1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Engineering Diagnostic and Therapeutic Gut Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Brian P. Landry1, Jeffrey J. Tabor2
  • Editors: Robert Allen Britton4, Patrice D. Cani5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Bioengineering, Rice University, Houston, TX 77030; 2: Department of Bioengineering, Rice University, Houston, TX 77030; 3: Department of Biosciences, Rice University, Houston, TX 77030; 4: Baylor College of Medicine, Houston, TX 77030; 5: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
  • Received 27 June 2017 Accepted 08 September 2017 Published 20 October 2017
  • Jeffrey J. Tabor, jeff.tabor@rice.edu
image of Engineering Diagnostic and Therapeutic Gut Bacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Engineering Diagnostic and Therapeutic Gut Bacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/5/BAD-0020-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/5/BAD-0020-2017-2.gif
  • Abstract:

    Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria , researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota . Here, we develop a standard approach for engineering “smart probiotics,” which both diagnose and treat disease, as well as “diagnostic gut bacteria” and “drug factory probiotics,” which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.

  • Citation: Landry B, Tabor J. 2017. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectrum 5(5):BAD-0020-2017. doi:10.1128/microbiolspec.BAD-0020-2017.

Key Concept Ranking

Bacterial Proteins
0.465506
Tumor Necrosis Factor alpha
0.44731548
0.465506

References

1. Hosseinidoust Z, Mostaghaci B, Yasa O, Park B-W, Singh AV, Sitti M. 2016. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 106(Pt A):27–44 http://dx.doi.org/10.1016/j.addr.2016.09.007 [PubMed].
2. Chien T, Doshi A, Danino T. 2017. Advances in bacteria cancer therapies using synthetic biology. Curr Opin Syst Biol 5:1–8 http://dx.doi.org/10.1016/j.coisb.2017.05.009.
3. Sheth RU, Cabral V, Chen SP, Wang HH. 2016. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet 32:189–200 http://dx.doi.org/10.1016/j.tig.2016.01.005. [PubMed]
4. Mimee M, Citorik RJ, Lu TK. 2016. Microbiome therapeutics: advances and challenges. Adv Drug Deliv Rev 105(Pt A):44–54 http://dx.doi.org/10.1016/j.addr.2016.04.032. [PubMed]
5. WHO. 2006. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Food and Agriculture Organization of the UN, London, Ontario, Canada. http://www.fao.org/food/food-safety-quality/a-z-index/probiotics/en/
6. Wang H, Lee I-S, Braun C, Enck P. 2016. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22:589–605 http://dx.doi.org/10.5056/jnm16018. [PubMed]
7. Choi HH, Cho Y-S. 2016. Fecal microbiota transplantation: current applications, effectiveness, and future perspectives. Clin Endosc 49:257–265 http://dx.doi.org/10.5946/ce.2015.117. [PubMed]
8. Bron PA, Kleerebezem M, Brummer R-J, Cani PD, Mercenier A, MacDonald TT, Garcia-Ródenas CL, Wells JM. 2017. Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr 117:93–107 http://dx.doi.org/10.1017/S0007114516004037.
9. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. 2012. Probiotic mechanisms of action. Ann Nutr Metab 61:160–174 http://dx.doi.org/10.1159/000342079. [PubMed]
10. Sarkar A, Mandal S. 2016. Bifidobacteria: insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 192:159–171 http://dx.doi.org/10.1016/j.micres.2016.07.001. [PubMed]
11. Rogers NJ, Mousa SA. 2012. The shortcomings of clinical trials assessing the efficacy of probiotics in irritable bowel syndrome. J Altern Complement Med 18:112–119 http://dx.doi.org/10.1089/acm.2011.0015. [PubMed]
12. Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, Pettersson S, Nicholson JK. 2012. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4:137rv6 http://dx.doi.org/10.1126/scitranslmed.3004244. [PubMed]
13. Claesen J, Fischbach MA. 2015. Synthetic microbes as drug delivery systems. ACS Synth Biol 4:358–364 http://dx.doi.org/10.1021/sb500258b. [PubMed]
14. Brophy JAN, Voigt CA. 2014. Principles of genetic circuit design. Nat Methods 11:508–520 http://dx.doi.org/10.1038/nmeth.2926. [PubMed]
15. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355. [PubMed]
16. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789 http://dx.doi.org/10.1038/nbt840. [PubMed]
17. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJH, Neirynck S, Peppelenbosch MP, Steidler L. 2006. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759 http://dx.doi.org/10.1016/j.cgh.2006.03.028.
