1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Potential of Probiotics as a Therapy for Osteoporosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Fraser L. Collins1, Naiomy D. Rios-Arce2, Jonathan D. Schepper3, Narayanan Parameswaran4, Laura R. McCabe5
  • Editors: Robert Allen Britton8, Patrice D. Cani9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Physiology; 2: Department of Physiology; 3: Department of Physiology; 4: Department of Physiology; 5: Department of Physiology; 6: Department of Radiology; 7: Biomedical Imaging Research Center, Michigan State University, East Lansing, MI 48824; 8: Baylor College of Medicine, Houston, TX 77030; 9: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
  • Received 29 November 2016 Accepted 18 July 2017 Published 25 August 2017
  • Laura McCabe, mccabel@msu.edu ; Narayanan Parameswaran, narap@msu.edu
image of The Potential of Probiotics as a Therapy for Osteoporosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Potential of Probiotics as a Therapy for Osteoporosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/BAD-0015-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/4/BAD-0015-2016-2.gif
  • Abstract:

    Osteoporosis, characterized by low bone mass and micro-architectural deterioration of bone tissue with increased risk of fracture, can be categorized into two forms: primary and secondary, depending on whether it occurs as part of the natural aging process (estrogen deficiency) or as part of disease pathology. In both forms bone loss is due to an imbalance in the bone remodeling process, with resorption/formation skewed more toward bone loss. Recent studies and emerging evidence consistently demonstrate the potential of the intestinal microbiota to modulate bone health. This review discusses the process of bone remodeling and the pathology of osteoporosis and introduces the intestinal microbiota and its potential to influence bone health. In particular, we highlight recent murine studies that examine how probiotic supplementation can both increase bone density in healthy individuals and protect against primary (estrogen deficiency) as well as secondary osteoporosis. Potential mechanisms are described to account for how probiotic treatments could be exerting their beneficial effect on bone health.

  • Citation: Collins F, Rios-Arce N, Schepper J, Parameswaran N, McCabe L. 2017. The Potential of Probiotics as a Therapy for Osteoporosis. Microbiol Spectrum 5(4):BAD-0015-2016. doi:10.1128/microbiolspec.BAD-0015-2016.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.45685124
Probiotic Bacteria
0.42417476
0.45685124

References

1. Rizzo DC. 2015. Fundamentals of Anatomy and Physiology. Cengage Learning, Boston, MA. [PubMed]
2. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT. 2013. Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34 http://dx.doi.org/10.1002/jbmr.1734. [PubMed]
3. Wong IPL, Driessler F, Khor EC, Shi YC, Hörmer B, Nguyen AD, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. 2012. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One 7:e40038 http://dx.doi.org/10.1371/journal.pone.0040038.
4. Takayanagi H. 2009. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676 http://dx.doi.org/10.1038/nrrheum.2009.217. [PubMed]
5. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F. 2001. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582 http://dx.doi.org/10.1359/jbmr.2001.16.9.1575. [PubMed]
6. Karsenty G, Kronenberg HM, Settembre C. 2009. Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648 http://dx.doi.org/10.1146/annurev.cellbio.042308.113308. [PubMed]
7. Teitelbaum SL. 2007. Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435 http://dx.doi.org/10.2353/ajpath.2007.060834. [PubMed]
8. Bonewald LF, Johnson ML. 2008. Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615 http://dx.doi.org/10.1016/j.bone.2007.12.224. [PubMed]
9. Andersen TL, Sondergaard TE, Skorzynska KE, Dagnaes-Hansen F, Plesner TL, Hauge EM, Plesner T, Delaisse JM. 2009. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol 174:239–247 http://dx.doi.org/10.2353/ajpath.2009.080627. [PubMed]
10. Xing L, Schwarz EM, Boyce BF. 2005. Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev 208:19–29 http://dx.doi.org/10.1111/j.0105-2896.2005.00336.x. [PubMed]
11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. 2013. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
12. Takayanagi H. 2010. New immune connections in osteoclast formation. Ann N Y Acad Sci 1192:117–123 http://dx.doi.org/10.1111/j.1749-6632.2009.05303.x. [PubMed]
13. Long F. 2011. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38 http://dx.doi.org/10.1038/nrm3254. [PubMed]
14. Matsuo K, Irie N. 2008. Osteoclast-osteoblast communication. Arch Biochem Biophys 473:201–209 http://dx.doi.org/10.1016/j.abb.2008.03.027. [PubMed]
15. Am J Med. 1993. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650 http://dx.doi.org/10.1016/0002-9343(93)90218-E. [PubMed]
