1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Dorian Obino1, Guillaume Duménil2
  • Editors: Pascale Cossart3, Craig R. Roy4, Philippe Sansonetti5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France; 2: Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France; 3: Institut Pasteur, Paris, France; 4: Yale University School of Medicine, New Haven, Connecticut; 5: Institut Pasteur, Paris, France
  • Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
  • Received 04 June 2018 Accepted 10 January 2019 Published 08 March 2019
  • Guillaume Duménil, [email protected]
image of The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/BAI-0010-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/2/BAI-0010-2019-2.gif
  • Abstract:

    A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.

  • Citation: Obino D, Duménil G. 2019. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiol Spectrum 7(2):BAI-0010-2019. doi:10.1128/microbiolspec.BAI-0010-2019.

References

1. Lerman A, Burnett JC Jr. 1992. Intact and altered endothelium in regulation of vasomotion. Circulation 86(Suppl) :III12–III19. [PubMed]
2. Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533 http://dx.doi.org/10.1371/journal.pbio.1002533. [PubMed]
3. Pugsley MK, Tabrizchi R. 2000. The vascular system. An overview of structure and function. J Pharmacol Toxicol Methods 44:333–340 http://dx.doi.org/10.1016/S1056-8719(00)00125-8.
4. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. 2016. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev 68:476–532 http://dx.doi.org/10.1124/pr.115.010652. [PubMed]
5. Galili O, Herrmann J, Woodrum J, Sattler KJ, Lerman LO, Lerman A. 2004. Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg 40:529–535 http://dx.doi.org/10.1016/j.jvs.2004.06.032. [PubMed]
6. Sarin H. 2010. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14 http://dx.doi.org/10.1186/2040-2384-2-14. [PubMed]
7. Bilzer M, Roggel F, Gerbes AL. 2006. Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186 http://dx.doi.org/10.1111/j.1478-3231.2006.01342.x. [PubMed]
8. Harris IS, Black BL. 2010. Development of the endocardium. Pediatr Cardiol 31:391–399 http://dx.doi.org/10.1007/s00246-010-9642-8. [PubMed]
9. Carmeliet P. 2003. Angiogenesis in health and disease. Nat Med 9:653–660 http://dx.doi.org/10.1038/nm0603-653. [PubMed]
10. Zecchin A, Kalucka J, Dubois C, Carmeliet P. 2017. How endothelial cells adapt their metabolism to form vessels in tumors. Front Immunol 8:1750 http://dx.doi.org/10.3389/fimmu.2017.01750. [PubMed]
11. Risau W, Flamme I. 1995. Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91 http://dx.doi.org/10.1146/annurev.cb.11.110195.000445. [PubMed]
12. Risau W. 1997. Mechanisms of angiogenesis. Nature 386:671–674 http://dx.doi.org/10.1038/386671a0. [PubMed]
13. Diaz-Santana A, Shan M, Stroock AD. 2015. Endothelial cell dynamics during anastomosis in vitro. Integr Biol 7:454–466 http://dx.doi.org/10.1039/C5IB00052A. [PubMed]
14. Komarova Y, Malik AB. 2010. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493 http://dx.doi.org/10.1146/annurev-physiol-021909-135833. [PubMed]
15. Hawkins BT, Davis TP. 2005. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185 http://dx.doi.org/10.1124/pr.57.2.4. [PubMed]
16. Daneman R, Prat A. 2015. The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412 http://dx.doi.org/10.1101/cshperspect.a020412. [PubMed]
17. Rudini N, Dejana E. 2008. Adherens junctions. Curr Biol 18:R1080–R1082 http://dx.doi.org/10.1016/j.cub.2008.09.018. [PubMed]
18. Privratsky JR, Newman PJ. 2014. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355:607–619 http://dx.doi.org/10.1007/s00441-013-1779-3. [PubMed]
19. Hartsock A, Nelson WJ. 2008. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660–669 http://dx.doi.org/10.1016/j.bbamem.2007.07.012. [PubMed]
20. Bates DO, Harper SJ. 2002. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 39:225–237 http://dx.doi.org/10.1016/S1537-1891(03)00011-9.
