1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Intracellular Life Cycle of spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Jean Celli1
  • Editors: Pascale Cossart2, Craig R. Roy3, Philippe Sansonetti4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164; 2: Institut Pasteur, Paris, France; 3: Yale University School of Medicine, New Haven, Connecticut; 4: Institut Pasteur, Paris, France
  • Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0006-2019
  • Received 27 March 2018 Accepted 10 January 2019 Published 08 March 2019
  • Jean Celli, [email protected]
image of The Intracellular Life Cycle of <span class="jp-italic">Brucella</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Intracellular Life Cycle of spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/BAI-0006-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/2/BAI-0006-2019-2.gif
  • Abstract:

    Bacteria of the genus colonize a wide variety of mammalian hosts, in which their infectious cycle and ability to cause disease predominantly rely on an intracellular lifestyle within phagocytes. Upon entry into host cells, organisms undergo a complex, multistage intracellular cycle in which they sequentially traffic through, and exploit functions of, the endocytic, secretory, and autophagic compartments via type IV secretion system (T4SS)-mediated delivery of bacterial effectors. These effectors modulate an array of host functions and machineries to first promote conversion of the initial endosome-like -containing vacuole (eBCV) into a replication-permissive organelle derived from the host endoplasmic reticulum (rBCV) and then to an autophagy-related vacuole (aBCV) that mediates bacterial egress. Here we detail and discuss our current knowledge of cellular and molecular events of the intracellular cycle. We discuss the importance of the endosomal stage in determining T4SS competency, the roles of autophagy in rBCV biogenesis and aBCV formation, and T4SS-driven mechanisms of modulation of host secretory traffic in rBCV biogenesis and bacterial egress.

  • Citation: Celli J. 2019. The Intracellular Life Cycle of spp.. Microbiol Spectrum 7(2):BAI-0006-2019. doi:10.1128/microbiolspec.BAI-0006-2019.

References

1. Moreno E. 2014. Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 5:213 http://dx.doi.org/10.3389/fmicb.2014.00213. [PubMed]
2. Pappas G, Akritidis N, Bosilkovski M, Tsianos E. 2005. Brucellosis. N Engl J Med 352:2325–2336 http://dx.doi.org/10.1056/NEJMra050570. [PubMed]
3. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. 2006.The new global map of human brucellosis. Lancet Infect Dis 6:91–99 http://dx.doi.org/10.1016/S1473-3099(06)70382-6.
4. Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. 2011. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 65:523–541 http://dx.doi.org/10.1146/annurev-micro-090110-102905. [PubMed]
5. Celli J. 2015. The changing nature of the Brucella-containing vacuole. Cell Microbiol 17:951–958 http://dx.doi.org/10.1111/cmi.12452. [PubMed]
6. Anderson TD, Cheville NF, Meador VP. 1986. Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies. Vet Pathol 23:227–239 http://dx.doi.org/10.1177/030098588602300302. [PubMed]
7. Pizarro-Cerdá J, Méresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goñi I, Moreno E, Gorvel JP. 1998. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66:5711–5724. [PubMed]
