1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Debra E. Bessen1, Pierre R. Smeesters2, Bernard W. Beall3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Julian I. Rood8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595; 2: Department of Pediatrics, Queen Fabiola Children’s University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium; 3: National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Australian Bacterial Pathogen Program, Department of Microbiology, Monash University, Melbourne, Australia
  • Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
  • Received 01 April 2018 Accepted 13 April 2018 Published 06 September 2018
  • Debra E. Bessen, [email protected]
image of Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0009-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0009-2018-2.gif
  • Abstract:

    The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels—short, intermediate, and long term—sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.

  • Citation: Bessen D, Smeesters P, Beall B. 2018. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectrum 6(5):CPP3-0009-2018. doi:10.1128/microbiolspec.CPP3-0009-2018.

References

1. García A, Paul K, Beall B, McClure H. 2006. Toxic shock due to Streptococcus pyogenes in a rhesus monkey (Macaca mulatta). J Am Assoc Lab Anim Sci 45:79–82. [PubMed]
2. Hook EW, Wagner RR, Lancefield RC. 1960. An epizootic in Swiss mice caused by a group A Streptococcus, newly designated type 50. Am J Hyg 72:111–119. [PubMed]
3. Hysmith ND, Kaplan EL, Cleary PP, Johnson DR, Penfound TA, Dale JB. 2017. Prospective longitudinal analysis of immune responses in pediatric subjects after pharyngeal acquisition of group A streptococci. J Pediatric Infect Dis Soc 6:187–196 http://dx.doi.org/10.1093/jpids/piw070. [PubMed]
4. Kaplan EL. 1980. The group A streptococcal upper respiratory tract carrier state: an enigma. J Pediatr 97:337–345 http://dx.doi.org/10.1016/S0022-3476(80)80178-8.
5. Cleary PP, McLandsborough L, Ikeda L, Cue D, Krawczak J, Lam H. 1998. High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol Microbiol 28:157–167 http://dx.doi.org/10.1046/j.1365-2958.1998.00786.x. [PubMed]
6. Fiedler T, Köller T, Kreikemeyer B. 2015. Streptococcus pyogenes biofilms: formation, biology, and clinical relevance. Front Cell Infect Microbiol 5:15 http://dx.doi.org/10.3389/fcimb.2015.00015. [PubMed]
7. Ferrieri P, Dajani AS, Wannamaker LW, Chapman SS. 1972. Natural history of impetigo. I. Site sequence of acquisition and familial patterns of spread of cutaneous streptococci. J Clin Invest 51:2851–2862 http://dx.doi.org/10.1172/JCI107108. [PubMed]
8. Anthony BF, Kaplan EL, Wannamaker LW, Chapman SS. 1976. The dynamics of streptococcal infections in a defined population of children: serotypes associated with skin and respiratory infections. Am J Epidemiol 104:652–666 http://dx.doi.org/10.1093/oxfordjournals.aje.a112344. [PubMed]
9. Leyden JJ, Stewart R, Kligman AM. 1980. Experimental infections with group A streptococci in humans. J Invest Dermatol 75:196–201 http://dx.doi.org/10.1111/1523-1747.ep12522655. [PubMed]
10. Martin DR, Sriprakash KS. 1996. Epidemiology of group A streptococcal disease in Australia and New Zealand. Rec Adv Microbiol 4:1–40.
11. Potter EV, Svartman M, Mohammed I, Cox R, Poon-King T, Earle DP. 1978. Tropical acute rheumatic fever and associated streptococcal infections compared with concurrent acute glomerulonephritis. J Pediatr 92:325–333 http://dx.doi.org/10.1016/S0022-3476(78)80036-5.
12. Swe PM, Christian LD, Lu HC, Sriprakash KS, Fischer K. 2017. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes: an in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Negl Trop Dis 11:e0005437 http://dx.doi.org/10.1371/journal.pntd.0005437. [PubMed]
13. Bowen AC, Tong SY, Chatfield MD, Carapetis JR. 2014. The microbiology of impetigo in indigenous children: associations between Streptococcus pyogenes, Staphylococcus aureus, scabies, and nasal carriage. BMC Infect Dis 14:727 http://dx.doi.org/10.1186/s12879-014-0727-5.
14. Dajani AS, Ferrieri P, Wannamaker LW. 1972. Natural history of impetigo. II. Etiologic agents and bacterial interactions. J Clin Invest 51:2863–2871 http://dx.doi.org/10.1172/JCI107109. [PubMed]
15. Carapetis JR, Steer AC, Mulholland EK, Weber M. 2005. The global burden of group A streptococcal diseases. Lancet Infect Dis 5:685–694 http://dx.doi.org/10.1016/S1473-3099(05)70267-X.
16. Bowen AC, Mahé A, Hay RJ, Andrews RM, Steer AC, Tong SY, Carapetis JR. 2015. The global epidemiology of impetigo: a systematic review of the population prevalence of impetigo and pyoderma. PLoS One 10:e0136789 http://dx.doi.org/10.1371/journal.pone.0136789. [PubMed]
17. Breese BB, Hall CB. 1978. Beta Hemolytic Streptococcal Diseases. Houghton Mifflin, Boston, MA.
18. Martin J. 2016. The Streptococcus pyogenes carrier state. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK.
19. Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, Aragon D, Zansky SM, Watt JP, Cieslak PR, Angeles K, Harrison LH, Petit S, Beall B, Van Beneden CA. 2016. Epidemiology of invasive group A streptococcal infections in the United States, 2005-2012. Clin Infect Dis 63:478–486 http://dx.doi.org/10.1093/cid/ciw248. [PubMed]
20. Van Beneden C. 2017. Recent outbreaks of group A streptococcal infection in North America: challenges and new opportunities., The 20th Lancefield International Symposium on Streptococci and Streptococcal Diseases, Denarau Island, Fiji.