21. Bates DO. 2010. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271 http://dx.doi.org/10.1093/cvr/cvq105. [PubMed]
22. Wu HM, Huang Q, Yuan Y, Granger HJ. 1996. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol 271:H2735–H2739. [PubMed]
23. Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K. 2008. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost 6:1453–1460 http://dx.doi.org/10.1111/j.1538-7836.2008.03087.x. [PubMed]
24. Popoff MR, Geny B. 2009. Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta 1788:797–812 http://dx.doi.org/10.1016/j.bbamem.2009.01.011. [PubMed]
25. Round H, Kirkpatrick HJ, Hails CG. 1936. Further investigations on bacteriological infections of the mouth (section of odontology). Proc R Soc Med 29:1552–1556. [PubMed]
26. Cobe HM. 1954. Transitory bacteremia. Oral Surg Oral Med Oral Pathol 7:609–615 http://dx.doi.org/10.1016/0030-4220(54)90071-7.
27. Snowden J, Bhimji SS. 2018. Rickettsial Infection. StatPearls, Treasure Island, FL.
28. Stins MF, Prasadarao NV, Ibric L, Wass CA, Luckett P, Kim KS. 1994. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol 145:1228–1236. [PubMed]
29. Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M. 1998. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66:5260–5267. [PubMed]
30. Sheen TR, Ebrahimi CM, Hiemstra IH, Barlow SB, Peschel A, Doran KS. 2010. Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med (Berl) 88:633–639 http://dx.doi.org/10.1007/s00109-010-0630-5. [PubMed]
31. Stins MF, Badger J, Sik Kim K. 2001. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28 http://dx.doi.org/10.1006/mpat.2000.0406. [PubMed]
32. Jain SK, Paul-Satyaseela M, Lamichhane G, Kim KS, Bishai WR. 2006. Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J Infect Dis 193:1287–1295 http://dx.doi.org/10.1086/502631. [PubMed]
33. Nikulin J, Panzner U, Frosch M, Schubert-Unkmeir A. 2006. Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int J Med Microbiol 296:553–558 http://dx.doi.org/10.1016/j.ijmm.2006.06.006. [PubMed]
34. Prasadarao NV, Wass CA, Stins MF, Shimada H, Kim KS. 1999. Outer membrane protein A-promoted actin condensation of brain microvascular endothelial cells is required for Escherichia coli invasion. Infect Immun 67:5775–5783. [PubMed]
35. Das A, Asatryan L, Reddy MA, Wass CA, Stins MF, Joshi S, Bonventre JV, Kim KS. 2001. Differential role of cytosolic phospholipase A2 in the invasion of brain microvascular endothelial cells by Escherichia coli and Listeria monocytogenes. J Infect Dis 184:732–737 http://dx.doi.org/10.1086/322986. [PubMed]
36. Dumenil G. 2011. Revisiting the extracellular lifestyle. Cell Microbiol 13:1114–1121 http://dx.doi.org/10.1111/j.1462-5822.2011.01613.x. [PubMed]
37. Olano JP. 2005. Rickettsial infections. Ann N Y Acad Sci 1063:187–196 http://dx.doi.org/10.1196/annals.1355.031. [PubMed]
38. Walker DH, Ismail N. 2008. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 6:375–386 http://dx.doi.org/10.1038/nrmicro1866. [PubMed]
39. Li H, Walker DH. 1998. rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. Microb Pathog 24:289–298 http://dx.doi.org/10.1006/mpat.1997.0197. [PubMed]
40. Hillman RD Jr, Baktash YM, Martinez JJ. 2013. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell Microbiol 15:727–741 http://dx.doi.org/10.1111/cmi.12068. [PubMed]
41. Walker TS, Winkler HH. 1978. Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazeki [sic]. Infect Immun 22:200–208. [PubMed]
42. Walker TS. 1984. Rickettsial interactions with human endothelial cells in vitro: adherence and entry. Infect Immun 44:205–210. [PubMed]
43. Chan YG, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ. 2009. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 11:629–644 http://dx.doi.org/10.1111/j.1462-5822.2008.01279.x. [PubMed]
44. Martinez JJ, Cossart P. 2004. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci 117:5097–5106 http://dx.doi.org/10.1242/jcs.01382. [PubMed]
45. Radulovic S, Troyer JM, Beier MS, Lau AO, Azad AF. 1999. Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect Immun 67:6104–6108. [PubMed]