8. Celli J, de Chastellier C, Franchini D-M, Pizarro-Cerda J, Moreno E, Gorvel J-P. 2003. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556 http://dx.doi.org/10.1084/jem.20030088. [PubMed]
9. Salcedo SP, Chevrier N, Lacerda TLS, Ben Amara A, Gerart S, Gorvel VA, de Chastellier C, Blasco JM, Mege J-L, Gorvel J-P. 2013. Pathogenic brucellae replicate in human trophoblasts. J Infect Dis 207:1075–1083 http://dx.doi.org/10.1093/infdis/jit007. [PubMed]
10. Detilleux PG, Deyoe BL, Cheville NF. 1990. Entry and intracellular localization of Brucella spp. in Vero cells: fluorescence and electron microscopy. Vet Pathol 27:317–328 http://dx.doi.org/10.1177/030098589002700503. [PubMed]
11. Detilleux PG, Deyoe BL, Cheville NF. 1990. Penetration and intracellular growth of Brucella abortus in nonphagocytic cells in vitro. Infect Immun 58:2320–2328. [PubMed]
12. Arenas GN, Staskevich AS, Aballay A, Mayorga LS. 2000. Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun 68:4255–4263 http://dx.doi.org/10.1128/IAI.68.7.4255-4263.2000. [PubMed]
13. Comerci DJ, Martínez-Lorenzo MJ, Sieira R, Gorvel J-P, Ugalde RA. 2001. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell Microbiol 3:159–168 http://dx.doi.org/10.1046/j.1462-5822.2001.00102.x. [PubMed]
14. Porte F, Liautard JP, Köhler S. 1999. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047. [PubMed]
15. Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Liautard JP, Ramuz M, O’Callaghan D. 2002. The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci USA 99:1544–1549 http://dx.doi.org/10.1073/pnas.032514299. [PubMed]
16. Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J. 2008. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9:678–694 http://dx.doi.org/10.1111/j.1600-0854.2008.00718.x. [PubMed]
17. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, López-Otin C, Virgin HW, Celli J. 2012. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11:33–45 http://dx.doi.org/10.1016/j.chom.2011.12.002. [PubMed]
18. Sedzicki J, Tschon T, Low SH, Willemart K, Goldie KN, Letesson J-J, Stahlberg H, Dehio C. 2018. 3D correlative electron microscopy reveals continuity of Brucella-containing vacuoles with the endoplasmic reticulum. J Cell Sci 131:jcs210799 http://dx.doi.org/10.1242/jcs.210799. [PubMed]
19. Sieira R, Comerci DJ, Sánchez DO, Ugalde RA. 2000. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J Bacteriol 182:4849–4855 http://dx.doi.org/10.1128/JB.182.17.4849-4855.2000. [PubMed]
20. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP, Letesson JJ. 2001. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497 http://dx.doi.org/10.1046/j.1462-5822.2001.00131.x. [PubMed]
21. O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M. 1999. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220 http://dx.doi.org/10.1046/j.1365-2958.1999.01569.x. [PubMed]
22. Celli J, Salcedo SP, Gorvel J-P. 2005. Brucella coopts the small GTPase Sar1 for intracellular replication. Proc Natl Acad Sci USA 102:1673–1678 http://dx.doi.org/10.1073/pnas.0406873102. [PubMed]
23. Hartigh den AB, Rolán HG, de Jong MF, Tsolis RM. 2008. VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol 190:4427–4436.
24. Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, De Bolle X, Tibor A, Tang CM, Letesson JJ. 2000. Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38:543–551 http://dx.doi.org/10.1046/j.1365-2958.2000.02150.x. [PubMed]
25. Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol Spectr 4(1) :VMBF-0012-2015.