18. Bermúdez-Humarán LG, Aubry C, Motta J-PP, Deraison C, Steidler L, Vergnolle N, Chatel J-MM, Langella P. 2013. Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283 http://dx.doi.org/10.1016/j.mib.2013.06.002. [PubMed]
19. Vandenbroucke K, de Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E, Cuvelier C, Rottiers P. 2010. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3:49–56 http://dx.doi.org/10.1038/mi.2009.116. [PubMed]
20. Intrexon Corporation. 2016. ActoBiotics® platform: a novel class of oral biotherapeutics. https://www.dna.com/.
21. Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L. 2004. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513 http://dx.doi.org/10.1053/j.gastro.2004.05.020. [PubMed]
22. Han W, Mercenier A, Ait-Belgnaoui A, Pavan S, Lamine F, van Swam II, Kleerebezem M, Salvador-Cartier C, Hisbergues M, Bueno L, Theodorou V, Fioramonti J. 2006. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm Bowel Dis 12:1044–1052 http://dx.doi.org/10.1097/01.mib.0000235101.09231.9e. [PubMed]
23. Rochat T, Bermúdez-Humarán L, Gratadoux J-J, Fourage C, Hoebler C, Corthier G, Langella P. 2007. Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microb Cell Fact 6:22 http://dx.doi.org/10.1186/1475-2859-6-22. [PubMed]
24. Carroll IM, Andrus JM, Bruno-Bárcena JM, Klaenhammer TR, Hassan HM, Threadgill DS. 2007. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 293:G729–G738 http://dx.doi.org/10.1152/ajpgi.00132.2007.
25. Foligne B, Dessein R, Marceau M, Poiret S, Chamaillard M, Pot B, Simonet M, Daniel C. 2007. Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133:862–874 http://dx.doi.org/10.1053/j.gastro.2007.06.018. [PubMed]
26. Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefèvre F, Gratadoux JJ, Honvo-Hueto E, Chilmonczyk S, Blugeon S, Corthier G, Langella P, Bermúdez-Humarán LG. 2010. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol 144:35–41 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.037. [PubMed]
27. LeBlanc JG, del Carmen S, Miyoshi A, Azevedo V, Sesma F, Langella P, Bermúdez-Humarán LG, Watterlot L, Perdigon G, de Moreno de LeBlanc A. 2011. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 151:287–293 http://dx.doi.org/10.1016/j.jbiotec.2010.11.008.
28. Motta J-P, Bermúdez-Humarán LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel J-P, Alric L, Mas E, Sallenave J-M, Langella P, Vergnolle N. 2012. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4:158ra144 http://dx.doi.org/10.1126/scitranslmed.3004212. [PubMed]
29. Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, Galleri L, Spagnuolo I, Steidler L, Van Huynegem K, Demetter P, Wasserfall C, Atkinson MA, Dotta F, Rottiers P, Gysemans C, Mathieu C. 2012. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122:1717–1725 http://dx.doi.org/10.1172/JCI60530.
30. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, Morris LC, Matafonova E, Stien X, Kang L, Coulon D, McGuinness OP, Niswender KD, Davies SS. 2014. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124:3391–3406 http://dx.doi.org/10.1172/JCI72517. [PubMed]
31. Robert S, Gysemans C, Takiishi T, Korf H, Spagnuolo I, Sebastiani G, Van Huynegem K, Steidler L, Caluwaerts S, Demetter P, Wasserfall CH, Atkinson MA, Dotta F, Rottiers P, Van Belle TL, Mathieu C. 2014. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63:2876–2887 http://dx.doi.org/10.2337/db13-1236.
32. Duan FF, Liu JH, March JC. 2015. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64:1794–1803 http://dx.doi.org/10.2337/db14-0635. [PubMed]
33. Rosberg-Cody E, Stanton C, O’Mahony L, Wall R, Shanahan F, Quigley EM, Fitzgerald GF, Ross RP. 2011. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. Microbiology 157:609–615 http://dx.doi.org/10.1099/mic.0.043406-0. [PubMed]
34. Chen H-L, Lai Y-W, Chen C-S, Chu T-W, Lin W, Yen C-C, Lin M-F, Tu M-Y, Chen C-M. 2010. Probiotic Lactobacillus casei expressing human lactoferrin elevates antibacterial activity in the gastrointestinal tract. Biometals 23:543–554 http://dx.doi.org/10.1007/s10534-010-9298-0. [PubMed]
35. Paton AW, Jennings MP, Morona R, Wang H, Focareta A, Roddam LF, Paton JC. 2005. Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128:1219–1228 http://dx.doi.org/10.1053/j.gastro.2005.01.050. [PubMed]
36. Koo OK, Amalaradjou MAR, Bhunia AK. 2012. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7:e29277 http://dx.doi.org/10.1371/journal.pone.0029277. [PubMed]
37. Focareta A, Paton JC, Morona R, Cook J, Paton AW. 2006. A recombinant probiotic for treatment and prevention of cholera. Gastroenterology 130:1688–1695 http://dx.doi.org/10.1053/j.gastro.2006.02.005. [PubMed]
38. Duan F, March JC. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci USA 107:11260–11264 http://dx.doi.org/10.1073/pnas.1001294107.