21. Fiorentino TR, Beall B, Mshar P, Bessen DE. 1997. A genetic-based evaluation of the principal tissue reservoir for group A streptococci isolated from normally sterile sites. J Infect Dis 176:177–182 http://dx.doi.org/10.1086/514020. [PubMed]
22. Shulman ST, Tanz RR, Kabat W, Kabat K, Cederlund E, Patel D, Li Z, Sakota V, Dale JB, Beall B, US Streptococcal Pharyngitis Surveillance Group. 2004. Group A streptococcal pharyngitis serotype surveillance in North America, 2000-2002. Clin Infect Dis 39:325–332 http://dx.doi.org/10.1086/421949. [PubMed]
23. Tyrrell GJ, Lovgren M, St Jean T, Hoang L, Patrick DM, Horsman G, Van Caeseele P, Sieswerda LE, McGeer A, Laurence RA, Bourgault AM, Low DE. 2010. Epidemic of group A Streptococcus M/emm59 causing invasive disease in Canada. Clin Infect Dis 51:1290–1297 http://dx.doi.org/10.1086/657068. [PubMed]
24. Fittipaldi N, Beres SB, Olsen RJ, Kapur V, Shea PR, Watkins ME, Cantu CC, Laucirica DR, Jenkins L, Flores AR, Lovgren M, Ardanuy C, Liñares J, Low DE, Tyrrell GJ, Musser JM. 2012. Full-genome dissection of an epidemic of severe invasive disease caused by a hypervirulent, recently emerged clone of group A Streptococcus. Am J Pathol 180:1522–1534 http://dx.doi.org/10.1016/j.ajpath.2011.12.037. [PubMed]
25. Wessels MR, Bronze MS. 1994. Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc Natl Acad Sci USA 91:12238–12242 http://dx.doi.org/10.1073/pnas.91.25.12238. [PubMed]
26. Cywes C, Stamenkovic I, Wessels MR. 2000. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J Clin Invest 106:995–1002 http://dx.doi.org/10.1172/JCI10195. [PubMed]
27. Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, Bagnoli F, Gambellini G, Bensi G, Mora M, Edwards AM, Musser JM, Graviss EA, Telford JL, Grandi G, Margarit I. 2007. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64:968–983 http://dx.doi.org/10.1111/j.1365-2958.2007.05704.x. [PubMed]
28. Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, Wilson JA, Hirst BH, Kehoe MA. 2007. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9:1822–1833 http://dx.doi.org/10.1111/j.1462-5822.2007.00918.x. [PubMed]
29. Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. 2016. Streptococcus pyogenes adhesion and colonization. FEBS Lett 590:3739–3757 http://dx.doi.org/10.1002/1873-3468.12254. [PubMed]
30. Turner CE, Abbott J, Lamagni T, Holden MT, David S, Jones MD, Game L, Efstratiou A, Sriskandan S. 2015. Emergence of a new highly successful acapsular group A Streptococcus clade of genotype emm89 in the United Kingdom. MBio 6:e00622 http://dx.doi.org/10.1128/mBio.00622-15. [PubMed]
31. Zhu L, Olsen RJ, Nasser W, de la Riva Morales I, Musser JM. 2015. Trading capsule for increased cytotoxin production: contribution to virulence of a newly emerged clade of emm89 Streptococcus pyogenes. MBio 6:e01378–e15 http://dx.doi.org/10.1128/mBio.01378-15. [PubMed]
32. Bessen DE, Lizano S. 2010. Tissue tropisms in group A streptococcal infections. Future Microbiol 5:623–638 http://dx.doi.org/10.2217/fmb.10.28. [PubMed]
33. Shimomura Y, Okumura K, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. 2011. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 12:17 http://dx.doi.org/10.1186/1471-2164-12-17. [PubMed]
34. Davies MR, McMillan DJ, Beiko RG, Barroso V, Geffers R, Sriprakash KS, Chhatwal GS. 2007. Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals two distinct genetic lineages which do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis 44:1142–1154. [PubMed]
35. Chochua S, Metcalf BJ, Li Z, Rivers J, Mathis S, Jackson D, Gertz RE Jr, Srinivasan V, Lynfield R, Van Beneden C, McGee L, Beall B. 2017. Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015. MBio 8:8 http://dx.doi.org/10.1128/mBio.01422-17. [PubMed]
36. Brandt CM, Spellerberg B. 2009. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis 49:766–772 http://dx.doi.org/10.1086/605085. [PubMed]
37. Broyles LN, Van Beneden C, Beall B, Facklam R, Shewmaker PL, Malpiedi P, Daily P, Reingold A, Farley MM. 2009. Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis 48:706–712 http://dx.doi.org/10.1086/597035. [PubMed]
38. Shelburne SA III, Sumby P, Sitkiewicz I, Okorafor N, Granville C, Patel P, Voyich J, Hull R, DeLeo FR, Musser JM. 2006. Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect Immun 74:4605–4614 http://dx.doi.org/10.1128/IAI.00477-06. [PubMed]
39. Cook LC, LaSarre B, Federle MJ. 2013. Interspecies communication among commensal and pathogenic streptococci. MBio 4:4 http://dx.doi.org/10.1128/mBio.00382-13. [PubMed]
40. Wescombe PA, Heng NC, Burton JP, Tagg JR. 2010. Something old and something new: an update on the amazing repertoire of bacteriocins produced by Streptococcus salivarius. Probiotics Antimicrob Proteins 2:37–45 http://dx.doi.org/10.1007/s12602-009-9026-7. [PubMed]
41. Loughman JA, Caparon M. 2006. Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol 188:399–408 http://dx.doi.org/10.1128/JB.188.2.399-408.2006. [PubMed]
42. Henningham A, Döhrmann S, Nizet V, Cole JN. 2015. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 39:488–508 http://dx.doi.org/10.1093/femsre/fuu009. [PubMed]
43. Kreikemeyer B, McIver KS, Podbielski A. 2003. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 11:224–232 http://dx.doi.org/10.1016/S0966-842X(03)00098-2.