16. International Osteoporosis Foundation. 2015. Facts and Statistics. https://www.iofbonehealth.org/facts-statistics.
17. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. 2007. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475 http://dx.doi.org/10.1359/jbmr.061113. [PubMed]
18. Manolagas SC. 2010. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300 http://dx.doi.org/10.1210/er.2009-0024. [PubMed]
19. Pfeilschifter J, Köditz R, Pfohl M, Schatz H. 2002. Changes in proinflammatory cytokine activity after menopause. Endocr Rev 23:90–119 http://dx.doi.org/10.1210/edrv.23.1.0456. [PubMed]
20. Bismar H, Diel I, Ziegler R, Pfeilschifter J. 1995. Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab 80:3351–3355. [PubMed]
21. D’Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G. 2008. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100 http://dx.doi.org/10.1016/j.bone.2008.02.017. [PubMed]
22. Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. 2002. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 110:1643–1650 http://dx.doi.org/10.1172/JCI0215687. [PubMed]
23. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. 2003. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230 http://dx.doi.org/10.1172/JCI200317215. [PubMed]
24. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. 2000. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–1237 http://dx.doi.org/10.1172/JCI11066. [PubMed]
25. Li JY, Tawfeek H, Bedi B, Yang X, Adams J, Gao KY, Zayzafoon M, Weitzmann MN, Pacifici R. 2011. Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 108:768–773 http://dx.doi.org/10.1073/pnas.1013492108. [PubMed]
26. Kim BJ, Bae SJ, Lee SY, Lee YS, Baek JE, Park SY, Lee SH, Koh JM, Kim GS. 2012. TNF-α mediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem Biophys Res Commun 424:170–175 http://dx.doi.org/10.1016/j.bbrc.2012.06.100. [PubMed]
27. Foo C, Frey S, Yang HH, Zellweger R, Filgueira L. 2007. Downregulation of beta-catenin and transdifferentiation of human osteoblasts to adipocytes under estrogen deficiency. Gynecol Endocrinol 23:535–540 http://dx.doi.org/10.1080/09513590701556483. [PubMed]
28. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 102:3324–3329 http://dx.doi.org/10.1073/pnas.0408742102. [PubMed]
29. García-Moreno C, Catalán MP, Ortiz A, Alvarez L, De la Piedra C. 2004. Modulation of survival in osteoblasts from postmenopausal women. Bone 35:170–177 http://dx.doi.org/10.1016/j.bone.2004.02.021. [PubMed]
30. Kovacic N, Grcevic D, Katavic V, Lukic IK, Grubisic V, Mihovilovic K, Cvija H, Croucher PI, Marusic A. 2010. Fas receptor is required for estrogen deficiency-induced bone loss in mice. Lab Invest 90:402–413 http://dx.doi.org/10.1038/labinvest.2009.144. [PubMed]
31. Fitzpatrick LA. 2002. Secondary causes of osteoporosis. Mayo Clin Proc 77:453–468 http://dx.doi.org/10.1016/S0025-6196(11)62214-3. [PubMed]
32. Painter SE, Kleerekoper M, Camacho PM. 2006. Secondary osteoporosis: a review of the recent evidence. Endocr Pract 12:436–445 http://dx.doi.org/10.4158/EP.12.4.436. [PubMed]
33. Ghishan FK, Kiela PR. 2011. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 300:G191–G201 http://dx.doi.org/10.1152/ajpgi.00496.2010. [PubMed]
34. Levin ME, Boisseau VC, Avioli LV. 1976. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294:241–245 http://dx.doi.org/10.1056/NEJM197601292940502. [PubMed]
