1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Luis G. Bermúdez-Humarán1, Philippe Langella2
  • Editors: Robert Allen Britton3, Patrice D. Cani4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; 2: Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; 3: Baylor College of Medicine, Houston, TX 77030; 4: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec September 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0016-2016
  • Received 09 March 2017 Accepted 31 May 2017 Published 29 September 2017
  • Luis G. Bermúdez-Humarán, luis.bermudez@inra.fr
image of Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/5/BAD-0016-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/5/BAD-0016-2016-2.gif
  • Abstract:

    Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

  • Citation: Bermúdez-Humarán L, Langella P. 2017. Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?. Microbiol Spectrum 5(5):BAD-0016-2016. doi:10.1128/microbiolspec.BAD-0016-2016.

Key Concept Ranking

Phase I Clinical Trial
0.46956128
0.46956128

References

1. Bermúdez-Humarán LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P. 2013. Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283 http://dx.doi.org/10.1016/j.mib.2013.06.002. [PubMed]
2. Davitt CJ, Lavelle EC. 2015. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 91:52–69 http://dx.doi.org/10.1016/j.addr.2015.03.007. [PubMed]
3. Holmgren J, Czerkinsky C. 2005. Mucosal immunity and vaccines. Nat Med 11(Suppl):S45–S53 http://dx.doi.org/10.1038/nm1213. [PubMed]
4. Bermúdez-Humarán LG, Kharrat P, Chatel JM, Langella P. 2011. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact 10(Suppl 1):S4 http://dx.doi.org/10.1186/1475-2859-10-S1-S4. [PubMed]
5. Food and Agriculture Organization of the United Nations. 2002. Joint FAO/WHO Working Group report on drafting guidelines for the evaluation of probiotics in food. Food and Agriculture Organization, London, Canada.
6. Lilly DM, Stillwell RH. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748 http://dx.doi.org/10.1126/science.147.3659.747. [PubMed]
7. Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. 2013. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:71 http://dx.doi.org/10.1186/1475-2859-12-71. [PubMed]
8. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514 http://dx.doi.org/10.1038/nrgastro.2014.66. [PubMed]
9. Hempel S, Newberry SJ, Maher AR, Wang Z, Miles JNV, Shanman R, Johnsen B, Shekelle PG. 2012. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 307:1959–1969 http://dx.doi.org/10.1001/jama.2012.3507. [PubMed]
10. Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, De Simone C, Madsen K. 2004. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 126:1358–1373 http://dx.doi.org/10.1053/j.gastro.2004.02.003. [PubMed]
11. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, Poggioli G, Miglioli M, Campieri M. 2000. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119:305–309 http://dx.doi.org/10.1053/gast.2000.9370. [PubMed]
12. Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, Kamm MA, Weismueller J, Beglinger C, Stolte M, Wolff C, Schulze J. 2004. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53:1617–1623 http://dx.doi.org/10.1136/gut.2003.037747. [PubMed]
13. O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EMM. 2005. Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551 http://dx.doi.org/10.1053/j.gastro.2004.11.050. [PubMed]
14. Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, Sartor RB. 2002. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 8:71–80 http://dx.doi.org/10.1097/00054725-200203000-00001. [PubMed]
15. Lenoir M, Del Carmen S, Cortes-Perez NG, Lozano-Ojalvo D, Munoz-Provencio D, Chain F, Langella P, de Moreno de LeBlanc A, LeBlanc JG, Bermudez-Humaran LG. 2016. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol 51:862–873. [PubMed]