39. Gordley RM, Bugaj LJ, Lim WA. 2016. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 39:106–114 http://dx.doi.org/10.1016/j.sbi.2016.06.012. [PubMed]
40. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA. 2016. Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14:135–149 http://dx.doi.org/10.1038/nrmicro.2015.24. [PubMed]
41. Dobrin A, Saxena P, Fussenegger M. 2016. Synthetic biology: applying biological circuits beyond novel therapies. Integr Biol 8:409–430 http://dx.doi.org/10.1039/C5IB00263J. [PubMed]
42. Tabor JJ, Groban ES, Voigt CA. 2009. Performance characteristics for sensors and circuits used to program E. coli, p 401–439. In Lee SY (ed), Systems Biology and Biotechnology of Escherichia coli. Springer, Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-1-4020-9394-4_19
43. Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ. 2014. Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat Methods 11:449–455 http://dx.doi.org/10.1038/nmeth.2884. [PubMed]
44. Castillo-Hair SM, Igoshin OA, Tabor JJ. 2015. How to train your microbe: methods for dynamically characterizing gene networks. Curr Opin Microbiol 24:113–123 http://dx.doi.org/10.1016/j.mib.2015.01.008. [PubMed]
45. Ulrich LE, Koonin EV, Zhulin IB. 2005. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56 http://dx.doi.org/10.1016/j.tim.2004.12.006. [PubMed]
46. Gupta S, Bram EE, Weiss R. 2013. Genetically programmable pathogen sense and destroy. ACS Synth Biol 2:715–723 http://dx.doi.org/10.1021/sb4000417. [PubMed]
47. Saeidi N, Wong CK, Lo T-MT-M, Nguyen HX, Ling H, Leong SSJ, Poh CL, Chang MW. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7:521 http://dx.doi.org/10.1038/msb.2011.55. [PubMed]
48. Archer EJ, Robinson AB, Süel GM. 2012. Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 1:451–457 http://dx.doi.org/10.1021/sb3000595. [PubMed]
49. Drouault S, Anba J, Corthier G. 2002. Streptococcus thermophilus is able to produce a β-galactosidase active during its transit in the digestive tract of germ-free mice. Appl Environ Microbiol 68:938–941 http://dx.doi.org/10.1128/AEM.68.2.938-941.2002. [PubMed]
50. Hamady ZZR, Scott N, Farrar MD, Lodge JPA, Holland KT, Whitehead T, Carding SR. 2010. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59:461–469 http://dx.doi.org/10.1136/gut.2008.176131. [PubMed]
51. Mimee M, Tucker AC, Voigt CA, Lu TK. 2015. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:62–71 http://dx.doi.org/10.1016/j.cels.2015.06.001. (Erratum, https://doi.org/10.1016/J.CELS.2016.03.007.) [PubMed]
52. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, Chervonsky AV. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–641 http://dx.doi.org/10.1038/nature13823. [PubMed]
53. Gao R, Stock AM. 2009. Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154 http://dx.doi.org/10.1146/annurev.micro.091208.073214. [PubMed]
54. Galperin MY. 2010. Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13:150–159 http://dx.doi.org/10.1016/j.mib.2010.01.005. [PubMed]
55. Daeffler KN-M, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, Britton RA, Tabor JJ. 2017. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 13:923 http://dx.doi.org/10.15252/msb.20167416. [PubMed]
56. Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA. 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci USA 111:4838–4843 http://dx.doi.org/10.1073/pnas.1321321111. [PubMed]
57. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429 http://dx.doi.org/10.1038/nature09415. [PubMed]
58. Winter SE, Lopez CA, Bäumler AJ. 2013. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 14:319–327 http://dx.doi.org/10.1038/embor.2013.27. [PubMed]
59. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287 http://dx.doi.org/10.1046/j.1365-2958.1999.01345.x. [PubMed]
60. Riglar DT, Giessen TW, Baym M, Kerns SJ, Niederhuber MJ, Bronson RT, Kotula JW, Gerber GK, Way JC, Silver PA. 2017. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35:653–658 http://dx.doi.org/10.1038/nbt.3879. [PubMed]
61. Siuti P, Yazbek J, Lu TK. 2013. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 31:448–452 http://dx.doi.org/10.1038/nbt.2510. [PubMed]