35. Coe LM, Zhang J, McCabe LR. 2013. Both spontaneous Ins2(+/−) and streptozotocin-induced type I diabetes cause bone loss in young mice. J Cell Physiol 228:689–695 http://dx.doi.org/10.1002/jcp.24177. [PubMed]
36. Coe LM, Irwin R, Lippner D, McCabe LR. 2011. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol 226:477–483 http://dx.doi.org/10.1002/jcp.22357. [PubMed]
37. Motyl KJ, Botolin S, Irwin R, Appledorn DM, Kadakia T, Amalfitano A, Schwartz RC, McCabe LR. 2009. Bone inflammation and altered gene expression with type I diabetes early onset. J Cell Physiol 218:575–583 http://dx.doi.org/10.1002/jcp.21626. [PubMed]
38. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. 2015. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic L. reuteri. Endocrinology 156:3169–3182. [PubMed]
39. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO), Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF). 2013. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57 http://dx.doi.org/10.1007/s00198-012-2074-y. [PubMed]
40. Papapoulos SE. 2008. Bisphosphonates: how do they work? Best Pract Res Clin Endocrinol Metab 22:831–847 http://dx.doi.org/10.1016/j.beem.2008.07.001. [PubMed]
41. Reid IR. 2015. Efficacy, effectiveness and side effects of medications used to prevent fractures. J Intern Med 277:690–706 http://dx.doi.org/10.1111/joim.12339. [PubMed]
42. Sambrook P, Cooper C. 2006. Osteoporosis. Lancet 367:2010–2018 http://dx.doi.org/10.1016/S0140-6736(06)68891-0. [PubMed]
43. Jones RM, Mulle JG, Pacifici R. 2017. Osteomicrobiology: the influence of gut microbiota on bone in health and disease. Bone. [Epub ahead of print.] doi:10.1016/j.bone.2017.04.009. [PubMed]
44. Ohlsson C, Sjögren K. 2015. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74 http://dx.doi.org/10.1016/j.tem.2014.11.004. [PubMed]
45. McCabe L, Britton RA, Parameswaran N. 2015. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13:363–371 http://dx.doi.org/10.1007/s11914-015-0292-x. [PubMed]
46. Loh G, Blaut M. 2012. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3:544–555 http://dx.doi.org/10.4161/gmic.22156. [PubMed]
47. Fukuda S, Ohno H. 2014. Gut microbiome and metabolic diseases. Semin Immunopathol 36:103–114 http://dx.doi.org/10.1007/s00281-013-0399-z. [PubMed]
48. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023 http://dx.doi.org/10.1038/4441022a. [PubMed]
49. Baggio LL, Drucker DJ. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157 http://dx.doi.org/10.1053/j.gastro.2007.03.054. [PubMed]
50. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G. 2008. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837 http://dx.doi.org/10.1016/j.cell.2008.09.059. [PubMed]
51. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. 2012. The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367 http://dx.doi.org/10.1002/jbmr.1588. [PubMed]
52. Li J-Y, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R. 2016. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126:2049–2063 http://dx.doi.org/10.1172/JCI86062. [PubMed]
53. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. 2016. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA 113:E7554–E7563 http://dx.doi.org/10.1073/pnas.1607235113. [PubMed]
54. Araya M, Morelli L, Reid G, Sanders ME, Stanton C. 2002. Guidelines for the Evaluation of Probiotics in Food. FAO/WHO, London, Ontario, Canada.