16. Rochet V, Rigottier-Gois L, Ledaire A, Andrieux C, Sutren M, Rabot S, Mogenet A, Bresson JL, Cools S, Picard C, Goupil-Feuillerat N, Doré J. 2008. Survival of Bifidobacterium animalis DN-173 010 in the faecal microbiota after administration in lyophilised form or in fermented product: a randomised study in healthy adults. J Mol Microbiol Biotechnol 14:128–136 http://dx.doi.org/10.1159/000106092. [PubMed]
17. Martín R, Laval L, Chain F, Miquel S, Natividad J, Cherbuy C, Sokol H, Verdu EF, van Hylckama Vlieg J, Bermudez-Humaran LG, Smokvina T, Langella P. 2016. Bifidobacterium animalis ssp. lactis CNCM-I2494 restores gut barrier permeability in chronically low-grade inflamed mice. Front Microbiol 7:608 http://dx.doi.org/10.3389/fmicb.2016.00608. [PubMed]
18. Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. 1995. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13:310–312 http://dx.doi.org/10.1016/0264-410X(95)93319-5.
19. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. 2014. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354 http://dx.doi.org/10.1152/physrev.00040.2012. [PubMed]
20. Rochat T, Bermúdez-Humarán L, Gratadoux JJ, Fourage C, Hoebler C, Corthier G, Langella P. 2007. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microb Cell Fact 6:22 http://dx.doi.org/10.1186/1475-2859-6-22. [PubMed]
21. Santos Rocha C, Lakhdari O, Blottière HM, Blugeon S, Sokol H, Bermúdez-Humarán LG, Azevedo V, Miyoshi A, Doré J, Langella P, Maguin E, van de Guchte M. 2012. Anti-inflammatory properties of dairy lactobacilli. Inflamm Bowel Dis 18:657–666 http://dx.doi.org/10.1002/ibd.21834. [PubMed]
22. Torres-Maravilla E, Lenoir M, Mayorga-Reyes L, Allain T, Sokol H, Langella P, Sánchez-Pardo ME, Bermúdez-Humarán LG. 2016. Identification of novel anti-inflammatory probiotic strains isolated from pulque. Appl Microbiol Biotechnol 100:385–396 http://dx.doi.org/10.1007/s00253-015-7049-4. [PubMed]
23. Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, Fernández-Calero T, Tiscornia I, Bollati-Fogolín M, Chambaud I, Foligné B, Montserrat A, Ramón D. 2012. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS One 7:e52493 http://dx.doi.org/10.1371/journal.pone.0052493. [PubMed]
24. Laval L, Martin R, Natividad JN, Chain F, Miquel S, Desclée de Maredsous C, Capronnier S, Sokol H, Verdu EF, van Hylckama Vlieg JE, Bermúdez-Humarán LG, Smokvina T, Langella P. 2015. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 6:1–9 http://dx.doi.org/10.4161/19490976.2014.990784. [PubMed]
25. Bermúdez-Humarán LG. 2009. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin 5:264–267 http://dx.doi.org/10.4161/hv.5.4.7553. [PubMed]
26. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355 http://dx.doi.org/10.1126/science.289.5483.1352. [PubMed]
27. Caluwaerts S, Vandenbroucke K, Steidler L, Neirynck S, Vanhoenacker P, Corveleyn S, Watkins B, Sonis S, Coulie B, Rottiers P. 2010. AG013, a mouth rinse formulation of Lactococcus lactis secreting human trefoil factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46:564–570 http://dx.doi.org/10.1016/j.oraloncology.2010.04.008. [PubMed]
28. Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, Le Goffic R, Courau S, Molimard P, Chatel JM, Langella P, Bermúdez-Humarán LG. 2013. Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl Environ Microbiol 79:1491–1499 http://dx.doi.org/10.1128/AEM.03075-12. [PubMed]
29. Carroll IM, Andrus JM, Bruno-Bárcena JM, Klaenhammer TR, Hassan HM, Threadgill DS. 2007. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 293:G729–G738 http://dx.doi.org/10.1152/ajpgi.00132.2007. [PubMed]
30. Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefèvre F, Gratadoux JJ, Honvo-Hueto E, Chilmonczyk S, Blugeon S, Corthier G, Langella P, Bermúdez-Humarán LG. 2010. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol 144:35–41 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.037. [PubMed]