62. Yang L, Nielsen AAK, Fernandez-Rodriguez J, McClune CJ, Laub MT, Lu TK, Voigt CA. 2014. Permanent genetic memory with >1-byte capacity. Nat Methods 11:1261–1266 http://dx.doi.org/10.1038/nmeth.3147. [PubMed]
63. Duan F, Curtis KL, March JC. 2008. Secretion of insulinotropic proteins by commensal bacteria: rewiring the gut to treat diabetes. Appl Environ Microbiol 74:7437–7438 http://dx.doi.org/10.1128/AEM.01019-08. [PubMed]
64. Castagliuolo I, Beggiao E, Brun P, Barzon L, Goussard S, Manganelli R, Grillot-Courvalin C, Palù G. 2005. Engineered E. coli delivers therapeutic genes to the colonic mucosa. Gene Ther 12:1070–1078 http://dx.doi.org/10.1038/sj.gt.3302493. [PubMed]
65. Myhrvold C, Kotula JW, Hicks WM, Conway NJ, Silver PA. 2015. A distributed cell division counter reveals growth dynamics in the gut microbiota. Nat Commun 6:10039 http://dx.doi.org/10.1038/ncomms10039. [PubMed]
66. Huttenhower C, et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214 http://dx.doi.org/10.1038/nature11234. [PubMed]
67. Huibregtse IL, Snoeck V, de Creus A, Braat H, De Jong EC, Van Deventer SJH, Rottiers P. 2007. Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133:517–528 http://dx.doi.org/10.1053/j.gastro.2007.04.073.
68. Huibregtse IL, Marietta EV, Rashtak S, Koning F, Rottiers P, David CS, van Deventer SJH, Murray JA. 2009. Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice. J Immunol 183:2390–2396 http://dx.doi.org/10.4049/jimmunol.0802891. [PubMed]
69. Caluwaerts S, Vandenbroucke K, Steidler L, Neirynck S, Vanhoenacker P, Corveleyn S, Watkins B, Sonis S, Coulie B, Rottiers P. 2010. AG013, a mouth rinse formulation of Lactococcus lactis secreting human trefoil factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46:564–570 http://dx.doi.org/10.1016/j.oraloncology.2010.04.008. [PubMed]
70. Pontes DS, de Azevedo MSP, Chatel J-M, Langella P, Azevedo V, Miyoshi A. 2011. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 79:165–175 http://dx.doi.org/10.1016/j.pep.2011.06.005. [PubMed]
71. Conrad K, Roggenbuck D, Laass MW. 2014. Diagnosis and classification of ulcerative colitis. Autoimmun Rev 13:463–466 http://dx.doi.org/10.1016/j.autrev.2014.01.028. [PubMed]
72. Donaldson GP, Lee SM, Mazmanian SK. 2016. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32 http://dx.doi.org/10.1038/nrmicro3552. [PubMed]
73. Schultz M, Watzl S, Oelschlaeger TA, Rath HC, Göttl C, Lehn N, Schölmerich J, Linde HJ. 2005. Green fluorescent protein for detection of the probiotic microorganism Escherichia coli strain Nissle 1917 (EcN) in vivo. J Microbiol Methods 61:389–398 http://dx.doi.org/10.1016j.mimet.2005.01.007. [PubMed]
74. Spees AM, Wangdi T, Lopez CA, Kingsbury DD, Xavier MN, Winter SE, Tsolis RM, Bäumler AJ. 2013. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio 4:e00430-13 http://dx.doi.org/10.1128/mBio.00430-13. [PubMed]
75. Kamada N, Chen GY, Inohara N, Núñez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690 http://dx.doi.org/10.1038/ni.2608. [PubMed]
76. Shetty RP, Endy D, Knight TF Jr. 2008. Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5 http://dx.doi.org/10.1186/1754-1611-2-5. [PubMed]
77. St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB, Shearwin KE. 2013. One-step cloning and chromosomal integration of DNA. ACS Synth Biol 2:537–541 http://dx.doi.org/10.1021/sb400021j. [PubMed]
78. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D. 2009. Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4 http://dx.doi.org/10.1186/1754-1611-3-4.
79. Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai Q-A, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D. 2013. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10:354–360 http://dx.doi.org/10.1038/nmeth.2404. [PubMed]
80. Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210 http://dx.doi.org/10.1093/nar/25.6.1203. [PubMed]
81. Cox RS III, Surette MG, Elowitz MB. 2007. Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145 http://dx.doi.org/10.1038/msb4100187. [PubMed]
82. Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, Voigt CA. 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664 http://dx.doi.org/10.1038/nmeth.2515.
83. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai Q-A, Thimmaiah T, Carothers JM, Arkin AP, Endy D. 2013. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148 http://dx.doi.org/10.1093/nar/gkt163. [PubMed]
84. Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950 http://dx.doi.org/10.1038/nbt.1568. [PubMed]
85. Espah Borujeni A, Channarasappa AS, Salis HM. 2014. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659 http://dx.doi.org/10.1093/nar/gkt1139. [PubMed]
86. Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M, Salis HM. 2014. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10:731 http://dx.doi.org/10.15252/msb.20134955. [PubMed]
87. Yoon SH, Kim SK, Kim JF. 2010. Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 4:23–29 http://dx.doi.org/10.2174/187220810790069550. [PubMed]
88. Andersen JB, Sternberg C, Poulsen LK, Bjørn SP, Givskov M, Molin S. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246. [PubMed]
89. Wang J, Shoemaker NB, Wang GR, Salyers AA. 2000. Characterization of a Bacteroides mobilizable transposon, NBU2, which carries a functional lincomycin resistance gene. J Bacteriol 182:3559–3571 http://dx.doi.org/10.1128/JB.182.12.3559-3571.2000. [PubMed]
90. Bosma EF, Forster J, Nielsen AT. 2017. Lactobacilli and pediococci as versatile cell factories: evaluation of strain properties and genetic tools. Biotechnol Adv 35:419–442 http://dx.doi.org/10.1016/j.biotechadv.2017.04.002. [PubMed]
91. Mierau I, Kleerebezem M. 2005. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717. [PubMed]
92. Karlskås IL, Maudal K, Axelsson L, Rud I, Eijsink VGH, Mathiesen G. 2014. Heterologous protein secretion in lactobacilli with modified pSIP vectors. PLoS One 9:e91125 http://dx.doi.org/10.1371/journal.pone.0091125. [PubMed]
93. Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R, Heinl S. 2016. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact 15:50 http://dx.doi.org/10.1186/s12934-016-0448-0.
94. Rud I, Jensen PR, Naterstad K, Axelsson L. 2006. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology 152:1011–1019 http://dx.doi.org/10.1099/mic.0.28599-0. [PubMed]
95. van Pijkeren JP, Britton RA. 2014. Precision genome engineering in lactic acid bacteria. Microb Cell Fact 13(Suppl 1):S10 http://dx.doi.org/10.1186/1475-2859-13-S1-S10. [PubMed]
96. Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131 http://dx.doi.org/10.1093/nar/gku623. [PubMed]
97. Chan LY, Kosuri S, Endy D. 2005. Refactoring bacteriophage T7. Mol Syst Biol 1:2005.0018 http://dx.doi.org/10.1038/msb4100025. [PubMed]
98. Temme K, Zhao D, Voigt CA. 2012. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci USA 109:7085–7090 http://dx.doi.org/10.1073/pnas.1120788109. [PubMed]
99. Zhou H, Vonk B, Roubos JA, Bovenberg RAL, Voigt CA. 2015. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor. Nucleic Acids Res 43:10560–10570.
100. Burén S, Young EM, Sweeny EA, Lopez-Torrejón G, Veldhuizen M, Voigt CA, Rubio LM. 2017. Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Synth Biol 6:1043–1055 http://dx.doi.org/10.1021/acssynbio.6b00371. [PubMed]
101. Tabor JJ, Levskaya A, Voigt CA. 2011. Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405:315–324 http://dx.doi.org/10.1016/j.jmb.2010.10.038. [PubMed]
102. Ramakrishnan P, Tabor JJ. 2016. Repurposing synechocystis PCC6803 UirS-UirR as a UV-violet/green photoreversible transcriptional regulatory tool in E. coli. ACS Synth Biol 5:733–740 http://dx.doi.org/10.1021/acssynbio.6b00068. [PubMed]
103. Schmidl SR, Sheth RU, Wu A, Tabor JJ. 2014. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3:820–831 http://dx.doi.org/10.1021/sb500273n. [PubMed]
104. Stanton BC, Nielsen AAK, Tamsir A, Clancy K, Peterson T, Voigt CA. 2014. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol 10:99–105 http://dx.doi.org/10.1038/nchembio.1411. [PubMed]
105. Stanton BC, Siciliano V, Ghodasara A, Wroblewska L, Clancy K, Trefzer AC, Chesnut JD, Weiss R, Voigt CA. 2014. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth Biol 3:880–891 http://dx.doi.org/10.1021/sb5002856. [PubMed]
106. Beal J. 2015. Signal-to-noise ratio measures efficacy of biological computing devices and circuits. Front Bioeng Biotechnol 3:93 http://dx.doi.org/10.3389/fbioe.2015.00093. [PubMed]
107. Shinar G, Milo R, Martínez MR, Alon U. 2007. Input output robustness in simple bacterial signaling systems. Proc Natl Acad Sci USA 104:19931–19935 http://dx.doi.org/10.1073/pnas.0706792104. [PubMed]