55. Czerucka D, Piche T, Rampal P. 2007. Review article: yeast as probiotics: Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778 http://dx.doi.org/10.1111/j.1365-2036.2007.03442.x. [PubMed]
56. FAO and WHO. 2006. Probiotics in Food. Food and Nutrition Paper 85. FAO/WHO, Rome, Italy.
57. Broekaert IJ, Nanthakumar NN, Walker WA. 2007. Secreted probiotic factors ameliorate enteropathogenic infection in zinc-deficient human Caco-2 and T84 cell lines. Pediatr Res 62:139–144 http://dx.doi.org/10.1203/PDR.0b013e31809fd85e. [PubMed]
58. Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T, Yoshikai Y. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol 10:259–266.
59. Nishimura J. 2014. Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus. Adv Microbiol 4:1017–1023 http://dx.doi.org/10.4236/aim.2014.414112.
60. Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, Pothoulakis C, Kelly CP. 2006. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343:69–76 http://dx.doi.org/10.1016/j.bbrc.2006.02.080. [PubMed]
61. McCabe LR, Irwin R, Schaefer L, Britton RA. 2013. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol 228:1793–1798 http://dx.doi.org/10.1002/jcp.24340. [PubMed]
62. Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, McCabe LR. 2016. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One 11:e0153180 http://dx.doi.org/10.1371/journal.pone.0153180. [PubMed]
63. Ghanem KZ, Badawy IH, Abdel-Salam AM. 2004. Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralization in rats. Milchwissenschaft 59:472–475.
64. Kruger MC, Fear A, Chua W-H, Plimmer GG, Schollum LM. 2009. The effect of Lactobacillus rhamnosus HN001 on mineral absorption and bone health in growing male and ovariectomised female rats. Dairy Sci Technol 89:219–231 http://dx.doi.org/10.1051/dst/2009012.
65. Rodrigues FC, Castro AS, Rodrigues VC, Fernandes SA, Fontes EA, de Oliveira TT, Martino HS, de Luces Fortes Ferreira CL. 2012. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food 15:664–670 http://dx.doi.org/10.1089/jmf.2011.0296. [PubMed]
66. Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Yamamoto T, Ishikado A, Sato T, Harada K, Suido H, Morita M. 2012. Supplementation of broccoli or Bifidobacterium longum-fermented broccoli suppresses serum lipid peroxidation and osteoclast differentiation on alveolar bone surface in rats fed a high-cholesterol diet. Nutr Res 32:301–307 http://dx.doi.org/10.1016/j.nutres.2012.03.006. [PubMed]
67. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR. 2014. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229:1822–1830 http://dx.doi.org/10.1002/jcp.24636. [PubMed]
68. Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, Movérare-Skrtic S, Islander U, Sjögren K. 2014. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 9:e92368 http://dx.doi.org/10.1371/journal.pone.0092368. [PubMed]
69. Chiang SS, Pan TM. 2011. Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem 59:7734–7742 http://dx.doi.org/10.1021/jf2013716. [PubMed]
70. Caballero-Franco C, Keller K, De Simone C, Chadee K. 2007. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292:G315–G322 http://dx.doi.org/10.1152/ajpgi.00265.2006. [PubMed]
71. Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei ANM, Abdul-Majeed S, et al. 2015. Probiotics (Bifidobacterium longum) increase bone mass density and upregulate Sparc and Bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int 2015:1–10. [PubMed]
72. McCabe L, Zhang J, Raehtz S. 2011. Understanding the skeletal pathology of type 1 and 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr 21:187–206 http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v21.i2.70. [PubMed]
73. Payne JM. 1977. Metabolic Diseases in Farm Animals. Butterworth-Heinemann, London, United Kingdom.
74. Sullivan TW. 1994. Skeletal problems in poultry: estimated annual cost and descriptions. Poult Sci 73:879–882 http://dx.doi.org/10.3382/ps.0730879. [PubMed]
75. Nahashon SN, Nakaue HS, Mirosh LW. 1994. Production variables and nutrient retention in single comb white Leghorn laying pullets fed diets supplemented with direct-fed microbials. Poult Sci 73:1699–1711 http://dx.doi.org/10.3382/ps.0731699. [PubMed]