46. Renesto P, Dehoux P, Gouin E, Touqui L, Cossart P, Raoult D. 2003. Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J Infect Dis 188:1276–1283 http://dx.doi.org/10.1086/379080. [PubMed]
47. Whitworth T, Popov VL, Yu XJ, Walker DH, Bouyer DH. 2005. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect Immun 73:6668–6673 http://dx.doi.org/10.1128/IAI.73.10.6668-6673.2005. [PubMed]
48. Walker DH, Valbuena GA, Olano JP. 2003. Pathogenic mechanisms of diseases caused by Rickettsia. Ann N Y Acad Sci 990:1–11 http://dx.doi.org/10.1111/j.1749-6632.2003.tb07331.x. [PubMed]
49. Heinzen RA. 2003. Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. Ann N Y Acad Sci 990:535–547 http://dx.doi.org/10.1111/j.1749-6632.2003.tb07424.x. [PubMed]
50. Jeng RL, Goley ED, D’Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD. 2004. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 6:761–769 http://dx.doi.org/10.1111/j.1462-5822.2004.00402.x. [PubMed]
51. Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, Li R, Cossart P. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457–461 http://dx.doi.org/10.1038/nature02318. [PubMed]
52. Gouin E, Gantelet H, Egile C, Lasa I, Ohayon H, Villiers V, Gounon P, Sansonetti PJ, Cossart P. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112:1697–1708. [PubMed]
53. Harlander RS, Way M, Ren Q, Howe D, Grieshaber SS, Heinzen RA. 2003. Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect Immun 71:1551–1556 http://dx.doi.org/10.1128/IAI.71.3.1551-1556.2003. [PubMed]
54. Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. 2010. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 12:1057–1063 http://dx.doi.org/10.1038/ncb2109. [PubMed]
55. Kleba B, Clark TR, Lutter EI, Ellison DW, Hackstadt T. 2010. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 78:2240–2247 http://dx.doi.org/10.1128/IAI.00100-10. [PubMed]
56. Sahni SK, Narra HP, Sahni A, Walker DH. 2013. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 8:1265–1288 http://dx.doi.org/10.2217/fmb.13.102. [PubMed]
57. Sporn LA, Sahni SK, Lerner NB, Marder VJ, Silverman DJ, Turpin LC, Schwab AL. 1997. Rickettsia rickettsii infection of cultured human endothelial cells induces NF-κB activation. Infect Immun 65:2786–2791. [PubMed]
58. Sahni SK, Van Antwerp DJ, Eremeeva ME, Silverman DJ, Marder VJ, Sporn LA. 1998. Proteasome-independent activation of nuclear factor κB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect Immun 66:1827–1833. [PubMed]
59. Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA. 1998. NF-κB-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. Proc Natl Acad Sci USA 95:4646–4651 http://dx.doi.org/10.1073/pnas.95.8.4646. [PubMed]
60. Walker DH. 2007. Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 45(Suppl 1) :S39–S44 http://dx.doi.org/10.1086/518145. [PubMed]
61. Walker DH, Olano JP, Feng HM. 2001. Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect Immun 69:1841–1846 http://dx.doi.org/10.1128/IAI.69.3.1841-1846.2001. [PubMed]
62. Valbuena G, Walker DH. 2005. Changes in the adherens junctions of human endothelial cells infected with spotted fever group rickettsiae. Virchows Arch 446:379–382 http://dx.doi.org/10.1007/s00428-004-1165-3. [PubMed]
63. Santucci LA, Gutierrez PL, Silverman DJ. 1992. Rickettsia rickettsii induces superoxide radical and superoxide dismutase in human endothelial cells. Infect Immun 60:5113–5118. [PubMed]
64. Eremeeva ME, Silverman DJ. 1998. Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infect Immun 66:2290–2299. [PubMed]
65. Schmaier AH, Srikanth S, Elghetany MT, Normolle D, Gokhale S, Feng HM, Walker DH. 2001. Hemostatic/fibrinolytic protein changes in C3H/HeN mice infected with Rickettsia conorii—a model for Rocky Mountain spotted fever. Thromb Haemost 86:871–879 http://dx.doi.org/10.1055/s-0037-1616145. [PubMed]
66. Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P. 2016. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 131:185–209 http://dx.doi.org/10.1007/s00401-015-1531-z. [PubMed]
67. Brandtzaeg P, van Deuren M. 2012. Classification and pathogenesis of meningococcal infections. Methods Mol Biol 799:21–35 http://dx.doi.org/10.1007/978-1-61779-346-2_2. [PubMed]
68. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A, Emerging Infections Programs Network. 2011. Bacterial meningitis in the United States, 1998-2007. N Engl J Med 364:2016–2025 http://dx.doi.org/10.1056/NEJMoa1005384. [PubMed]
69. Békondi C, Bernede C, Passone N, Minssart P, Kamalo C, Mbolidi D, Germani Y. 2006. Primary and opportunistic pathogens associated with meningitis in adults in Bangui, Central African Republic, in relation to human immunodeficiency virus serostatus. Int J Infect Dis 10:387–395 http://dx.doi.org/10.1016/j.ijid.2005.07.004. [PubMed]
70. Fernández Guerrero ML, Ramos JM, Núñez A, Cuenca M, de Górgolas M. 1997. Focal infections due to non-typhi Salmonella in patients with AIDS: report of 10 cases and review. Clin Infect Dis 25:690–697 http://dx.doi.org/10.1086/513747. [PubMed]
71. van Sorge NM, Doran KS. 2012. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 7:383–394 http://dx.doi.org/10.2217/fmb.12.1. [PubMed]
72. Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G. 2013. Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model. PLoS Pathog 9:e1003139 http://dx.doi.org/10.1371/journal.ppat.1003139. [PubMed]
73. Bonazzi D, Lo Schiavo V, Machata S, Djafer-Cherif I, Nivoit P, Manriquez V, Tanimoto H, Husson J, Henry N, Chaté H, Voituriez R, Duménil G. 2018. Intermittent pili-mediated forces fluidize Neisseria meningitidis aggregates promoting vascular colonization. Cell 174:143–155.e16 http://dx.doi.org/10.1016/j.cell.2018.04.010. [PubMed]
74. Mairey E, Genovesio A, Donnadieu E, Bernard C, Jaubert F, Pinard E, Seylaz J, Olivo-Marin JC, Nassif X, Duménil G. 2006. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood-brain barrier. J Exp Med 203:1939–1950 http://dx.doi.org/10.1084/jem.20060482. [PubMed]
75. Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, Laszik Z, Esmon CT, Heyderman RS. 2001. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 345:408–416 http://dx.doi.org/10.1056/NEJM200108093450603. [PubMed]
76. Imhaus AF, Duménil G. 2014. The number of Neisseria meningitidis type IV pili determines host cell interaction. EMBO J 33:1767–1783 http://dx.doi.org/10.15252/embj.201488031. [PubMed]
77. Bernard SC, Simpson N, Join-Lambert O, Federici C, Laran-Chich MP, Maïssa N, Bouzinba-Ségard H, Morand PC, Chretien F, Taouji S, Chevet E, Janel S, Lafont F, Coureuil M, Segura A, Niedergang F, Marullo S, Couraud PO, Nassif X, Bourdoulous S. 2014. Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 20:725–731 http://dx.doi.org/10.1038/nm.3563. [PubMed]
78. Maïssa N, Covarelli V, Janel S, Durel B, Simpson N, Bernard SC, Pardo-Lopez L, Bouzinba-Ségard H, Faure C, Scott MGH, Coureuil M, Morand PC, Lafont F, Nassif X, Marullo S, Bourdoulous S. 2017. Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β 2-adrenoceptor clusters assembled by alpha-actinin-4. Nat Commun 8:15764 http://dx.doi.org/10.1038/ncomms15764. [PubMed]
79. Eugène E, Hoffmann I, Pujol C, Couraud PO, Bourdoulous S, Nassif X. 2002. Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells. J Cell Sci 115:1231–1241. [PubMed]
80. Soyer M, Charles-Orszag A, Lagache T, Machata S, Imhaus AF, Dumont A, Millien C, Olivo-Marin JC, Duménil G. 2014. Early sequence of events triggered by the interaction of Neisseria meningitidis with endothelial cells. Cell Microbiol 16:878–895 http://dx.doi.org/10.1111/cmi.12248. [PubMed]
81. Mikaty G, Soyer M, Mairey E, Henry N, Dyer D, Forest KT, Morand P, Guadagnini S, Prévost MC, Nassif X, Duménil G. 2009. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 5:e1000314 http://dx.doi.org/10.1371/journal.ppat.1000314. [PubMed]
82. Merz AJ, So M. 1997. Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65:4341–4349. [PubMed]
83. Charles-Orszag A, Tsai FC, Bonazzi D, Manriquez V, Sachse M, Mallet A, Salles A, Melican K, Staneva R, Bertin A, Millien C, Goussard S, Lafaye P, Shorte S, Piel M, Krijnse-Locker J, Brochard-Wyart F, Bassereau P, Dumenil G. 2018. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nat Commun 9:4450. [PubMed]
84. Hoen B, Duval X. 2013. Infective endocarditis. N Engl J Med 369:785.
85. Cahill TJ, Prendergast BD. 2016. Infective endocarditis. Lancet 387:882–893 http://dx.doi.org/10.1016/S0140-6736(15)00067-7.