108. Rubens JR, Selvaggio G, Lu TK. 2016. Synthetic mixed-signal computation in living cells. Nat Commun 7:11658 http://dx.doi.org/10.1038/ncomms11658. [PubMed]
109. Daniel R, Rubens JR, Sarpeshkar R, Lu TK. 2013. Synthetic analog computation in living cells. Nature 497:619–623 http://dx.doi.org/10.1038/nature12148. [PubMed]
110. Rockwell NC, Martin SS, Lagarias JC. 2012. Red/green cyanobacteriochromes: sensors of color and power. Biochemistry 51:9667–9677 http://dx.doi.org/10.1021/bi3013565. [PubMed]
111. Rockwell NC, Martin SS, Lagarias JC. 2016. Identification of cyanobacteriochromes detecting far-red light. Biochemistry 55:3907–3919 http://dx.doi.org/10.1021/acs.biochem.6b00299. [PubMed]
112. Hermsen R, Erickson DW, Hwa T. 2011. Speed, sensitivity, and bistability in auto-activating signaling circuits. PLOS Comput Biol 7:e1002265 http://dx.doi.org/10.1371/journal.pcbi.1002265. [PubMed]
113. Lundberg JO, Govoni M. 2004. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37:395–400 http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.027. [PubMed]
114. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, Popova IE, Parikh SJ, Adams LG, Tsolis RM, Stewart VJ, Bäumler AJ. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708–711. [PubMed]
115. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. 2016. Genetic circuit design automation. Science 352:aac7341. [PubMed]
116. Lou C, Stanton B, Chen Y-J, Munsky B, Voigt CA. 2012. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol 30:1137–1142 http://dx.doi.org/10.1038/nbt.2401. [PubMed]
117. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183 http://dx.doi.org/10.1016/j.cell.2013.02.022. [PubMed]
118. Nielsen AA, Voigt CA. 2014. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol 10:763 http://dx.doi.org/10.15252/msb.20145735. [PubMed]
119. Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. 2017. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 8:15459 http://dx.doi.org/10.1038/ncomms15459. [PubMed]
120. Del Vecchio D. 2015. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol 33:111–119 http://dx.doi.org/10.1016/j.tibtech.2014.11.009. [PubMed]
121. Bradley RW, Buck M, Wang B. 2016. Recognizing and engineering digital-like logic gates and switches in gene regulatory networks. Curr Opin Microbiol 33:74–82 http://dx.doi.org/10.1016/j.mib.2016.07.004. [PubMed]
122. Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP. 2011. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci USA 108:8617–8622 http://dx.doi.org/10.1073/pnas.1015741108. [PubMed]
123. Chappell J, Takahashi MK, Lucks JB. 2015. Creating small transcription activating RNAs. Nat Chem Biol 11:214–220 http://dx.doi.org/10.1038/nchembio.1737. [PubMed]
124. Westbrook AM, Lucks JB. 2017. Achieving large dynamic range control of gene expression with a compact RNA transcription-translation regulator. Nucleic Acids Res 45:5614–5624 http://dx.doi.org/10.1093/nar/gkx215. [PubMed]
125. Argos P, et al. 1986. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440. [PubMed]
126. Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. 2009. Synthetic gene networks that count. Science 324:1199–1202. [PubMed]
127. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. 2013. Amplifying genetic logic gates. Science 340:599–603. [PubMed]
128. Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. 2016. Synthetic recombinase-based state machines in living cells. Science 353:aad8559. [PubMed]
129. Bonnet J, Subsoontorn P, Endy D. 2012. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Natl Acad Sci USA 109:8884–8889 http://dx.doi.org/10.1073/pnas.1202344109. [PubMed]
130. Daniel C, Poiret S, Dennin V, Boutillier D, Pot B. 2013. Bioluminescence imaging study of spatial and temporal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. Appl Environ Microbiol 79:1086–1094 http://dx.doi.org/10.1128/AEM.03221-12. [PubMed]
131. Alon U. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton, FL.
132. Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA. 2012. Genetic programs constructed from layered logic gates in single cells. Nature 491:249–253 http://dx.doi.org/10.1038/nature11516. [PubMed]
133. Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring LS, Hasty J. 2014. Rapid and tunable post-translational coupling of genetic circuits. Nature 508:387–391 http://dx.doi.org/10.1038/nature13238. [PubMed]
134. Cookson NA, Mather WH, Danino T, Mondragón-Palomino O, Williams RJ, Tsimring LS, Hasty J. 2011. Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol 7:561 http://dx.doi.org/10.1038/msb.2011.94.