76. Jin LZ, Ho YW, Abdullah N, Jalaludin S. 1997. Probiotics in poultry: modes of action. Worlds Poult Sci J 53:351–368.
77. Nava GM, Bielke LR, Callaway TR, Castañeda MP. 2005. Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Anim Health Res Rev 6:105–118 http://dx.doi.org/10.1079/AHR2005103. [PubMed]
78. Khan RU, Naz S. 2013. The applications of probiotics in poultry production. Worlds Poult Sci J 69:621–632 http://dx.doi.org/10.1017/S0043933913000627.
79. Mutuş R, Kocabagli N, Alp M, Acar N, Eren M, Gezen SS. 2006. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625. [PubMed]
80. Plavnik I, Scott ML. 1980. Effects of additional vitamins, minerals, or brewer’s yeast upon leg weaknesses in broiler chickens. Poult Sci 59:459–464 http://dx.doi.org/10.3382/ps.0590459. [PubMed]
81. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7:e31951 http://dx.doi.org/10.1371/journal.pone.0031951. [PubMed]
82. Kim JG, Lee E, Kim SH, Whang KY, Oh S, Imm JY. 2009. Effects of a Lactobacillus casei 393 fermented milk product on bone metabolism in ovariectomised rats. Int Dairy J 19:690–695 http://dx.doi.org/10.1016/j.idairyj.2009.06.009.
83. Narva M, Halleen J, Väänänen K, Korpela R. 2004. Effects of Lactobacillus helveticus fermented milk on bone cells in vitro. Life Sci 75:1727–1734 http://dx.doi.org/10.1016/j.lfs.2004.04.011. [PubMed]
84. Crittenden RG, Martinez NR, Playne MJ. 2003. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80:217–222 http://dx.doi.org/10.1016/S0168-1605(02)00170-8. [PubMed]
85. Arunachalam KD. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr Res 19:1559–1597 http://dx.doi.org/10.1016/S0271-5317(99)00112-8.
86. Campbell JM, Fahey GC Jr, Wolf BW. 1997. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136. [PubMed]
87. Narva M, Collin M, Lamberg-Allardt C, Kärkkäinen M, Poussa T, Vapaatalo H, Korpela R. 2004. Effects of long-term intervention with Lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann Nutr Metab 48:228–234 http://dx.doi.org/10.1159/000080455. [PubMed]
88. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ. 2004. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207 http://dx.doi.org/10.1016/j.bbrc.2003.12.073. [PubMed]
89. Suda N, Morita I, Kuroda T, Murota S. 1993. Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta 1157:318–323 http://dx.doi.org/10.1016/0304-4165(93)90116-P.
90. Sims NA, Martin TJ. 2014. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481. [PubMed]
91. Kristensen HB, Andersen TL, Marcussen N, Rolighed L, Delaisse JM. 2013. Increased presence of capillaries next to remodeling sites in adult human cancellous bone. J Bone Miner Res 28:574–585 http://dx.doi.org/10.1002/jbmr.1760. [PubMed]
92. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H. 2011. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234 http://dx.doi.org/10.1038/nm.2452. [PubMed]
93. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ. 1998. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001 http://dx.doi.org/10.1084/jem.188.5.997. [PubMed]
94. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444 http://dx.doi.org/10.1038/345442a0. [PubMed]
95. Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science 289:1504–1508 http://dx.doi.org/10.1126/science.289.5484.1504. [PubMed]
96. Everts V, Delaissé JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W. 2002. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90 http://dx.doi.org/10.1359/jbmr.2002.17.1.77. [PubMed]
97. Edwards CM, Mundy GR. 2008. Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci 5:263–272 http://dx.doi.org/10.7150/ijms.5.263. [PubMed]
98. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. 2009. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765 http://dx.doi.org/10.1038/nm.1979. [PubMed]
99. Anderson HC. 2003. Matrix vesicles and calcification. Curr Rheumatol Rep 5:222–226 http://dx.doi.org/10.1007/s11926-003-0071-z. [PubMed]
100. Bonewald LF. 2011. The amazing osteocyte. J Bone Miner Res 26:229–238 http://dx.doi.org/10.1002/jbmr.320. [PubMed]
101. Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T. 1993. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91:257–263 http://dx.doi.org/10.1172/JCI116179. [PubMed]
102. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176 http://dx.doi.org/10.1016/S0092-8674(00)81569-X.
103. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. 1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323 http://dx.doi.org/10.1038/16852. [PubMed]
104. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319 http://dx.doi.org/10.1016/S0092-8674(00)80209-3. [PubMed]
105. Dai X-M, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–120 http://dx.doi.org/10.1182/blood.V99.1.111. [PubMed]
106. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. 1999. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545 http://dx.doi.org/10.1073/pnas.96.7.3540. [PubMed]
107. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424 http://dx.doi.org/10.1101/gad.13.18.2412. [PubMed]
108. Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone 40:251–264 http://dx.doi.org/10.1016/j.bone.2006.09.023. [PubMed]
109. Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T. 2000. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484 http://dx.doi.org/10.1210/endo.141.9.7634. [PubMed]
110. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN. 2007. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848 http://dx.doi.org/10.1182/blood-2006-07-037994. [PubMed]
111. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754 http://dx.doi.org/10.1016/S0092-8674(00)80257-3. [PubMed]
112. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29 http://dx.doi.org/10.1016/S0092-8674(01)00622-5. [PubMed]
113. Boskey AL. 2013. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep 2:447 http://dx.doi.org/10.1038/bonekey.2013.181. [PubMed]
114. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome. Cell 117:387–398 http://dx.doi.org/10.1016/S0092-8674(04)00344-7.
115. Clarke B. 2008. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139 http://dx.doi.org/10.2215/CJN.04151206. [PubMed]
116. Robey P, Boskey A. 2006. Extracellular matrix and biomineralization of bone, p 12–19. In Favus MJ (ed), Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th ed. American Society for Bone and Mineral Research, Washington, DC.
117. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H. 2006. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682 http://dx.doi.org/10.1084/jem.20061775. [PubMed]
118. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS. 2000. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141:3956–3964 http://dx.doi.org/10.1210/endo.141.11.7739. [PubMed]
119. Centrella M, McCarthy TL, Canalis E. 1988. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123:1442–1448 http://dx.doi.org/10.1210/endo-123-3-1442. [PubMed]
120. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T. 2000. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605 http://dx.doi.org/10.1038/35046102. [PubMed]
121. Eastell R. 2005. Osteoporosis. Medicine (Baltimore) 33:61–65.
122. Khosla S, Amin S, Orwoll E. 2008. Osteoporosis in men. Endocr Rev 29:441–464 http://dx.doi.org/10.1210/er.2008-0002. [PubMed]
123. Amdekar S, Kumar A, Sharma P, Singh R, Singh V. 2012. Lactobacillus protected bone damage and maintained the antioxidant status of liver and kidney homogenates in female wistar rats. Mol Cell Biochem 368:155–165 http://dx.doi.org/10.1007/s11010-012-1354-3. [PubMed]
124. Rovenský J, Svík K, Matha V, Istok R, Ebringer L, Ferencík M, Stancíková M. 2004. The effects of Enterococcus faecium and selenium on methotrexate treatment in rat adjuvant-induced arthritis. Clin Dev Immunol 11:267–273 http://dx.doi.org/10.1080/17402520400001660. [PubMed]
microbiolspec.BAD-0015-2016.citations
cm/5/4
content/journal/microbiolspec/10.1128/microbiolspec.BAD-0015-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAD-0015-2016
2017-08-25
2017-09-26

Abstract:

Osteoporosis, characterized by low bone mass and micro-architectural deterioration of bone tissue with increased risk of fracture, can be categorized into two forms: primary and secondary, depending on whether it occurs as part of the natural aging process (estrogen deficiency) or as part of disease pathology. In both forms bone loss is due to an imbalance in the bone remodeling process, with resorption/formation skewed more toward bone loss. Recent studies and emerging evidence consistently demonstrate the potential of the intestinal microbiota to modulate bone health. This review discusses the process of bone remodeling and the pathology of osteoporosis and introduces the intestinal microbiota and its potential to influence bone health. In particular, we highlight recent murine studies that examine how probiotic supplementation can both increase bone density in healthy individuals and protect against primary (estrogen deficiency) as well as secondary osteoporosis. Potential mechanisms are described to account for how probiotic treatments could be exerting their beneficial effect on bone health.