86. Vilcant V, Hai O. 2018. Endocarditis, Bacterial. StatPearls, Treasure Island, FL.
87. McDonald JR, Olaison L, Anderson DJ, Hoen B, Miro JM, Eykyn S, Abrutyn E, Fowler VG Jr, Habib G, Selton-Suty C, Pappas PA, Cabell CH, Corey GR, Marco F, Sexton DJ. 2005. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med 118:759–766 http://dx.doi.org/10.1016/j.amjmed.2005.02.020. [PubMed]
88. Yew HS, Murdoch DR. 2012. Global trends in infective endocarditis epidemiology. Curr Infect Dis Rep 14:367–372 http://dx.doi.org/10.1007/s11908-012-0265-5. [PubMed]
89. Widmer E, Que YA, Entenza JM, Moreillon P. 2006. New concepts in the pathophysiology of infective endocarditis. Curr Infect Dis Rep 8:271–279 http://dx.doi.org/10.1007/s11908-006-0071-z. [PubMed]
90. Hemler ME, Elices MJ, Parker C, Takada Y. 1990. Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol Rev 114:45–65 http://dx.doi.org/10.1111/j.1600-065X.1990.tb00561.x. [PubMed]
91. Foster TJ, Höök M. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488 http://dx.doi.org/10.1016/S0966-842X(98)01400-0.
92. Chavakis T, Wiechmann K, Preissner KT, Herrmann M. 2005. Staphylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb Haemost 94:278–285.
93. Moreillon P, Que YA, Bayer AS. 2002. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect Dis Clin North Am 16:297–318 http://dx.doi.org/10.1016/S0891-5520(01)00009-5.
94. Werdan K, Dietz S, Löffler B, Niemann S, Bushnaq H, Silber RE, Peters G, Müller-Werdan U. 2014. Mechanisms of infective endocarditis: pathogen-host interaction and risk states. Nat Rev Cardiol 11:35–50 http://dx.doi.org/10.1038/nrcardio.2013.174. [PubMed]
95. Haslinger-Löffler B, Kahl BC, Grundmeier M, Strangfeld K, Wagner B, Fischer U, Cheung AL, Peters G, Schulze-Osthoff K, Sinha B. 2005. Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cell Microbiol 7:1087–1097 http://dx.doi.org/10.1111/j.1462-5822.2005.00533.x. [PubMed]
96. Brouqui P, Raoult D. 2001. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev 14:177–207 http://dx.doi.org/10.1128/CMR.14.1.177-207.2001. [PubMed]
97. Fournier PE, Lelievre H, Eykyn SJ, Mainardi JL, Marrie TJ, Bruneel F, Roure C, Nash J, Clave D, James E, Benoit-Lemercier C, Deforges L, Tissot-Dupont H, Raoult D. 2001. Epidemiologic and clinical characteristics of Bartonella quintana and Bartonella henselae endocarditis: a study of 48 patients. Medicine (Baltimore) 80:245–251 http://dx.doi.org/10.1097/00005792-200107000-00003.
98. Raoult D, Fournier PE, Vandenesch F, Mainardi JL, Eykyn SJ, Nash J, James E, Benoit-Lemercier C, Marrie TJ. 2003. Outcome and treatment of Bartonella endocarditis. Arch Intern Med 163:226–230 http://dx.doi.org/10.1001/archinte.163.2.226. [PubMed]
99. Raoult D, Fournier PE, Drancourt M, Marrie TJ, Etienne J, Cosserat J, Cacoub P, Poinsignon Y, Leclercq P, Sefton AM. 1996. Diagnosis of 22 new cases of Bartonella endocarditis. Ann Intern Med 125:646–652 http://dx.doi.org/10.7326/0003-4819-125-8-199610150-00004. [PubMed]
100. Dehio C. 2004. Molecular and cellular basis of bartonella pathogenesis. Annu Rev Microbiol 58:365–390 http://dx.doi.org/10.1146/annurev.micro.58.030603.123700. [PubMed]
101. Breitschwerdt EB, Kordick DL. 2000. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev 13:428–438 http://dx.doi.org/10.1128/CMR.13.3.428. [PubMed]
102. Chomel BB. 2000. Cat-scratch disease. Rev Sci Tech 19:136–150 http://dx.doi.org/10.20506/rst.19.1.1204. [PubMed]
103. Koehler JE, Tappero JW. 1993. Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus. Clin Infect Dis 17:612–624 http://dx.doi.org/10.1093/clinids/17.4.612. [PubMed]
104. Regnery RL, Childs JE, Koehler JE. 1995. Infections associated with Bartonella species in persons infected with human immunodeficiency virus. Clin Infect Dis 21(Suppl 1) :S94–S98 http://dx.doi.org/10.1093/clinids/21.Supplement_1.S94. [PubMed]
105. Kostianovsky M, Greco MA. 1994. Angiogenic process in bacillary angiomatosis. Ultrastruct Pathol 18:349–355 http://dx.doi.org/10.3109/01913129409023203. [PubMed]