26. Juhas M, Crook DW, Hood DW. 2008. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386 http://dx.doi.org/10.1111/j.1462-5822.2008.01187.x. [PubMed]
27. de Jong MF, Sun Y-H, den Hartigh AB, van Dijl JM, Tsolis RM. 2008. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70:1378–1396 http://dx.doi.org/10.1111/j.1365-2958.2008.06487.x. [PubMed]
28. de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G, Rual J-F, Muller A, Twizere J-C, Nkengfac B, Vandenhaute J, Hill DE, Salcedo SP, Gorvel J-P, Letesson J-J, De Bolle X. 2011. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol 13:1044–1058 http://dx.doi.org/10.1111/j.1462-5822.2011.01601.x. [PubMed]
29. Marchesini MI, Herrmann CK, Salcedo SP, Gorvel J-P, Comerci DJ. 2011. In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol 13:1261–1274 http://dx.doi.org/10.1111/j.1462-5822.2011.01618.x. [PubMed]
30. Myeni S, Child R, Ng TW, Kupko JJ III, Wehrly TD, Porcella SF, Knodler LA, Celli J. 2013. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9:e1003556 http://dx.doi.org/10.1371/journal.ppat.1003556. [PubMed]
31. Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PR, Pierre P, Alexopoulou L, Letesson JJ, Comerci DJ, Gorvel JP. 2013. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol 3:28 http://dx.doi.org/10.3389/fcimb.2013.00028. [PubMed]
32. Döhmer PH, Valguarnera E, Czibener C, Ugalde JE. 2014. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol 16:396–410 http://dx.doi.org/10.1111/cmi.12224. [PubMed]
33. Chaves-Olarte E, Guzmán-Verri C, Méresse S, Desjardins M, Pizarro-Cerdá J, Badilla J, Gorvel J-P, Moreno E. 2002. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell Microbiol 4:663–676 http://dx.doi.org/10.1046/j.1462-5822.2002.00221.x. [PubMed]
34. Pizarro-Cerdá J, Moreno E, Sanguedolce V, Mege JL, Gorvel JP. 1998. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66:2387–2392. [PubMed]
35. Sieira R, Comerci DJ, Pietrasanta LI, Ugalde RA. 2004. Integration host factor is involved in transcriptional regulation of the Brucella abortus virB operon. Mol Microbiol 54:808–822 http://dx.doi.org/10.1111/j.1365-2958.2004.04316.x. [PubMed]
36. Deghelt M, Mullier C, Sternon J-F, Francis N, Laloux G, Dotreppe D, Van der Henst C, Jacobs-Wagner C, Letesson J-J, De Bolle X. 2014. G1-arrested newborn cells are the predominant infectious form of the pathogen Brucella abortus. Nat Commun 5:4366 http://dx.doi.org/10.1038/ncomms5366. [PubMed]
37. Budnik A, Stephens DJ. 2009. ER exit sites—localization and control of COPII vesicle formation. FEBS Lett 583:3796–3803 http://dx.doi.org/10.1016/j.febslet.2009.10.038. [PubMed]
38. Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V, Celli J. 2017. A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22:317–329.e7 http://dx.doi.org/10.1016/j.chom.2017.07.017. [PubMed]
39. Taguchi Y, Imaoka K, Kataoka M, Uda A, Nakatsu D, Horii-Okazaki S, Kunishige R, Kano F, Murata M. 2015. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog 11:e1004747 http://dx.doi.org/10.1371/journal.ppat.1004747. [PubMed]
40. Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086 http://dx.doi.org/10.1126/science.1209038. [PubMed]
41. Smith JA, Khan M, Magnani DD, Harms JS, Durward M, Radhakrishnan GK, Liu Y-P, Splitter GA. 2013. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog 9:e1003785 http://dx.doi.org/10.1371/journal.ppat.1003785. [PubMed]
42. de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R, Knodler LA, van Dijl JM, Celli J, Tsolis RM. 2013. Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12 http://dx.doi.org/10.1128/mBio.00418-12. [PubMed]
43. Qin Q-M, Pei J, Ancona V, Shaw BD, Ficht TA, de Figueiredo P. 2008. RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1α in supporting Brucella replication. PLoS Pathog 4:e1000110–e1000116 http://dx.doi.org/10.1371/journal.ppat.1000110. [PubMed]
44. Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323–335 http://dx.doi.org/10.1038/nature09782. [PubMed]
45. Huang J, Brumell JH. 2014. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:101–114 http://dx.doi.org/10.1038/nrmicro3160. [PubMed]