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A simplified representation of the bone remodeling cycle. The initiation phase of bone remodeling is induced by mechanical strain, damage, or signals from cytokines or systemic factors. This generates local signals that lead to the bone-lining cells separating from the bone surface and forming a canopy over the site to be resorbed ( 90 ). Osteoclasts and their precursors are then recruited to the site of bone remodeling from the circulatory system via capillaries that are closely associated with the bone remodeling compartment ( 91 ). The signals for the initiation of osteoclast differentiation and resorption, macrophage colony stimulating factor and receptor activator of NF-κB ligand, are provided by cells of the osteoblast lineage, including osteocytes as well as T and B cells ( 91 94 ). Once the remodeling process is initiated, resorption of the bone occurs. Osteoclasts attach to the exposed surface of the mineralized matrix, where they polarize and form a sealed microenvironment. This sealed microenvironment is then acidified to break down the inorganic component of bone followed by release of the enzymes cathepsin K, matrix metalloproteinase-9 (MMP-9), and tartrate-resistant acid phosphatase, which break down the organic component ( 7 , 95 ). Following resorption of the old damaged bone, the process undergoes reversal. Toward the end of the resorption phase of the bone remodeling cycle, mononuclear cells of the osteoblast lineage move into the resorption pit. These mononuclear cells remove the old demineralized collagen while laying down a new thin layer ( 96 ). During this phase the process of “coupling” bone resorption to bone formation occurs to ensure that the volume of bone removed is replaced. Coupling of bone resorption to bone formation is a multifaceted process with numerous regulator molecules derived from the matrix, secreted by cells, or membrane-bound contributing to the process ( 90 , 97 , 98 ). Bone formation is a two-step process and proceeds slowly, taking approximately 3 months (compared to resorption, which typically takes 3 weeks). The osteoblast first secretes the unmineralized osteoid, which is then mineralized through the incorporation of hydroxyapatite ( 99 ). When the osteoblasts have completed the matrix formation, they undergo a number of possible fates. The majority of osteoblasts become apoptotic; however, some get trapped in the mineralized matrix and undergo further differentiation into the osteocyte, while others may become inactive bone-lining cells ( 100 ). Through the production of sclerostin, an inhibitor of Wnt signaling, the osteocyte can regulate the amount of new bone formation that takes place ( 8 ).

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Osteoclast differentiation is the process by which mononuclear cells undergo fusion into the multinucleated osteoclast. Three cytokines are critical for osteoclast differentiation: MCSF, RANKL, and OPG, a soluble decoy receptor for RANKL ( 101 104 ). In the initial stages of differentiation, precursor cells proliferate in response to MCSF signaling through its receptor c-FMS ( 105 ). RANKL, expressed as a membrane-bound or soluble form, then binds to its receptor, RANK, which is present on the precursor cells ( 106 , 107 ). This results in the transcription and activation of numerous osteoclast-specific genes: cathepsin K, tartrate-resistant acid phosphatase (an osteoclast marker), calcitonin receptor, and B3 integrin ( 108 ). The precursor cells then migrate along chemokine gradients and fuse together to form the multinucleated osteoclast. Control of osteoclast differentiation is via the soluble receptor OPG, which competes with RANK for RANKL binding, thus inhibiting osteoclast differentiation ( 109 , 110 ). Abbreviations: MCSF, macrophage colony stimulating factor; RANK(L), receptor activator of NF-κB (ligand); OPG, osteoprotegerin.