106. Manders SM. 1996. Bacillary angiomatosis. Clin Dermatol 14:295–299 http://dx.doi.org/10.1016/0738-081X(96)00015-6.
107. Dehio C, Meyer M, Berger J, Schwarz H, Lanz C. 1997. Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 110:2141–2154. [PubMed]
108. Verma A, Davis GE, Ihler GM. 2000. Infection of human endothelial cells with Bartonella bacilliformis is dependent on Rho and results in activation of Rho. Infect Immun 68:5960–5969 http://dx.doi.org/10.1128/IAI.68.10.5960-5969.2000. [PubMed]
109. Dramsi S, Cossart P. 1998. Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14:137–166 http://dx.doi.org/10.1146/annurev.cellbio.14.1.137. [PubMed]
110. Kirby JE, Nekorchuk DM. 2002. Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci USA 99:4656–4661 http://dx.doi.org/10.1073/pnas.072292699. [PubMed]
111. Schulein R, Dehio C. 2002. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol Microbiol 46:1053–1067 http://dx.doi.org/10.1046/j.1365-2958.2002.03208.x. [PubMed]
112. Seubert A, Hiestand R, de la Cruz F, Dehio C. 2003. A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 49:1253–1266 http://dx.doi.org/10.1046/j.1365-2958.2003.03650.x. [PubMed]
113. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M. 2000. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFα and IL-1α. Int J Cancer 85:182–188 http://dx.doi.org/10.1002/(SICI)1097-0215(20000115)85:2%3C182::AID-IJC6%3E3.0.CO;2-M.
114. Musso T, Badolato R, Ravarino D, Stornello S, Panzanelli P, Merlino C, Savoia D, Cavallo R, Ponzi AN, Zucca M. 2001. Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response. Infect Immun 69:5974–5980 http://dx.doi.org/10.1128/IAI.69.10.5974-5980.2001. [PubMed]
115. Kempf VA, Volkmann B, Schaller M, Sander CA, Alitalo K, Riess T, Autenrieth IB. 2001. Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 3:623–632 http://dx.doi.org/10.1046/j.1462-5822.2001.00144.x. [PubMed]
116. Resto-Ruiz SI, Schmiederer M, Sweger D, Newton C, Klein TW, Friedman H, Anderson BE. 2002. Induction of a potential paracrine angiogenic loop between human THP-1 macrophages and human microvascular endothelial cells during Bartonella henselae infection. Infect Immun 70:4564–4570 http://dx.doi.org/10.1128/IAI.70.8.4564-4570.2002. [PubMed]
117. Minasyan H. 2016. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology 23:61–66 http://dx.doi.org/10.1016/j.pathophys.2016.03.001. [PubMed]
118. Khakpour S, Wilhelmsen K, Hellman J. 2015. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 21:827–846 http://dx.doi.org/10.1177/1753425915606525. [PubMed]
119. Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM. 1998. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem 273:4282–4287 http://dx.doi.org/10.1074/jbc.273.7.4282. [PubMed]
120. Murdoch C, Monk PN, Finn A. 1999. Cxc chemokine receptor expression on human endothelial cells. Cytokine 11:704–712 http://dx.doi.org/10.1006/cyto.1998.0465. [PubMed]
121. Mitchell JA, Ryffel B, Quesniaux VF, Cartwright N, Paul-Clark M. 2007. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans 35:1449–1452 http://dx.doi.org/10.1042/BST0351449. [PubMed]
122. Opitz B, Eitel J, Meixenberger K, Suttorp N. 2009. Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost 102:1103–1109 http://dx.doi.org/10.1160/TH09-05-0323. [PubMed]
123. Marceau F, Grassi J, Frobert Y, Bergeron C, Poubelle PE. 1992. Effects of experimental conditions on the production of interleukin-1 alpha and -1 beta by human endothelial cells cultured in vitro. Int J Immunopharmacol 14:525–534 http://dx.doi.org/10.1016/0192-0561(92)90113-Y.
