weese JS, Collins S, Moayyedi P, Crowther M, Ropeleski MJ, Jayaratne P, Higgins D, Li Y, Rau NV, Kim PT. 2016. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 315:142–149. http://dx.doi.org/10.1001/jama.2015.18098 [PubMed]
19. Costello SP, Tucker EC, La Brooy J, Schoeman MN, Andrews JM. 2016. Establishing a fecal microbiota transplant service for the treatment of Clostridium difficile infection. Clin Infect Dis 62:908–914 http://dx.doi.org/10.1093/cid/civ994. [PubMed]
20. Cammarota G, Ianiro G, Gasbarrini A. 2014. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 48:693–702. http://dx.doi.org/10.1097/MCG.0000000000000046 [PubMed]
21. Kassam Z, Lee CH, Yuan Y, Hunt RH. 2013. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508. http://dx.doi.org/10.1038/ajg.2013.59 [PubMed]
22. Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, Rutks I, Wilt TJ. 2015. Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med 162:630–638. http://dx.doi.org/10.7326/M14-2693 [PubMed]
23. Furuya-Kanamori L, Doi SA, Paterson DL, Helms SK, Yakob L, McKenzie SJ, Garborg K, Emanuelsson F, Stollman N, Kronman MP, Clark J, Huber CA, Riley TV, Clements AC. 2017. Upper versus lower gastrointestinal delivery for transplantation of fecal microbiota in recurrent or refractory Clostridium difficile infection: a collaborative analysis of individual patient data from 14 studies. J Clin Gastroenterol 51:145–150 http://dx.doi.org/10.1097/MCG.0000000000000511. [PubMed]
24. Jalanka J, Salonen A, Salojärvi J, Ritari J, Immonen O, Marciani L, Gowland P, Hoad C, Garsed K, Lam C, Palva A, Spiller RC, de Vos WM. 2015. Effects of bowel cleansing on the intestinal microbiota. Gut 64:1562–1568. http://dx.doi.org/10.1136/gutjnl-2014-307240 [PubMed]
25. Di Bella S, Gouliouris T, Petrosillo N. 2015. Fecal microbiota transplantation (FMT) for Clostridium difficile infection: focus on immunocompromised patients. J Infect Chemother 21:230–237. http://dx.doi.org/10.1016/j.jiac.2015.01.011 [PubMed]
26. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A, Gordon S, Gluck M, Hohmann EL, Kao D, Kao JY, McQuillen DP, Mellow M, Rank KM, Rao K, Ray A, Schwartz MA, Singh N, Stollman N, Suskind DL, Vindigni SM, Youngster I, Brandt L. 2014. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 109:1065–1071. http://dx.doi.org/10.1038/ajg.2014.133 [PubMed]
27. Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F, Surawicz C. 2012. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107:1079–1087. http://dx.doi.org/10.1038/ajg.2012.60 [PubMed]
28. American Gastroenterological Association Center for Gut Microbiome Research & Education. Center establishes NIH-funded registry to track FMT. http://www.gastro.org/about/initiatives/aga-center-for-gut-microbiome-research-education. Accessed 5 October 2016.