31. del Carmen S, de Moreno de LeBlanc A, Martin R, Chain F, Langella P, Bermúdez-Humarán LG, LeBlanc JG. 2014. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol 80:869–877 http://dx.doi.org/10.1128/AEM.03296-13. [PubMed]
32. Motta JP, Magne L, Descamps D, Rolland C, Squarzoni-Dale C, Rousset P, Martin L, Cenac N, Balloy V, Huerre M, Fröhlich LF, Jenne D, Wartelle J, Belaaouaj A, Mas E, Vinel JP, Alric L, Chignard M, Vergnolle N, Sallenave JM. 2011. Modifying the protease, antiprotease pattern by elafin overexpression protects mice from colitis. Gastroenterology 140:1272–1282 http://dx.doi.org/10.1053/j.gastro.2010.12.050. [PubMed]
33. Motta JP, Bermúdez-Humarán LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4:158ra144 http://dx.doi.org/10.1126/scitranslmed.3004212. [PubMed]
34. Kimura NT, Taniguchi S, Aoki K, Baba T. 1980. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 40:2061–2068. [PubMed]
35. Yao J, Wang JY, Lai MG, Li YX, Zhu HM, Shi RY, Mo J, Xun AY, Jia CH, Feng JL, Wang LS, Zeng WS, Liu L. 2011. Treatment of mice with dextran sulfate sodium-induced colitis with human interleukin 10 secreted by transformed Bifidobacterium longum. Mol Pharm 8:488–497 http://dx.doi.org/10.1021/mp100331r. [PubMed]
36. Zhang D, Wei C, Yao J, Cai X, Wang L. 2015. Interleukin-10 gene-carrying bifidobacteria ameliorate murine ulcerative colitis by regulating regulatory T cell/T helper 17 cell pathway. Exp Biol Med (Maywood) 240:1622–1629 http://dx.doi.org/10.1177/1535370215584901. [PubMed]
37. Herfarth H, Schölmerich J. 2002. IL-10 therapy in Crohn’s disease: at the crossroads. Gut 50:146–147 http://dx.doi.org/10.1136/gut.50.2.146. [PubMed]
38. West RL, Zelinkova Z, Wolbink GJ, Kuipers EJ, Stokkers PC, van der Woude CJ. 2008. Immunogenicity negatively influences the outcome of adalimumab treatment in Crohn’s disease. Aliment Pharmacol Ther 28:1122–1126 http://dx.doi.org/10.1111/j.1365-2036.2008.03828.x. [PubMed]
39. Pascual-Salcedo D, Plasencia C, Ramiro S, Nuño L, Bonilla G, Nagore D, Ruiz Del Agua A, Martínez A, Aarden L, Martín-Mola E, Balsa A. 2011. Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology (Oxford) 50:1445–1452 http://dx.doi.org/10.1093/rheumatology/ker124. [PubMed]
40. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E, Cuvelier C, Rottiers P. 2010. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3:49–56 http://dx.doi.org/10.1038/mi.2009.116. [PubMed]
41. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789 http://dx.doi.org/10.1038/nbt840. [PubMed]
42. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L. 2006. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759 http://dx.doi.org/10.1016/j.cgh.2006.03.028. [PubMed]
43. Limaye SA, Haddad RI, Cilli F, Sonis ST, Colevas AD, Brennan MT, Hu KS, Murphy BA. 2013. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119:4268–4276 http://dx.doi.org/10.1002/cncr.28365. [PubMed]
44. Bermúdez-Humarán LG, Motta JP, Aubry C, Kharrat P, Rous-Martin L, Sallenave JM, Deraison C, Vergnolle N, Langella P. 2015. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Fact 14:26 http://dx.doi.org/10.1186/s12934-015-0198-4. [PubMed]
45. Shaw L, Wiedow O. 2011. Therapeutic potential of human elafin. Biochem Soc Trans 39:1450–1454 http://dx.doi.org/10.1042/BST0391450. [PubMed]
46. Wei P, Yang Y, Ding Q, Li X, Sun H, Liu Z, Huang J, Gong Y. 2016. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis. J Med Microbiol 65:160–168. http://dx.doi.org/10.1099/jmm.0.000197. [PubMed]
microbiolspec.BAD-0016-2016.citations
cm/5/5
content/journal/microbiolspec/10.1128/microbiolspec.BAD-0016-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAD-0016-2016
2017-09-29
2017-12-15

Abstract:

Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error