124. Opitz B, Püschel A, Beermann W, Hocke AC, Förster S, Schmeck B, van Laak V, Chakraborty T, Suttorp N, Hippenstiel S. 2006. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176:484–490 http://dx.doi.org/10.4049/jimmunol.176.1.484. [PubMed]
125. Anand AR, Cucchiarini M, Terwilliger EF, Ganju RK. 2008. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. J Immunol 180:5636–5644 http://dx.doi.org/10.4049/jimmunol.180.8.5636. [PubMed]
126. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. 2001. Bacterial lipopolysaccharide and IFN-γ induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J Immunol 166:2018–2024 http://dx.doi.org/10.4049/jimmunol.166.3.2018. [PubMed]
127. Danese S, Dejana E, Fiocchi C. 2007. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022 http://dx.doi.org/10.4049/jimmunol.178.10.6017.
128. Neefjes J, Jongsma ML, Paul P, Bakke O. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836 http://dx.doi.org/10.1038/nri3084. [PubMed]
129. Rose ML, Coles MI, Griffin RJ, Pomerance A, Yacoub MH. 1986. Expression of class I and class II major histocompatibility antigens in normal and transplanted human heart. Transplantation 41:776–780 http://dx.doi.org/10.1097/00007890-198606000-00021. [PubMed]
130. Leeuwenberg JF, Van Damme J, Meager T, Jeunhomme TM, Buurman WA. 1988. Effects of tumor necrosis factor on the interferon-gamma-induced major histocompatibility complex class II antigen expression by human endothelial cells. Eur J Immunol 18:1469–1472 http://dx.doi.org/10.1002/eji.1830180925. [PubMed]
131. Mai J, Virtue A, Shen J, Wang H, Yang XF. 2013. An evolving new paradigm: endothelial cells--conditional innate immune cells. J Hematol Oncol 6:61 http://dx.doi.org/10.1186/1756-8722-6-61. [PubMed]
132. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. 2017. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420 http://dx.doi.org/10.1038/nri.2017.36. [PubMed]
133. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. 2014. Host innate immune responses to sepsis. Virulence 5:36–44 http://dx.doi.org/10.4161/viru.25436. [PubMed]
134. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, SCCM/ESICM/ACCP/ATS/SIS. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256. [PubMed]
135. Rittirsch D, Flierl MA, Ward PA. 2008. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8:776–787 http://dx.doi.org/10.1038/nri2402. [PubMed]
136. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. 2016. Sepsis and septic shock. Nat Rev Dis Primers 2:16045 http://dx.doi.org/10.1038/nrdp.2016.45. [PubMed]
137. Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, Cobb JP, Coopersmith C, Karl IE. 2002. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 168:2493–2500 http://dx.doi.org/10.4049/jimmunol.168.5.2493. [PubMed]
138. Hotchkiss RS, Monneret G, Payen D. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874 http://dx.doi.org/10.1038/nri3552. [PubMed]
139. Scumpia PO, Delano MJ, Kelly-Scumpia KM, Weinstein JS, Wynn JL, Winfield RD, Xia C, Chung CS, Ayala A, Atkinson MA, Reeves WH, Clare-Salzler MJ, Moldawer LL. 2007. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood 110:3673–3681 http://dx.doi.org/10.1182/blood-2007-04-087171. [PubMed]
140. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605 http://dx.doi.org/10.1001/jama.2011.1829. [PubMed]
141. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, Swan R, Kherouf H, Monneret G, Chung CS, Ayala A. 2009. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci USA 106:6303–6308 http://dx.doi.org/10.1073/pnas.0809422106. [PubMed]
142. Levi M, Ten Cate H. 1999. Disseminated intravascular coagulation. N Engl J Med 341:586–592 http://dx.doi.org/10.1056/NEJM199908193410807. [PubMed]
143. Davis RP, Miller-Dorey S, Jenne CN. 2016. Platelets and coagulation in infection. Clin Transl Immunology 5:e89 http://dx.doi.org/10.1038/cti.2016.39. [PubMed]
144. Pernerstorfer T, Stohlawetz P, Hollenstein U, Dzirlo L, Eichler HG, Kapiotis S, Jilma B, Speiser W. 1999. Endotoxin-induced activation of the coagulation cascade in humans: effect of acetylsalicylic acid and acetaminophen. Arterioscler Thromb Vasc Biol 19:2517–2523 http://dx.doi.org/10.1161/01.ATV.19.10.2517. [PubMed]
145. Østerud B, Bjørklid E. 2001. The tissue factor pathway in disseminated intravascular coagulation. Semin Thromb Hemost 27:605–618 http://dx.doi.org/10.1055/s-2001-18866. [PubMed]
146. Abraham E. 2000. Coagulation abnormalities in acute lung injury and sepsis. Am J Respir Cell Mol Biol 22:401–404 http://dx.doi.org/10.1165/ajrcmb.22.4.f184. [PubMed]
147. Ince C. 2005. The microcirculation is the motor of sepsis. Crit Care 9(Suppl 4) :S13–S19 http://dx.doi.org/10.1186/cc3753. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAI-0010-2019