29. Periman P. 2002. Antibiotic-associated diarrhea. N Engl J Med 347:145. http://dx.doi.org/10.1056/NEJM200207113470216 [PubMed]
30. Argamany JR, Aitken SL, Lee GC, Boyd NK, Reveles KR. 2015. Regional and seasonal variation in Clostridium difficile infections among hospitalized patients in the United States, 2001-2010. Am J Infect Control 43:435–440. http://dx.doi.org/10.1016/j.ajic.2014.11.018 [PubMed]
31. Kuijper EJ, Coignard B, Tüll P, ESCMID Study Group for Clostridium difficile, EU Member States, European Centre for Disease Prevention and Control. 2006. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12(Suppl 6):2–18 http://dx.doi.org/10.1111/j.1469-0691.2006.01580.x. [PubMed]
32. Akerlund T, Svenungsson B, Lagergren A, Burman LG. 2006. Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile-associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 44:353–358. http://dx.doi.org/10.1128/JCM.44.2.353-358.2006 [PubMed]
33. Leffler DA, Lamont JT. 2015. Clostridium difficile infection. N Engl J Med 372:1539–1548. http://dx.doi.org/10.1056/NEJMra1403772 [PubMed]
34. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. 2013. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 51:2884–2892. http://dx.doi.org/10.1128/JCM.00845-13 [PubMed]
35. Song Y, Garg S, Girotra M, Maddox C, von Rosenvinge EC, Dutta A, Dutta S, Fricke WF. 2013. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS One 8:e81330. http://dx.doi.org/10.1371/journal.pone.0081330 [PubMed]
36. Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME. 1997. Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin Infect Dis 24:324–333. http://dx.doi.org/10.1093/clinids/24.3.324 [PubMed]
37. McFarland LV, Surawicz CM, Rubin M, Fekety R, Elmer GW, Greenberg RN. 1999. Recurrent Clostridium difficile disease: epidemiology and clinical characteristics. Infect Control Hosp Epidemiol 20:43–50. http://dx.doi.org/10.1086/501553 [PubMed]
38. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD. 2013. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113. http://dx.doi.org/10.1038/ng.2478 [PubMed]
39. Rupnik M, Wilcox MH, Gerding DN. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536. http://dx.doi.org/10.1038/nrmicro2164 [PubMed]
40. Valiente E, Cairns MD, Wren BW. 2014. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect 20:396–404 http://dx.doi.org/10.1111/1469-0691.12619. [PubMed]
41. Goorhuis A, Van der Kooi T, Vaessen N, Dekker FW, Van den Berg R, Harmanus C, van den Hof S, Notermans DW, Kuijper EJ. 2007. Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands. Clin Infect Dis 45:695–703. http://dx.doi.org/10.1086/520984 [PubMed]
42. Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E, Matas I, Jovanovic M, Pasic S, Kocuvan A, Janezic S. 2016. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe 42:142–144. http://dx.doi.org/10.1016/j.anaerobe.2016.10.005 [PubMed]
43. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, EUCLID study group. 2016. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill 21:21. http://dx.doi.org/10.2807/1560-7917.ES.2016.21.29.30294 [PubMed]
44. Adler A, Miller-Roll T, Bradenstein R, Block C, Mendelson B, Parizade M, Paitan Y, Schwartz D, Peled N, Carmeli Y, Schwaber MJ. 2015. A national survey of the molecular epidemiology of Clostridium difficile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn Microbiol Infect Dis 83:21–24. http://dx.doi.org/10.1016/j.diagmicrobio.2015.05.015 [PubMed]
45. Bartsch SM, Umscheid CA, Fishman N, Lee BY. 2013. Is fidaxomicin worth the cost? An economic analysis. Clin Infect Dis 57:555–561. http://dx.doi.org/10.1093/cid/cit346 [PubMed]
46. Debast SB, Bauer MP, Kuijper EJ, European Society of Clinical Microbiology and Infectious Diseases. 2014. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20(Suppl 2):1–26 http://dx.doi.org/10.1111/1469-0691.12418. [PubMed]
47. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS. 2013. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498, quiz 499. http://dx.doi.org/10.1038/ajg.2013.4 [PubMed]
48. Zainah H, Hassan M, Shiekh-Sroujieh L, Hassan S, Alangaden G, Ramesh M. 2015. Intestinal microbiota transplantation, a simple and effective treatment for severe and refractory Clostridium difficile infection. Dig Dis Sci 60:181–185. http://dx.doi.org/10.1007/s10620-014-3296-y [PubMed]
49. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. 2014. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312:1772–1778. doi:10.1001/jama.2014.13875. [PubMed]
50. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785. http://dx.doi.org/10.1073/pnas.0706625104 [PubMed]
51. Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, Löwenberg M, van den Brink GR, Mathus-Vliegen EM, de Vos WM, Zoetendal EG, D’Haens GR, Ponsioen CY. 2015. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149:110–118.e4 http://dx.doi.org/10.1053/j.gastro.2015.03.045. [PubMed]
52. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. 2015. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–109.e6 http://dx.doi.org/10.1053/j.gastro.2015.04.001. [PubMed]
53. Bennet JD, Brinkman M. 1989. Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet i:164. http://dx.doi.org/10.1016/S0140-6736(89)91183-5
54. Colman RJ, Rubin DT. 2014. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis 8:1569–1581. http://dx.doi.org/10.1016/j.crohns.2014.08.006 [PubMed]
55. Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, Huerta-Cepas J, Nieuwdorp M, Salojärvi J, Voigt AY, Zeller G, Sunagawa S, de Vos WM, Bork P. 2016. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352:586–589. http://dx.doi.org/10.1126/science.aad8852 [PubMed]
56. Shi Y, Dong Y, Huang W, Zhu D, Mao H, Su P. 2016. Fecal microbiota transplantation for ulcerative colitis: a systematic review and meta-analysis. PLoS One 11:e0157259. http://dx.doi.org/10.1371/journal.pone.0157259 [PubMed]
57. World Health Organization. 2016. Obesity and overweight—fact sheet. http://www.who.int/mediacentre/factsheets/fs311/en/. World Health Organization, Geneva, Switzerland.
58. Flegal KM, Carroll MD, Ogden CL, Curtin LR. 2010. Prevalence and trends in obesity among US adults, 1999-2008. JAMA 303:235–241. http://dx.doi.org/10.1001/jama.2009.2014 [PubMed]
59. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. 2009. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88. http://dx.doi.org/10.1186/1471-2458-9-88 [PubMed]
60. Di Angelantonio E, et al, Global BMI Mortality Collaboration. 2016. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388:776–786 http://dx.doi.org/10.1016/S0140-6736(16)30175-1.
61. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. 2007. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984. http://dx.doi.org/10.1073/pnas.0605374104 [PubMed]
62. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. http://dx.doi.org/10.1038/nature05414 [PubMed]
63. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. http://dx.doi.org/10.1038/nature11552 [PubMed]
64. Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M. 2011. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300:E211–E220. http://dx.doi.org/10.1152/ajpendo.00229.2010 [PubMed]
65. Mariadason JM, Barkla DH, Gibson PR. 1997. Effect of short-chain fatty acids on paracellular permeability in Caco-2 intestinal epithelium model. Am J Physiol 272:G705–G712. [PubMed]
66. Lewis K, Lutgendorff F, Phan V, Söderholm JD, Sherman PM, McKay DM. 2010. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138–1148. http://dx.doi.org/10.1002/ibd.21177 [PubMed]
67. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406.e1-10. [PubMed]
68. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262. [PubMed]
69. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. http://dx.doi.org/10.1038/nature08530 [PubMed]
70. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottière HM, Galmiche JP. 2000. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47:397–403. http://dx.doi.org/10.1136/gut.47.3.397 [PubMed]
71. Tedelind S, Westberg F, Kjerrulf M, Vidal A. 2007. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 13:2826–2832. [PubMed]
72. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. 2008. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772. http://dx.doi.org/10.1073/pnas.0808567105 [PubMed]
73. Grudell AB, Camilleri M. 2007. The role of peptide YY in integrative gut physiology and potential role in obesity. Curr Opin Endocrinol Diabetes Obes 14:52–57. http://dx.doi.org/10.1097/MED.0b013e3280123119 [PubMed]
74. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. http://dx.doi.org/10.2337/db06-1491 [PubMed]
75. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808. http://dx.doi.org/10.1172/JCI200319246 [PubMed]
76. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124. http://dx.doi.org/10.1172/JCI24335 [PubMed]
77. Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91. http://dx.doi.org/10.1126/science.7678183 [PubMed]
78. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A, Langella P, Rautonen N, Sansonetti PJ, Burcelin R. 2011. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572. http://dx.doi.org/10.1002/emmm.201100159 [PubMed]
79. Laugerette F, Vors C, Géloën A, Chauvin MA, Soulage C, Lambert-Porcheron S, Peretti N, Alligier M, Burcelin R, Laville M, Vidal H, Michalski MC. 2011. Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. J Nutr Biochem 22:53–59. http://dx.doi.org/10.1016/j.jnutbio.2009.11.011 [PubMed]
80. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P. 2009. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care 32:2281–2287. http://dx.doi.org/10.2337/dc09-0979 [PubMed]
81. Erridge C, Attina T, Spickett CM, Webb DJ. 2007. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86:1286–1292. [PubMed]
82. Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. 1995. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108:218–224. http://dx.doi.org/10.1016/0016-5085(95)90027-6
83. Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA. 2011. Novel evidence for chronic exposure to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol 45:149–152. http://dx.doi.org/10.1097/MCG.0b013e3181e12c24 [PubMed]
84. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–1887. http://dx.doi.org/10.1002/hep.22848 [PubMed]
85. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–6.e7 http://dx.doi.org/10.1053/j.gastro.2012.06.031. [PubMed]
86. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA, Soeters MR, Blaak EE, Dallinga-Thie GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JB, Stroes ES, Groen AK, Nieuwdorp M. 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 60:824–831. http://dx.doi.org/10.1016/j.jhep.2013.11.034 [PubMed]
87. Saito YA, Schoenfeld P, Locke GR III. 2002. The epidemiology of irritable bowel syndrome in North America: a systematic review. Am J Gastroenterol 97:1910–1915.
88. Lovell RM, Ford AC. 2012. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol 10:712–721.e4 http://dx.doi.org/10.1016/j.cgh.2012.02.029. [PubMed]
89. Simrén M, Svedlund J, Posserud I, Björnsson ES, Abrahamsson H. 2006. Health-related quality of life in patients attending a gastroenterology outpatient clinic: functional disorders versus organic diseases. Clin Gastroenterol Hepatol 4:187–195 http://dx.doi.org/10.1016/S1542-3565(05)00981-X.
90. Gralnek IM, Hays RD, Kilbourne A, Naliboff B, Mayer EA. 2000. The impact of irritable bowel syndrome on health-related quality of life. Gastroenterology 119:654–660. http://dx.doi.org/10.1053/gast.2000.16484 [PubMed]
91. Codling C, O’Mahony L, Shanahan F, Quigley EM, Marchesi JR. 2010. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig Dis Sci 55:392–397. http://dx.doi.org/10.1007/s10620-009-0934-x [PubMed]
92. Si JM, Yu YC, Fan YJ, Chen SJ. 2004. Intestinal microecology and quality of life in irritable bowel syndrome patients. World J Gastroenterol 10:1802–1805. http://dx.doi.org/10.3748/wjg.v10.i12.1802
93. Balsari A, Ceccarelli A, Dubini F, Fesce E, Poli G. 1982. The fecal microbial population in the irritable bowel syndrome. Microbiologica 5:185–194. [PubMed]
94. Jeffery IB, O’Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, Simrén M. 2012. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006. http://dx.doi.org/10.1136/gutjnl-2011-301501 [PubMed]
95. Rajilić-Stojanović M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM. 2011. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141:1792–1801. http://dx.doi.org/10.1053/j.gastro.2011.07.043 [PubMed]
96. Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A. 2007. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33. http://dx.doi.org/10.1053/j.gastro.2007.04.005 [PubMed]
97. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. 2014. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109:1547–1561, quiz 1546, 1562. http://dx.doi.org/10.1038/ajg.2014.202 [PubMed]
98. Vrieze A, de Groot PF, Kootte RS, Knaapen M, van Nood E, Nieuwdorp M. 2013. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract Res Clin Gastroenterol 27:127–137. http://dx.doi.org/10.1016/j.bpg.2013.03.003 [PubMed]
99. Andrews PBT. 1995. Bacteriotherapy for chronic constipation—a long term follow-up. Gastroenterology 108(Suppl 2):A563 http://dx.doi.org/10.1016/0016-5085(95)26563-5.
100. National Clinical Trials. March 2014, updated March 2016. Fecal microbiota transplantation in patients with irritable bowel syndrome. https://clinicaltrials.gov/ct2/show/NCT02092402.
101. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group. 2005. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587. http://dx.doi.org/10.1016/S0140-6736(05)70799-6
102. Vallance BA, Deng W, Jacobson K, Finlay BB. 2003. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect Immun 71:3443–3453. http://dx.doi.org/10.1128/IAI.71.6.3443-3453.2003 [PubMed]
103. Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB. 2011. Altering host resistance to infections through microbial transplantation. PLoS One 6:e26988. http://dx.doi.org/10.1371/journal.pone.0026988 [PubMed]
104. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, Lipuma L, Ling L, Gobourne A, No D, Taur Y, Jenq RR, van den Brink MR, Xavier JB, Pamer EG. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973. http://dx.doi.org/10.1128/IAI.01197-12 [PubMed]
105. Singh R, Nieuwdorp M, ten Berge IJ, Bemelman FJ, Geerlings SE. 2014. The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium difficile infection. Clin Microbiol Infect 20:1119–1125 http://dx.doi.org/10.1111/1469-0691.12799. [PubMed]
106. Singh R, van Nood E, Nieuwdorp M, van Dam B, ten Berge IJ, Geerlings SE, Bemelman FJ. 2014. Donor feces infusion for eradication of extended spectrum beta-lactamase producing Escherichia coli in a patient with end stage renal disease. Clin Microbiol Infect 20:O977–O978 http://dx.doi.org/10.1111/1469-0691.12683. [PubMed]
107. Wei Y, Gong J, Zhu W, Guo D, Gu L, Li N, Li J. 2015. Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis. BMC Infect Dis 15:265. http://dx.doi.org/10.1186/s12879-015-0973-1. [PubMed]
108. Borody TJ, Campbell J, Torres M, Nowak A, Leis S. 2011. Reversal of idiopathic thrombocytopenic purpura with fecal microbiota transplantation (FMT), abstr. Am J Gastroenterol 106:S352. http://dx.doi.org/10.1038/ajg.2011.336_7.
109. Borody TJ, Leis S, Campbell J, Torres M, Nowak A. 2011. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS), abstr P1111. American College of Gastroenterology and Postgraduate Course 2011, 28 October–2 November 2011, Washington, DC. http://www.fecalmicrobiotatransplant.com/2012/08/could-multiple-sclerosis-be-caused-by.html.
microbiolspec.BAD-0008-2017.citations
cm/5/4
content/journal/microbiolspec/10.1128/microbiolspec.BAD-0008-2017
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAD-0008-2017
2017-08-25
2017-09-21

Abstract:

The human intestinal tract contains trillions of bacteria, collectively called the gut microbiota. Recent insights have linked the gut microbiota to a plethora of diseases, including infection (CDI), inflammatory bowel disease (IBD), and metabolic diseases such as obesity, type 2 diabetes (T2D), and nonalcoholic steatohepatitis (NASH). Fecal microbiota transplantation (FMT) is currently tested as a therapeutic option in various diseases and can also help to dissect association from causality with respect to gut microbiota and disease. In CDI, FMT has been shown to be superior to antibiotic treatment. For IBD, T2D, and NASH, several placebo-controlled randomized controlled trials are under way. Moreover, techniques and standardization are developing. With the extension of FMT as a treatment modality in diseases other than CDI, a whole new treatment option may be emerging. Moreover, correlating alterations in specific strains to disease outcome may prove pivotal in finding new bacterial targets. Thus, although causality of the gut microbiota in various diseases still needs to be proven, FMT may prove to be a powerful tool providing us with diagnostic and therapeutic leads.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Causality of the gut microbiota in different diseases. The gut microbiota may have various levels of causality in diffent diseases. Diseases that have a more complex pathophysiology may respond less to fecal microbiota transplantation. ESBL, extended spectrum beta-lactamase producer; VRE, vancomycin-resistant enterococci; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; T2D, type 2 diabetes. Modified from with permission of the publisher.

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0008-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Recommended analyses for screening of fecal donors

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0008-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error