135. Cameron DE, Collins JJ. 2014. Tunable protein degradation in bacteria. Nat Biotechnol 32:1276–1281 http://dx.doi.org/10.1038/nbt.3053. [PubMed]
136. Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, Murray RM, Lucks JB. 2015. Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol 4:503–515 http://dx.doi.org/10.1021/sb400206c. [PubMed]
137. Moser F, Broers NJ, Hartmans S, Tamsir A, Kerkman R, Roubos JA, Bovenberg R, Voigt CA. 2012. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth Biol 1:555–564 http://dx.doi.org/10.1021/sb3000832. [PubMed]
138. Tropini C, Earle KA, Huang KC, Sonnenburg JL. 2017. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21:433–442 http://dx.doi.org/10.1016/j.chom.2017.03.010. [PubMed]
139. Klumpp S, Hwa T. 2014. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 28:96–102 http://dx.doi.org/10.1016/j.copbio.2014.01.001. [PubMed]
140. Shopera T, He L, Oyetunde T, Tang YJ, Moon TS. 2017. Decoupling resource-coupled gene expression in living cells. ACS Synth Biol 6:1596–1604 http://dx.doi.org/10.1021/acssynbio.7b00119. [PubMed]
141. Salvado B, Vilaprinyo E, Sorribas A, Alves R. 2015. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes. PeerJ 3:e1183 http://dx.doi.org/10.7717/peerj.1183. [PubMed]
142. Long T, Tu KC, Wang Y, Mehta P, Ong NP, Bassler BL, Wingreen NS. 2009. Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol 7:e1000068 http://dx.doi.org/10.1371/journal.pbio.1000068. [PubMed]
143. Walthers D, Tran VK, Kenney LJ. 2003. Interdomain linkers of homologous response regulators determine their mechanism of action. J Bacteriol 185:317–324 http://dx.doi.org/10.1128/JB.185.1.317-324.2003. [PubMed]
144. Nakajima M, Ferri S, Rögner M, Sode K. 2016. Construction of a miniaturized chromatic acclimation sensor from cyanobacteria with reversed response to a light signal. Sci Rep 6:37595 http://dx.doi.org/10.1038/srep37595. [PubMed]
145. Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342 http://dx.doi.org/10.1038/35002131. [PubMed]
146. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. 2004. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA 101:8414–8419 http://dx.doi.org/10.1073/pnas.0402940101. [PubMed]
147. Ptashne M. 2004. A Genetic Switch Phage Lambda Revisited. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
148. Junjua M, Galia W, Gaci N, Uriot O, Genay M, Bachmann H, Kleerebezem M, Dary A, Roussel Y. 2014. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter. J Appl Microbiol 116:620–631 http://dx.doi.org/10.1111/jam.12376.
149. Farzadfard F, Lu TK. 2014. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346:1256272. [PubMed]
150. Horwitz JP, Chua J, Curby RJ, Tomson AJ, Darooge MA, Fisher BE, Mauricio J, Klundt I. 1964. Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-β-D-glycopyranosides. J Med Chem 7:574–575 http://dx.doi.org/10.1021/jm00334a044. [PubMed]
151. Corthier G, Delorme C, Ehrlich SD, Renault P. 1998. Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol 64:2721–2722. [PubMed]
152. Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y, Arkin AP, Endy D, Church GM. 2013. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci USA 110:14024–14029 http://dx.doi.org/10.1073/pnas.1301301110. [PubMed]
153. Auchtung JM, Robinson CD, Farrell K, Britton RA. 2016. Minibioreactor arrays (MBRAs) as a tool for studying C. difficile physiology in the presence of a complex community. Methods Mol Biol 1476:235–258 http://dx.doi.org/10.1007/978-1-4939-6361-4_18. [PubMed]
154. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:Unit 15.25. [PubMed]
155. Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, Deng L, Yeliseyev V, Delaney ML, Liu Q, Olle B, Stein RR, Honda K, Bry L, Gerber GK. 2016. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol 17:121 http://dx.doi.org/10.1186/s13059-016-0980-6. [PubMed]
156. Farrar MD, Whitehead TR, Lan J, Dilger P, Thorpe R, Holland KT, Carding SR. 2005. Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan. J Appl Microbiol 98:1191–1197 http://dx.doi.org/10.1111/j.1365-2672.2005.02565.x. [PubMed]
157. Hamady ZZR, Scott N, Farrar MD, Wadhwa M, Dilger P, Whitehead TR, Thorpe R, Holland KT, Lodge JPA, Carding SR. 2011. Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan 1. Inflamm Bowel Dis 17:1925–1935 http://dx.doi.org/10.1002/ibd.21565. [PubMed]
158. Ng DTW, Sarkar CA. 2011. Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000. Biotechnol Bioeng 108:1987–1996 http://dx.doi.org/10.1002/bit.23130. [PubMed]
microbiolspec.BAD-0020-2017.citations
cm/5/5
content/journal/microbiolspec/10.1128/microbiolspec.BAD-0020-2017
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAD-0020-2017
2017-10-20
2017-11-19

Abstract:

Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria , researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota . Here, we develop a standard approach for engineering “smart probiotics,” which both diagnose and treat disease, as well as “diagnostic gut bacteria” and “drug factory probiotics,” which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The three classes of engineered gut bacteria. Smart probiotics sense one or more biomarkers, compute that those biomarkers are present in a combination indicative of disease, and respond by delivering a precise dose of one or more appropriate therapeutics at the diseased tissue. Diagnostic gut bacteria sense one or more biomarkers, compute that those biomarkers are present in a combination indicative of disease, and produce a reporter which can be externally measured by a clinician. Drug factory probiotics constitutively produce a therapeutic within the body.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

A comparison of the development process for natural and engineered probiotics. Natural probiotics are isolated and then tested for efficacy without an ability to methodically improve their capabilities. In contrast, engineered probiotics undergo a design-build-test-learn cycle which allows for continual probiotic improvement and knowledge gain with each iteration.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Examples of current engineered gut bacteria. A drug factory probiotic was made by engineering to constitutively produce IL-10. IL-10 is secreted by the bacteria and then bound by the IL-10 receptor in the gut, resulting in downregulation of host inflammation. DSS was used to induce inflammation in mice, and disease pathology was measured with histological scores. Treatment with the IL-10 drug factory probiotic was found to decrease symptoms by 50% compared to untreated mice or mice administered the natural probiotic . A diagnostic gut bacterium was created by engineering Nissle to sense thiosulfate, which is produced in the gut during inflammation. The thiosulfate is sensed by the ttrSR TCS, which activates expression of the fluorescent protein sfGFP. sfGFP fluorescence of bacteria isolated from the feces and distal and proximal colon was measured and found to be significantly increased in mice experiencing inflammation in each location. Panel adapted from ( 55 ) with permission of the publisher. NGF-1 was modified to express the ATC sensor TetR, which controlled expression of the cro TF. The cro TF is one component of the lambda phage cro/cI toggle switch. ATC altered the start of the switch to become cro-dominant, and therefore produce LacZ protein, which produces a blue pigment. The ATC-sensing diagnostic gut bacteria were administered to mice which were administered ATC via drinking water. Temporary administration of ATC was found to activate LacZ production, and the memory was retained for up to 1 week. Panel adapted from ( 56 ) with permission of the publisher. The native RhaR rhamnose sensor in was used to control expression of the Int12 recombinase, which permanently inverts a barcode segment of DNA in the genome. The rhamnose diagnostic gut bacteria switched the state of the barcode as detected via qPCR when administered rhamnose in drinking water. However, even without administration of rhamnose, the sensor toggled states, due to either leaky recombination or residual rhamnose in the plant-based chow. Panel reprinted from ( 51 ) with permission of the publisher.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

An outline of the types of sense, compute, and respond behavior an engineered gut bacterium can exhibit. Chemicals from a variety of sources within the gut may be of interest to a smart bacterium, including the host diet, compounds produced locally by the host in the bacterium’s microenvironment, signals from other components of the microbiome, and general biomarkers of host disease. Computation is performed with a variety of logic gates and memory elements. The bacterium actuates a response with a therapeutic molecule in the case of a smart probiotic, or by producing a nucleotide or protein-based reporter for a diagnostic gut bacterium.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The different components used to construct an engineered gut bacterium. The pros and cons of each component are listed in green and red text, respectively. Sensors can be selected from OCSs or TCSs. Logic circuits can be constructed using TFs, CRISPR/Cas repressors, RNA-based sRNA transcriptional activators, or serine recombinases. Genetic memory can take the form of a toggle switch or recombined DNA. The state of a circuit can be assayed using colorimetric, luminescent, fluorescent, or nucleotide reporters.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Examples of engineered gut bacteria

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0020-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error