2019-03-08
2019-03-23

Abstract:

A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the two main types of intercellular junctions within the endothelium. Adherens junctions (AJ) are made by the homophilic interaction of VE-cadherin and PECAM (also known as CD31). In contrast, claudins, occludin, and proteins from the junctional adhesion molecule (JAM) family are involved in establishing tight junctions. Connection with the actin cytoskeleton is ensured by proteins of the catenin family (alpha-, beta-, and p120-catenin) in the case of adherens junctions and by proteins from the zonula occludens family (ZO-1, -2, and -3) in the case of tight junctions.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Infection of the endothelium by . Following bacterial inoculation into the lumen of blood vessels, adheres at the surface of the endothelium through the surface expression of OmpA and OmpB. Binding of OmpA and -B to cell surface integrins induces the phagocytosis of bacteria and the remodeling of the cellular actin cytoskeleton. Then, hemolysin C- and/or phospholipase D-expressing bacteria escape phagosomal vesicles, proliferate intracellularly, and utilize cellular components, such as actin monomers and nutrients, to assemble actin comet tails, which support bacterial movement and cell-to-cell spreading. Both actin cytoskeleton remodeling and bacterial propagation participate in damaging infected vessels, including the destabilization of cellular junctions responsible for the increase in vessel permeability.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Vascular colonization by . Once in the bloodstream, adheres to the endothelium thanks to the surface expression of Tfp. While proliferating, and owing to their autoaggregative property, bacteria form a tight microcolony at the surface of the endothelium, which ultimately leads to the congestion of the colonized vessel. Bacterial adhesion at the surface of endothelial cells induces a drastic remodeling of the host cell plasma membrane that forms membrane protrusions that interdigitate within the bacterial aggregate. In addition, pilus interaction with endothelial cell surface receptors, such as CD147 or β2-adrenergic receptor (β2AR), induces the reorganization of the actin cytoskeleton and intercellular junctions by recruiting their components underneath the microcolony. Together, these events are proposed to destabilize intercellular junctions, resulting in an increase in vessel permeability. , ; RBC, red blood cell; Cad, cadherin.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The stepwise process leading to endocarditis. The appearance of sterile lesions (most often of unknown origin) on the heart valvular endothelium leads to the exposure of the underlying extracellular matrix (ECM). This in turn triggers the formation of a thrombus—characterized by the local deposition of platelets and fibrin at the surface of the damaged endothelium—that favors bacterial adhesion. While bacteria proliferate and spread, the valvular endothelium becomes more and more damaged, eventually leading to the failure of the valve and the need for its surgical replacement.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

-induced angioproliferation. Interactions of with the endothelium can occur at the single-bacterium level through bacterial expression of the adhesin A (BadA) protein. This triggers the phagocytosis of the cell surface-bound bacteria and results in their perinuclear accumulation within phagosomes. Similarly to , also forms aggregates that are internalized through a slower process within large vacuoles, referred to as invasomes. In both cases, the VirB-VirD4 type IV secretion system-dependent cytoplasmic release of effector proteins (Beps) by intravesicular bacteria promotes the proliferation and activation of the infected endothelial cells. This results in the secretion by the endothelium of proinflammatory (e.g., IL-8) and proangiogenic (e.g., VEGF) factors. As a consequence, cells from the innate immunity system, including neutrophils and macrophages, are locally recruited to fight the infection. Activated macrophages locally secrete VEGF, thus reinforcing the proangiogenic microenvironment. Combined with the bacterium-mediated endothelial cell proliferation, this particular environment promotes angiogenesis that ultimately leads to the local accumulation of new blood capillaries and the formation of bacillary angiomatosis lesions. RBC, red blood cell.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0010-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error