44. Flores AR, Jewell BE, Olsen RJ, Shelburne SA III, Fittipaldi N, Beres SB, Musser JM. 2014. Asymptomatic carriage of group A Streptococcus is associated with elimination of capsule production. Infect Immun 82:3958–3967 http://dx.doi.org/10.1128/IAI.01788-14. [PubMed]
45. Flores AR, Olsen RJ, Wunsche A, Kumaraswami M, Shelburne SA III, Carroll RK, Musser JM. 2013. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interactions in group A Streptococcus carrier strains. Infect Immun 81:4128–4138 http://dx.doi.org/10.1128/IAI.00405-13. [PubMed]
46. Anderson R, May R. 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK.
47. Lancefield RC. 1959. Persistence of type-specific antibodies in man following infection with group A streptococci. J Exp Med 110:271–292 http://dx.doi.org/10.1084/jem.110.2.271. [PubMed]
48. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AGO, Maggi T, Taddei AR, Grandi G, Telford JL. 2005. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 102:15641–15646 http://dx.doi.org/10.1073/pnas.0507808102. [PubMed]
49. Bessen D, Fischetti VA. 1990. Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes. J Immunol 145:1251–1256. [PubMed]
50. Bessen DE, McShan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H. 2015. Molecular epidemiology and genomics of group A Streptococcus. Infect Genet Evol 33:393–418 http://dx.doi.org/10.1016/j.meegid.2014.10.011. [PubMed]
51. Bessen DE. 2016. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 29:295–303 http://dx.doi.org/10.1097/QCO.0000000000000262. [PubMed]
52. Lancefield RC. 1962. Current knowledge of type-specific M antigens of group A streptococci. J Immunol 89:307–313. [PubMed]
53. Widdowson JP, Maxted WR, Pinney AM. 1971. An M-associated protein antigen (MAP) of group A streptococci. J Hyg (Lond) 69:553–564 http://dx.doi.org/10.1017/S0022172400021823.
54. Widdowson JP, Maxted WR, Pinney AM. 1976. Immunological heterogeneity among the M-associated protein antigens of group-A streptococci. J Med Microbiol 9:73–88 http://dx.doi.org/10.1099/00222615-9-1-73. [PubMed]
55. Bessen D, Jones KF, Fischetti VA. 1989. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever. J Exp Med 169:269–283 http://dx.doi.org/10.1084/jem.169.1.269. [PubMed]
56. Bessen DE, Fischetti VA. 1990. Differentiation between two biologically distinct classes of group A streptococci by limited substitutions of amino acids within the shared region of M protein-like molecules. J Exp Med 172:1757–1764 http://dx.doi.org/10.1084/jem.172.6.1757. [PubMed]
57. Beall B, Facklam R, Thompson T. 1996. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34:953–958. [PubMed]
58. Beall B. 2017. https://www.cdc.gov/streplab/groupa-strep/index.html. Accessed July 10, 2018.
59. Li Z, Sakota V, Jackson D, Franklin AR, Beall B, Active Bacterial Core Surveillance/Emerging Infections Program Network. 2003. Array of M protein gene subtypes in 1064 recent invasive group A streptococcus isolates recovered from the active bacterial core surveillance. J Infect Dis 188:1587–1592 http://dx.doi.org/10.1086/379050. [PubMed]
60. Hollingshead SK, Readdy TL, Yung DL, Bessen DE. 1993. Structural heterogeneity of the emm gene cluster in group A streptococci. Mol Microbiol 8:707–717 http://dx.doi.org/10.1111/j.1365-2958.1993.tb01614.x. [PubMed]
61. Podbielski A. 1993. Three different types of organization of the vir regulon in group A streptococci. Mol Gen Genet 237:287–300.
62. Haanes EJ, Heath DG, Cleary PP. 1992. Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class. J Bacteriol 174:4967–4976 http://dx.doi.org/10.1128/jb.174.15.4967-4976.1992. [PubMed]
63. Frost H, Sanderson-Smith M, Walker M, Botteaux A, Smeesters P. 2017. Group A streptococcal M-like proteins: from pathogenesis to vaccine potential. FEMS Microbiol Rev 42:193–204. [PubMed]
64. Hollingshead SK, Arnold J, Readdy TL, Bessen DE. 1994. Molecular evolution of a multigene family in group A streptococci. Mol Biol Evol 11:208–219. [PubMed]
65. Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T, Holien JK, Henningham A, Steer AC, Bessen DE, Dale JB, Curtis N, Beall BW, Walker MJ, Parker MW, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR, M Protein Study Group. 2014. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis 210:1325–1338 http://dx.doi.org/10.1093/infdis/jiu260. [PubMed]
66. Baroux N, D’Ortenzio E, Amédéo N, Baker C, Ali Alsuwayyid B, Dupont-Rouzeyrol M, O’Connor O, Steer A, Smeesters PR. 2014. The emm-cluster typing system for group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis 59:e84–e92 http://dx.doi.org/10.1093/cid/ciu490. [PubMed]
67. Shulman ST, Tanz RR, Dale JB, Steer AC, Smeesters PR. 2014. Added value of the emm-cluster typing system to analyze group A Streptococcus epidemiology in high-income settings. Clin Infect Dis 59:1651–1652 http://dx.doi.org/10.1093/cid/ciu649. [PubMed]
68. Seale AC, Davies MR, Anampiu K, Morpeth SC, Nyongesa S, Mwarumba S, Smeesters PR, Efstratiou A, Karugutu R, Mturi N, Williams TN, Scott JA, Kariuki S, Dougan G, Berkley JA. 2016. Invasive group A Streptococcus infection among children, rural Kenya. Emerg Infect Dis 22:224–232 http://dx.doi.org/10.3201/eid2202.151358. [PubMed]
69. Smeesters PR, Laho D, Beall B, Steer AC, Van Beneden CA. 2017. Seasonal, geographic, and temporal trends of emm clusters associated with invasive group A streptococcal infections in US multistate surveillance. Clin Infect Dis 64:694–695 http://dx.doi.org/10.1093/cid/ciw807. [PubMed]
70. Smeesters PR, McMillan DJ, Sriprakash KS. 2010. The streptococcal M protein: a highly versatile molecule. Trends Microbiol 18:275–282 http://dx.doi.org/10.1016/j.tim.2010.02.007. [PubMed]
71. Maxted WR, Widdowson JP, Fraser CAM, Ball LC, Bassett DCJ. 1973. The use of the serum opacity reaction in the typing of group-A streptococci. J Med Microbiol 6:83–90 http://dx.doi.org/10.1099/00222615-6-1-83. [PubMed]
72. Widdowson JP, Maxted WR, Grant DL, Pinney AM. 1971. The relationship between M-antigen and opacity factor in group A streptococci. J Gen Microbiol 65:69–80 http://dx.doi.org/10.1099/00221287-65-1-69. [PubMed]
73. Pinney AM, Widdowson JP, Maxted WR. 1977. Inhibition of beta-haemolysis by opacity factor in group A streptococci. J Hyg (Lond) 78:355–362 http://dx.doi.org/10.1017/S0022172400056254.