46. Asrat S, de Jesús DA, Hempstead AD, Ramabhadran V, Isberg RR. 2014. Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol 30:79–109 http://dx.doi.org/10.1146/annurev-cellbio-100913-013439. [PubMed]
47. Kagan JC, Roy CR. 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4:945–954 http://dx.doi.org/10.1038/ncb883. [PubMed]
48. Kagan JC, Stein M-P, Pypaert M, Roy CR. 2004. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211 http://dx.doi.org/10.1084/jem.20031706. [PubMed]
49. Hackstadt T, Rockey DD, Heinzen RA, Scidmore MA. 1996. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 15:964–977 http://dx.doi.org/10.1002/j.1460-2075.1996.tb00433.x. [PubMed]
50. Scidmore MA, Fischer ER, Hackstadt T. 1996. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134:363–374 http://dx.doi.org/10.1083/jcb.134.2.363. [PubMed]
51. Bhuin T, Roy JK. 2014. Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 328:1–19 http://dx.doi.org/10.1016/j.yexcr.2014.07.027. [PubMed]
52. Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel J-P. 2008. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4:e21 http://dx.doi.org/10.1371/journal.ppat.0040021. [PubMed]
53. Jakka P, Namani S, Murugan S, Rai N, Radhakrishnan G. 2017. The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages. J Biol Chem 292:20613–20627 http://dx.doi.org/10.1074/jbc.M117.815878. [PubMed]
54. Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, Schembri MA, Mansell A, Sweet MJ, Kobe B. 2014. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem 289:654–668 http://dx.doi.org/10.1074/jbc.M113.523274. [PubMed]
55. Chaudhary A, Ganguly K, Cabantous S, Waldo GS, Micheva-Viteva SN, Nag K, Hlavacek WS, Tung C-S. 2012. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417:299–304 http://dx.doi.org/10.1016/j.bbrc.2011.11.104. [PubMed]
56. Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, Nishikawa T, Park SG, Roop RM II, Ghosh S. 2010. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol 184:956–964 http://dx.doi.org/10.4049/jimmunol.0902008. [PubMed]
57. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. 2009. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J Biol Chem 284:9892–9898 http://dx.doi.org/10.1074/jbc.M805458200. [PubMed]
58. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T. 2008. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399–406 http://dx.doi.org/10.1038/nm1734. [PubMed]
59. Willett R, Ungar D, Lupashin V. 2013. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283 http://dx.doi.org/10.1007/s00418-013-1117-6. [PubMed]
60. Cui G, Wei P, Zhao Y, Guan Z, Yang L, Sun W, Wang S, Peng Q. 2014. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2. Vet Microbiol 174:195–205 http://dx.doi.org/10.1016/j.vetmic.2014.08.033. [PubMed]
61. Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dornand J. 2000. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68:342–351 http://dx.doi.org/10.1128/IAI.68.1.342-351.2000. [PubMed]
62. Kimura T, Jia J, Claude-Taupin A, Kumar S, Choi SW, Gu Y, Mudd M, Dupont N, Jiang S, Peters R, Farzam F, Jain A, Lidke KA, Adams CM, Johansen T, Deretic V. 2017. Cellular and molecular mechanism for secretory autophagy. Autophagy 13:1084–1085 http://dx.doi.org/10.1080/15548627.2017.1307486. [PubMed]
63. Smith EP, Miller CN, Child R, Cundiff JA, Celli J. 2016. Postreplication roles of the Brucella VirB type IV secretion system uncovered via conditional expression of the VirB11 ATPase. mBio 7:e01730-16. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAI-0006-2019
2019-03-08
2019-03-21

Abstract:

Bacteria of the genus colonize a wide variety of mammalian hosts, in which their infectious cycle and ability to cause disease predominantly rely on an intracellular lifestyle within phagocytes. Upon entry into host cells, organisms undergo a complex, multistage intracellular cycle in which they sequentially traffic through, and exploit functions of, the endocytic, secretory, and autophagic compartments via type IV secretion system (T4SS)-mediated delivery of bacterial effectors. These effectors modulate an array of host functions and machineries to first promote conversion of the initial endosome-like -containing vacuole (eBCV) into a replication-permissive organelle derived from the host endoplasmic reticulum (rBCV) and then to an autophagy-related vacuole (aBCV) that mediates bacterial egress. Here we detail and discuss our current knowledge of cellular and molecular events of the intracellular cycle. We discuss the importance of the endosomal stage in determining T4SS competency, the roles of autophagy in rBCV biogenesis and aBCV formation, and T4SS-driven mechanisms of modulation of host secretory traffic in rBCV biogenesis and bacterial egress.