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Osteoblast differentiation. Signaling by members of the canonical Wnt/β-catenin pathway such as Wnt10b, BMP2, and BMP4 directs the mesenchymal stem cell fate toward the osteoblast lineage. This is achieved by suppressing the adipogenic transcription factors C/EBPα and PPARγ while inducing the osteogenic transcription factors Runx2 and osterix ( 28 , 111 , 112 ). This immature osteoblast still has the potential to divide and express low levels of alkaline phosphatase activity, as well as to synthesize type I collagen, which makes up to 90% of the organic component of bone ( 113 ). Differentiation to the nonproliferating mature cuboidal osteoblast that actively mineralizes bone matrix is dependent on the transcription factor osterix ( 114 ). Before the newly laid matrix can be mineralized, however, it must first undergo maturation. Matrix maturation is associated with increased expression of alkaline phosphatase and several noncollagen proteins, including osteocalcin, osteopontin, and bone sialoprotein ( 115 ). Mineralization of bone is completed by the incorporation of hydroxyapatite [Ca(PO)(OH)] into the newly deposited osteoid. Membrane-bound extracellular bodies (extracellular matrix vesicles) released from the osteoblast facilitate initial mineral deposition by accumulating calcium and phosphate ions in a protected environment. Clusters of these ions come together to form the first stable crystals. Addition of ions to these crystals follows, resulting in their growth ( 99 , 116 ). At the completion of bone formation, a subset of osteoblasts can undergo further differentiation, upon being entombed in the bone matrix, and become osteocytes. The remaining osteoblasts are thought to either undergo apoptosis or become inactive bone-lining cells ( 100 ).

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Cross-talk between osteoclasts, osteoblasts, and the immune system. Activated T lymphocytes, specifically T helper 17 cells, have been identified as osteoclastogenic through the expression of RANKL and the cytokine interleukin (IL)-17, which induces RANKL expression on osteoblasts ( 117 ). Furthermore, expression of IL-17 enhances local inflammation, driving expression of other proinflammatory cytokines and promoting additional RANKL expression ( 12 ). In addition to IL-17, T cell TNFα production has been demonstrated to affect the balance of bone remodeling. Increased T cell TNFα enhances osteoclastogenesis while inhibiting osteoblast differentiation and collagen synthesis ( 24 , 118 , 119 ). In addition to pro-osteoclastogenic cytokines, T-lymphocytes also secrete IL-10, IL-4, and interferon (IFN)-γ that are potentially antiosteoclastogenic ( 12 , 120 ). A role for B-lymphocytes in bone homeostasis has been suggested because B cell-deficient mice exhibit an osteoporotic phenotype ( 110 ). B-lymphocytes are responsible for 64% of total bone marrow OPG production, with 45% of this derived from mature B cells ( 110 ).

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Potential mechanism by which probiotic bacteria benefit bone. Probiotic bacteria or their secreted factors interact with the intestinal epithelial barrier and cells in the lamina propria. Within the lamina propria the probiotic bacteria/secreted factors interact with antigen-presenting cells such dendritic cells, modulating their immune response. This results in a reduction of inflammatory cytokines, leading to an uptake in minerals from the intestinal lumen. The bacterial secreted factors then pass into the bloodstream and are transported to the bone. Here they can interact with osteoclasts and osteoblasts as well as immune cells. This could then reduce expression of proinflammatory and pro-osteoclastogenic cytokines and oxidative stress while enhancing mineral apposition and Wnt10b expression. This modulation results in reduced osteoclast formation, subsequently leading to increased levels of bone.

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Established treatments for osteoporosis

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016
Generic image for table
TABLE 2

Effect of probiotics on bone (animal studies)

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0015-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error