74. Courtney HS, Hasty DL, Li Y, Chiang HC, Thacker JL, Dale JB. 1999. Serum opacity factor is a major fibronectin-binding protein and a virulence determinant of M type 2 Streptococcus pyogenes. Mol Microbiol 32:89–98 http://dx.doi.org/10.1046/j.1365-2958.1999.01328.x. [PubMed]
75. Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, Beall B, Nizet V. 2006. Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. Mol Microbiol 62:15–25 http://dx.doi.org/10.1111/j.1365-2958.2006.05337.x. [PubMed]
76. Zhu L, Olsen RJ, Musser JM. 2017. Opacification domain of serum opacity factor inhibits beta-hemolysis and contributes to virulence of Streptococcus pyogenes. MSphere 2:e00147-17 http://dx.doi.org/10.1128/mSphereDirect.00147-17. [PubMed]
77. Courtney HS, Pownall HJ. 2010. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol 2010:956071 http://dx.doi.org/10.1155/2010/956071. [PubMed]
78. Rakonjac JV, Robbins JC, Fischetti VA. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun 63:622–631. [PubMed]
79. Jeng A, Sakota V, Li Z, Datta V, Beall B, Nizet V. 2003. Molecular genetic analysis of a group A Streptococcus operon encoding serum opacity factor and a novel fibronectin-binding protein, SfbX. J Bacteriol 185:1208–1217 http://dx.doi.org/10.1128/JB.185.4.1208-1217.2003.
80. Beall B, Gherardi G, Lovgren M, Facklam RR, Forwick BA, Tyrrell GJ. 2000. emm and sof gene sequence variation in relation to serological typing of opacity-factor-positive group A streptococci. Microbiology 146:1195–1209 http://dx.doi.org/10.1099/00221287-146-5-1195. [PubMed]
81. Wertz JE, McGregor KF, Bessen DE. 2007. Detecting key structural features within highly recombined genes. PLOS Comput Biol 3:e14 http://dx.doi.org/10.1371/journal.pcbi.0030014. [PubMed]
82. Kratovac Z, Manoharan A, Luo F, Lizano S, Bessen DE. 2007. Population genetics and linkage analysis of loci within the FCT region of Streptococcus pyogenes. J Bacteriol 189:1299–1310 http://dx.doi.org/10.1128/JB.01301-06. [PubMed]
83. Johnson DR, Kaplan EL, VanGheem A, Facklam RR, Beall B. 2006. Characterization of group A streptococci (Streptococcus pyogenes): correlation of M-protein and emm-gene type with T-protein agglutination pattern and serum opacity factor. J Med Microbiol 55:157–164 http://dx.doi.org/10.1099/jmm.0.46224-0. [PubMed]
84. Griffith F. 1934. The serological classification of Streptococcus pyogenes. J Hyg (Lond) 34:542–584 http://dx.doi.org/10.1017/S0022172400043308.
85. Johnson D, Kaplan E, Sramek J, Bicova R, Havlicek J, Havlickova H, Motlova J, Kriz P. 1996. Laboratory Diagnosis of Group A Streptococcal Infections. World Health Organization, Geneva, Switzerland.
86. Schneewind O, Jones KF, Fischetti VA. 1990. Sequence and structural characteristics of the trypsin-resistant T6 surface protein of group A streptococci. J Bacteriol 172:3310–3317 http://dx.doi.org/10.1128/jb.172.6.3310-3317.1990. [PubMed]
87. Bessen DE, Kalia A. 2002. Genomic localization of a T serotype locus to a recombinatorial zone encoding extracellular matrix-binding proteins in Streptococcus pyogenes. Infect Immun 70:1159–1167 http://dx.doi.org/10.1128/IAI.70.3.1159-1167.2002. [PubMed]
88. Podbielski A, Woischnik M, Leonard BA, Schmidt KH. 1999. Characterization of nra, a global negative regulator gene in group A streptococci. Mol Microbiol 31:1051–1064 http://dx.doi.org/10.1046/j.1365-2958.1999.01241.x. [PubMed]
89. Hanski E, Caparon M. 1992. Protein F, a fibronectin-binding protein, is an adhesin of the group A streptococcus Streptococcus pyogenes. Proc Natl Acad Sci U S A 89:6172–6176 http://dx.doi.org/10.1073/pnas.89.13.6172. [PubMed]
90. Efstratiou A. 1983. The serotyping of hospital strains of streptococci belonging to Lancefield group C and G. J Hyg (Camb) 90:71–80.