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model of the intracellular cycle in macrophages. Following phagocytic uptake by macrophages, spp. reside during the first 8 to 12 h postinfection within a membrane-bound vacuole that undergoes endosomal maturation via sequential interactions with early (EE) and late (LE) endosomes and lysosomes (LYS) to become an acidified eBCV. The host small GTPase Rab7 contributes to eBCV maturation, which provides physicochemical cues promoting expression of the VirB T4SS, which translocates effector proteins (red) that mediate eBCV interactions with the ER exit site and acquisition of ER and Golgi apparatus-derived membranes. These events lead to the biogenesis of replication permissive, ER-derived BCVs, called rBCVs. The host proteins Sar1, IRE1α, Yip1A, Atg9, and WIPI1 and the COG complex contribute to rBCV biogenesis. Bacteria then undergo extensive replication in rBCVs between 12 and 48 h postinfection, after which rBCVs are captured within autophagosome-like structures in a VirB T4SS-dependent manner to become aBCVs. aBCV formation requires the host autophagy proteins beclin1, ULK1, and Atg14. aBCVs harbor features of autolysosomes and are required for bacterial egress and new cycles of intracellular infections.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure and membrane composition of BCVs during the intracellular cycle. () Confocal fluorescence micrograph of HeLa cells expressing green fluorescent protein (GFP)-Rab7 and infected with DsRed-expressing strain 2308 for 6 h. The inset shows an eBCV with the typical accumulation of the late endosomal/lysosomal markers Rab7 and LAMP1. Bars, 10 and 2 μm. () Confocal fluorescence micrograph of a HeLa cell infected with DsRed-expressing strain 2308 for 24 h and stained for the ER marker calreticulin. The inset shows a cluster of calreticulin-positive rBCVs containing replicating bacteria and associated with the ER network. Bars, 10 and 1 μm. () Confocal fluorescence micrograph of a primary murine bone marrow-derived macrophage expressing the autophagy marker GFP-LC3 and infected with DsRed-expressing strain 2308 for 72 h. The inset shows a group of aBCVs with the typical accumulation of the late endosomal/lysosomal LAMP1 but not LC3. Bars, 10 and 2 μm. () Transmission electron micrographs of bone marrow-derived macrophages infected with strain 2308 for 72 h and showing the ultrastructures of rBCVs (left, single-membrane-bound vacuoles [inset a]), of forming aBCVs (inset b and arrows), and of completed double-membrane-bound aBCVs (right [insets c and d and arrows]). Bars, 500 and 200 nm. Reprinted from reference 17 with permission.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of VirB T4SS-dependent biogenesis of the rBCV. Bacteria in eBCVs induce expression of the VirB T4SS, which delivers effector proteins into the host cell. Among these, BspB traffics to Golgi membranes via the ER-to-Golgi intermediate compartment (ERGIC) and binds to the COG complex to promote redirection of Golgi apparatus-derived vesicular traffic to BCVs. RicA binds the small host secretory GTPase Rab2, which contributes to its recruitment on maturing eBCVs and role in rBCV biogenesis. Additionally, eBCV interaction with ERES is accompanied by the upregulation of COPII coat components, induction of IRE1α, and Yip1A-dependent formation of ER-derived vesicles, which are also thought to contribute to rBCV biogenesis. T4SS-dependent acquisition of ER- and Golgi apparatus-derived secretory membranes by BCVs is thought to mediate eBCV-to-rBCV conversion.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

T4SS effectors

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0006-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error