91. Beres SB, Musser JM. 2007. Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One 2:e800 http://dx.doi.org/10.1371/journal.pone.0000800. [PubMed]
92. Falugi F, Zingaretti C, Pinto V, Mariani M, Amodeo L, Manetti AG, Capo S, Musser JM, Orefici G, Margarit I, Telford JL, Grandi G, Mora M. 2008. Sequence variation in group A Streptococcus pili and association of pilus backbone types with lancefield T serotypes. J Infect Dis 198:1834–1841 http://dx.doi.org/10.1086/593176. [PubMed]
93. Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G. 2006. Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519 http://dx.doi.org/10.1038/nrmicro1443. [PubMed]
94. Scott JR, Zähner D. 2006. Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol 62:320–330 http://dx.doi.org/10.1111/j.1365-2958.2006.05279.x. [PubMed]
95. Margarit y Ros I. 2016. Streptococcus pyogenes pili. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK. [PubMed]
96. Steemson JD, Moreland NJ, Williamson D, Morgan J, Carter PE, Proft T. 2014. Survey of the bp/tee genes from clinical group A streptococcus isolates in New Zealand: implications for vaccine development. J Med Microbiol 63:1670–1678 http://dx.doi.org/10.1099/jmm.0.080804-0. [PubMed]
97. Lizano S, Luo F, Bessen DE. 2007. Role of streptococcal T antigens in superficial skin infection. J Bacteriol 189:1426–1434 http://dx.doi.org/10.1128/JB.01179-06. [PubMed]
98. Zingaretti C, Falugi F, Nardi-Dei V, Pietrocola G, Mariani M, Liberatori S, Gallotta M, Tontini M, Tani C, Speziale P, Grandi G, Margarit I. 2010. Streptococcus pyogenes SpyCEP: a chemokine-inactivating protease with unique structural and biochemical features. FASEB J 24:2839–2848 http://dx.doi.org/10.1096/fj.09-145631. [PubMed]
99. Bao Y, Liang Z, Booyjzsen C, Mayfield JA, Li Y, Lee SW, Ploplis VA, Song H, Castellino FJ. 2014. Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 196:4089–4102 http://dx.doi.org/10.1128/JB.02131-14. [PubMed]
100. Luo F, Lizano S, Bessen DE. 2008. Heterogeneity in the polarity of Nra regulatory effects on streptococcal pilus gene transcription and virulence. Infect Immun 76:2490–2497 http://dx.doi.org/10.1128/IAI.01567-07. [PubMed]
101. Bessen DE, Kumar N, Hall GS, Riley DR, Luo F, Lizano S, Ford CN, McShan WM, Nguyen SV, Dunning Hotopp JC, Tettelin H. 2011. Whole-genome association study on tissue tropism phenotypes in group A Streptococcus. J Bacteriol 193:6651–6663 http://dx.doi.org/10.1128/JB.05263-11. [PubMed]
102. Loh JMS, Lorenz N, Tsai CJ, Khemlani AHJ, Proft T. 2017. Mucosal vaccination with pili from group A Streptococcus expressed on Lactococcus lactis generates protective immune responses. Sci Rep 7:7174 http://dx.doi.org/10.1038/s41598-017-07602-0. [PubMed]
103. Musser JM, Hauser AR, Kim MH, Schlievert PM, Nelson K, Selander RK. 1991. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc Natl Acad Sci U S A 88:2668–2672 http://dx.doi.org/10.1073/pnas.88.7.2668. [PubMed]
104. Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. 2001. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 69:2416–2427 http://dx.doi.org/10.1128/IAI.69.4.2416-2427.2001. [PubMed]
105. Jolley K. 2017. Streptococcus pyogenes MLST databases. http://pubmlst.org/spyogenes. Accessed Decmber 2017.
106. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. 2012. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13:87 http://dx.doi.org/10.1186/1471-2105-13-87. [PubMed]
107. Bessen DE, McGregor KF, Whatmore AM. 2008. Relationships between emm and multilocus sequence types within a global collection of Streptococcus pyogenes. BMC Microbiol 8:59 http://dx.doi.org/10.1186/1471-2180-8-59. [PubMed]
108. McGregor KF, Bilek N, Bennett A, Kalia A, Beall B, Carapetis JR, Currie BJ, Sriprakash KS, Spratt BG, Bessen DE. 2004. Group A streptococci from a remote community have novel multilocus genotypes but share emm types and housekeeping alleles with isolates from worldwide sources. J Infect Dis 189:717–723 http://dx.doi.org/10.1086/381452. [PubMed]
109. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98:4658–4663 http://dx.doi.org/10.1073/pnas.071559398. [PubMed]
110. Maruyama F, Watanabe T, Nakagawa I. 2016. Streptococcus pyogenes genomics. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK.
111. Beres SB, Kachroo P, Nasser W, Olsen RJ, Zhu L, Flores AR, de la Riva I, Paez-Mayorga J, Jimenez FE, Cantu C, Vuopio J, Jalava J, Kristinsson KG, Gottfredsson M, Corander J, Fittipaldi N, Di Luca MC, Petrelli D, Vitali LA, Raiford A, Jenkins L, Musser JM. 2016. Transcriptome remodeling contributes to epidemic disease caused by the human pathogen Streptococcus pyogenes. MBio 7: e00403-16 http://dx.doi.org/10.1128/mBio.00403-16. [PubMed]
112. Zhu L, Olsen RJ, Nasser W, Beres SB, Vuopio J, Kristinsson KG, Gottfredsson M, Porter AR, DeLeo FR, Musser JM. 2015. A molecular trigger for intercontinental epidemics of group A Streptococcus. J Clin Invest 125:3545–3559 http://dx.doi.org/10.1172/JCI82478. [PubMed]
113. Davies MR, Holden MT, Coupland P, Chen JH, Venturini C, Barnett TC, Zakour NL, Tse H, Dougan G, Yuen KY, Walker MJ. 2015. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet 47:84–87 http://dx.doi.org/10.1038/ng.3147. [PubMed]
114. Nasser W, Beres SB, Olsen RJ, Dean MA, Rice KA, Long SW, Kristinsson KG, Gottfredsson M, Vuopio J, Raisanen K, Caugant DA, Steinbakk M, Low DE, McGeer A, Darenberg J, Henriques-Normark B, Van Beneden CA, Hoffmann S, Musser JM. 2014. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc Natl Acad Sci USA 111:E1768–E1776 http://dx.doi.org/10.1073/pnas.1403138111. [PubMed]
115. Beres SB, Carroll RK, Shea PR, Sitkiewicz I, Martinez-Gutierrez JC, Low DE, McGeer A, Willey BM, Green K, Tyrrell GJ, Goldman TD, Feldgarden M, Birren BW, Fofanov Y, Boos J, Wheaton WD, Honisch C, Musser JM. 2010. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc Natl Acad Sci USA 107:4371–4376 http://dx.doi.org/10.1073/pnas.0911295107. [PubMed]
116. Bao YJ, Liang Z, Mayfield JA, Donahue DL, Carothers KE, Lee SW, Ploplis VA, Castellino FJ. 2016. Genomic characterization of a pattern D Streptococcus pyogenes emm53 isolate reveals a genetic rationale for invasive skin tropicity. J Bacteriol 198:1712–1724 http://dx.doi.org/10.1128/JB.01019-15. [PubMed]
117. Kapatai G, Coelho J, Platt S, Chalker VJ. 2017. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emm gene typing. Peer J 5:e3226 http://dx.doi.org/10.7717/peerj.3226. [PubMed]
118. Athey TB, Teatero S, Li A, Marchand-Austin A, Beall BW, Fittipaldi N. 2014. Deriving group A Streptococcus typing information from short-read whole-genome sequencing data. J Clin Microbiol 52:1871–1876 http://dx.doi.org/10.1128/JCM.00029-14. [PubMed]
119. Tagini F, Aubert B, Troillet N, Pillonel T, Praz G, Crisinel PA, Prod’hom G, Asner S, Greub G. 2017. Importance of whole genome sequencing for the assessment of outbreaks in diagnostic laboratories: analysis of a case series of invasive Streptococcus pyogenes infections. Eur J Clin Microbiol Infect Dis 36:1173–1180 http://dx.doi.org/10.1007/s10096-017-2905-z. [PubMed]
120. Turner CE, Bedford L, Brown NM, Judge K, Török ME, Parkhill J, Peacock SJ. 2017. Community outbreaks of group A Streptococcus revealed by genome sequencing. Sci Rep 7:8554 http://dx.doi.org/10.1038/s41598-017-08914-x. [PubMed]
121. Whatmore AM, Kapur V, Sullivan DJ, Musser JM, Kehoe MA. 1994. Non-congruent relationships between variation in emm gene sequences and the population genetic structure of group A streptococci. Mol Microbiol 14:619–631 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01301.x. [PubMed]
122. Wannamaker LW. 1970. Differences between streptococcal infections of the throat and of the skin. I. N Engl J Med 282:23–31 http://dx.doi.org/10.1056/NEJM197001012820106. [PubMed]
123. Bisno AL, Stevens DL. 2010. Streptococcus pyogenes. In Mandell GL, Douglas RG, Dolin R (ed), Principles and Practice of Infectious Diseases, 7th ed. Churchill Livingstone, Philadelphia, PA. http://dx.doi.org/10.1016/B978-0-443-06839-3.00198-3.
124. Bessen DE, Sotir CM, Readdy TL, Hollingshead SK. 1996. Genetic correlates of throat and skin isolates of group A streptococci. J Infect Dis 173:896–900 http://dx.doi.org/10.1093/infdis/173.4.896. [PubMed]
125. Bessen DE, Carapetis JR, Beall B, Katz R, Hibble M, Currie BJ, Collingridge T, Izzo MW, Scaramuzzino DA, Sriprakash KS. 2000. Contrasting molecular epidemiology of group A streptococci causing tropical and nontropical infections of the skin and throat. J Infect Dis 182:1109–1116 http://dx.doi.org/10.1086/315842. [PubMed]
126. McGregor KF, Spratt BG, Kalia A, Bennett A, Bilek N, Beall B, Bessen DE. 2004. Multilocus sequence typing of Streptococcus pyogenes representing most known emm types and distinctions among subpopulation genetic structures. J Bacteriol 186:4285–4294 http://dx.doi.org/10.1128/JB.186.13.4285-4294.2004. [PubMed]
127. McMillan DJ, Drèze PA, Vu T, Bessen DE, Guglielmini J, Steer AC, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR. 2013. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 19:E222–E229 http://dx.doi.org/10.1111/1469-0691.12134. [PubMed]
128. Bessen DE. 2009. Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol 9:581–593 http://dx.doi.org/10.1016/j.meegid.2009.03.002. [PubMed]
129. Loof TG, Deicke C, Medina E. 2014. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front Cell Infect Microbiol 4:128 http://dx.doi.org/10.3389/fcimb.2014.00128. [PubMed]
130. Rogers S, Commons R, Danchin MH, Selvaraj G, Kelpie L, Curtis N, Robins-Browne R, Carapetis JR. 2007. Strain prevalence, rather than innate virulence potential, is the major factor responsible for an increase in serious group A streptococcus infections. J Infect Dis 195:1625–1633 http://dx.doi.org/10.1086/513875. [PubMed]
131. Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. 2009. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9:611–616 http://dx.doi.org/10.1016/S1473-3099(09)70178-1.
132. Efstratiou A, Lamagni T. 2016. Epidemiology of Streptococcus pyogenes. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes: Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK.
133. van Beneden C. 2017. Active bacterial core surveillance (ABCs). https://www.cdc.gov/abcs/reports-findings/surv-reports.html. Accessed December 2017.
134. McGregor KF, Spratt BG. 2005. Identity and prevalence of multilocus sequence typing-defined clones of group A streptococci within a hospital setting. J Clin Microbiol 43:1963–1967 http://dx.doi.org/10.1128/JCM.43.4.1963-1967.2005. [PubMed]
135. Engelthaler DM, Valentine M, Bowers J, Pistole J, Driebe EM, Terriquez J, Nienstadt L, Carroll M, Schumacher M, Ormsby ME, Brady S, Livar E, Yazzie D, Waddell V, Peoples M, Komatsu K, Keim P. 2016. Hypervirulent emm59 clone in invasive group A Streptococcus outbreak, southwestern United States. Emerg Infect Dis 22:734–738 http://dx.doi.org/10.3201/eid2204.151582. [PubMed]
136. Wasserzug O, Valinsky L, Klement E, Bar-Zeev Y, Davidovitch N, Orr N, Korenman Z, Kayouf R, Sela T, Ambar R, Derazne E, Dagan R, Zarka S. 2009. A cluster of ecthyma outbreaks caused by a single clone of invasive and highly infective Streptococcus pyogenes. Clin Infect Dis 48:1213–1219 http://dx.doi.org/10.1086/597770. [PubMed]
137. Kwiatkowska RM, Manley P, Sims B, Lamagni T, Ready D, Coelho J, Alsaffar L, Beck CR, Neely F, Outbreak Control Team. 2017. Outbreak of group A Streptococcus emm94.0 affecting people who inject drugs in southwest England, April 2017. Am J Infect Control 46:238–240. [PubMed]
138. Bundle N, Bubba L, Coelho J, Kwiatkowska R, Cloke R, King S, Rajan-Iyer J, Courtney-Pillinger M, Beck CR, Hope V, Lamagni T, Brown CS, Jermacane D, Glass R, Desai M, Gobin M, Balasegaram S, Anderson C. 2017. Ongoing outbreak of invasive and non-invasive disease due to group A Streptococcus (GAS) type emm66 among homeless and people who inject drugs in England and Wales, January to December 2016. Euro Surveill 22:30446 http://dx.doi.org/10.2807/1560-7917.ES.2017.22.3.30446. [PubMed]
139. Veasy LG, Tani LY. 2005. A new look at acute rheumatic mitral regurgitation. Cardiol Young 15:568–577 http://dx.doi.org/10.1017/S104795110500171X. [PubMed]
140. Bisno AL. 2010. Nonsuppurative poststreptococcal sequelae: rheumatic fever and glomerulonephritis. In Mandell GL, Bennett JE, Dolin R (ed), Principles and Practice of Infectious Diseases, 7th ed. Churchill Livingstone, Philadelphia, PA. http://dx.doi.org/10.1016/B978-0-443-06839-3.00199-5
141. Zühlke LJ, Beaton A, Engel ME, Hugo-Hamman CT, Karthikeyan G, Katzenellenbogen JM, Ntusi N, Ralph AP, Saxena A, Smeesters PR, Watkins D, Zilla P, Carapetis J. 2017. Group A Streptococcus, acute rheumatic fever and rheumatic heart disease: epidemiology and clinical considerations. Curr Treat Options Cardiovasc Med 19:15 http://dx.doi.org/10.1007/s11936-017-0513-y. [PubMed]
142. Martin WJ, Steer AC, Smeesters PR, Keeble J, Inouye M, Carapetis J, Wicks IP. 2015. Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmun Rev 14:710–725 http://dx.doi.org/10.1016/j.autrev.2015.04.005. [PubMed]
143. Parks T, Mirabel MM, Kado J, Auckland K, Nowak J, Rautanen A, Mentzer AJ, Marijon E, Jouven X, Perman ML, Cua T, Kauwe JK, Allen JB, Taylor H, Robson KJ, Deane CM, Steer AC, Hill AVS, Allen L, Allen M, Braunstein C, Colquhoun SM, Jewine A, Ah Kee M, Kumar R, John Martin W, Mataika R, Nadra M, Nadu S, Naseri T, Noël B, Simon N, Ward B, Pacific Islands Rheumatic Heart Disease Genetics Network. 2017. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat Commun 8:14946 http://dx.doi.org/10.1038/ncomms14946. [PubMed]
144. Carapetis JR. 2007. Rheumatic heart disease in developing countries. N Engl J Med 357:439–441 http://dx.doi.org/10.1056/NEJMp078039. [PubMed]
145. Agarwal BL. 1981. Rheumatic heart disease unabated in developing countries. Lancet 2:910–911 http://dx.doi.org/10.1016/S0140-6736(81)91400-8.
146. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, Forouzanfar MH, Longenecker CT, Mayosi BM, Mensah GA, Nascimento BR, Ribeiro ALP, Sable CA, Steer AC, Naghavi M, Mokdad AH, Murray CJL, Vos T, Carapetis JR, Roth GA. 2017. Global, regional, and national burden of rheumatic heart disease, 1990-2015. N Engl J Med 377:713–722 http://dx.doi.org/10.1056/NEJMoa1603693. [PubMed]
147. Martins TB, Veasy LG, Hill HR. 2006. Antibody responses to group A streptococcal infections in acute rheumatic fever. Pediatr Infect Dis J 25:832–837 http://dx.doi.org/10.1097/01.inf.0000232634.55883.d0. [PubMed]
148. Soler-Soler J, Galve E. 2000. Worldwide perspective of valve disease. Heart 83:721–725 http://dx.doi.org/10.1136/heart.83.6.721. [PubMed]
149. Veasy LG, Wiedmeier SE, Orsmond GS, Ruttenberg HD, Boucek MM, Roth SJ, Tait VF, Thompson JA, Daly JA, Kaplan EL, Hill HR. 1987. Resurgence of acute rheumatic fever in the intermountain area of the United States. N Engl J Med 316:421–427 http://dx.doi.org/10.1056/NEJM198702193160801. [PubMed]
150. Stollerman GH. 1991. Rheumatogenic streptococci and autoimmunity. Clin Immunol Immunopathol 61:131–142 http://dx.doi.org/10.1016/S0090-1229(05)80019-4.
151. Bisno AL, Pearce IA, Stollerman GH. 1977. Streptococcal infections that fail to cause recurrences of rheumatic fever. J Infect Dis 136:278–285 http://dx.doi.org/10.1093/infdis/136.2.278. [PubMed]
152. Stollerman GH. 1971. Rheumatogenic and nephritogenic streptococci. Circulation 43:915–921 http://dx.doi.org/10.1161/01.CIR.43.6.915. [PubMed]
153. Bisno AL. 1980. The concept of rheumatogenic and nonrheumatogenic group A streptococci, p 789–803. In Read SE, Zabriskie JB (ed), Streptococcal Diseases and the Immune Response. Academic Press, New York, NY.
154. Johnson DR, Stevens DL, Kaplan EL. 1992. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis 166:374–382 http://dx.doi.org/10.1093/infdis/166.2.374.
155. Kuttner AG, Krumwiede E. 1941. Observations on the effect of streptococcal upper respiratory infections on rheumatic children: a three year study. J Clin Invest 20:273–287 http://dx.doi.org/10.1172/JCI101220. [PubMed]
156. Bisno AL, Pearce IA, Wall HP, Moody MD, Stollerman GH. 1970. Contrasting epidemiology of acute rheumatic fever and acute glomerulonephritis. N Engl J Med 283:561–565 http://dx.doi.org/10.1056/NEJM197009102831103. [PubMed]
157. Shulman ST, Stollerman G, Beall B, Dale JB, Tanz RR. 2006. Temporal changes in streptococcal M protein types and the near-disappearance of acute rheumatic fever in the United States. Clin Infect Dis 42:441–447 http://dx.doi.org/10.1086/499812. [PubMed]
158. Erdem G, Mizumoto C, Esaki D, Reddy V, Kurahara D, Yamaga K, Abe L, Johnson D, Yamamoto K, Kaplan EL. 2007. Group A streptococcal isolates temporally associated with acute rheumatic fever in Hawaii: differences from the continental United States. Clin Infect Dis 45:e20–e24 http://dx.doi.org/10.1086/519384. [PubMed]
159. McDonald M, Currie BJ, Carapetis JR. 2004. Acute rheumatic fever: a chink in the chain that links the heart to the throat? Lancet Infect Dis 4:240–245 http://dx.doi.org/10.1016/S1473-3099(04)00975-2.
160. Parks T, Smeesters PR, Steer AC. 2012. Streptococcal skin infection and rheumatic heart disease. Curr Opin Infect Dis 25:145–153 http://dx.doi.org/10.1097/QCO.0b013e3283511d27. [PubMed]
161. Williamson DA, Smeesters PR, Steer AC, Steemson JD, Ng AC, Proft T, Fraser JD, Baker MG, Morgan J, Carter PE, Moreland NJ. 2015. M-protein analysis of Streptococcus pyogenes isolates associated with acute rheumatic fever in New Zealand. J Clin Microbiol 53:3618–3620 http://dx.doi.org/10.1128/JCM.02129-15. [PubMed]
162. O’Sullivan L, Moreland NJ, Webb RH, Upton A, Wilson NJ. 2017. Acute rheumatic fever after group A Streptococcus pyoderma and group G Streptococcus pharyngitis. Pediatr Infect Dis J 36:692–694 http://dx.doi.org/10.1097/INF.0000000000001558. [PubMed]
163. Hollingshead SK, Fischetti VA, Scott JR. 1987. Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol Gen Genet 207:196–203 http://dx.doi.org/10.1007/BF00331578. [PubMed]
164. Lannergård J, Gustafsson MC, Waldemarsson J, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. 2011. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microbe 10:147–157 http://dx.doi.org/10.1016/j.chom.2011.06.011. [PubMed]
165. Jaggi P, Tanz RR, Beall B, Shulman ST. 2005. Age influences the emm type distribution of pediatric group A streptococcal pharyngeal isolates. Pediatr Infect Dis J 24:1089–1092 http://dx.doi.org/10.1097/01.inf.0000190023.89759.96. [PubMed]
166. Stewart CM, Buffalo CZ, Valderrama JA, Henningham A, Cole JN, Nizet V, Ghosh P. 2016. Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction. Proc Natl Acad Sci U S A 113:9515–9520 http://dx.doi.org/10.1073/pnas.1606160113. [PubMed]
167. Persson J, Beall B, Linse S, Lindahl G. 2006. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein. PLoS Pathog 2:e47 http://dx.doi.org/10.1371/journal.ppat.0020047. [PubMed]
168. Buffalo CZ, Bahn-Suh AJ, Hirakis SP, Biswas T, Amaro RE, Nizet V, Ghosh P. 2016. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein. Nat Microbiol 1:16155 http://dx.doi.org/10.1038/nmicrobiol.2016.155. [PubMed]
169. Rouchon CN, Ly AT, Noto JP, Luo F, Lizano S, Bessen DE. 2017. Incremental contributions of FbaA and other impetigo-associated surface proteins to fitness and virulence of a classical group A streptococcal skin strain. Infect Immun 85:e00374–e17 http://dx.doi.org/10.1128/IAI.00374-17. [PubMed]
170. Steer AC, Carapetis JR, Dale JB, Fraser JD, Good MF, Guilherme L, Moreland NJ, Mulholland EK, Schodel F, Smeesters PR. 2016. Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 34:2953–2958 http://dx.doi.org/10.1016/j.vaccine.2016.03.073. [PubMed]
171. Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. 2014. Working towards a group A streptococcal vaccine: report of a collaborative Trans-Tasman workshop. Vaccine 32:3713–3720 http://dx.doi.org/10.1016/j.vaccine.2014.05.017. [PubMed]
172. Schödel F, Moreland NJ, Wittes JT, Mulholland K, Frazer I, Steer AC, Fraser JD, Carapetis J. 2017. Clinical development strategy for a candidate group A streptococcal vaccine. Vaccine 35:2007–2014 http://dx.doi.org/10.1016/j.vaccine.2017.02.060. [PubMed]
173. Steer AC, Dale JB, Carapetis JR. 2013. Progress toward a global group a streptococcal vaccine. Pediatr Infect Dis J 32:180–182 http://dx.doi.org/10.1097/INF.0b013e318281da11. [PubMed]
174. Dale JB, Fischetti VA, Carapetis JR, Steer AC, Sow S, Kumar R, Mayosi BM, Rubin FA, Mulholland K, Hombach JM, Schödel F, Henao-Restrepo AM. 2013. Group A streptococcal vaccines: paving a path for accelerated development. Vaccine 31(Suppl 2):B216–B222 http://dx.doi.org/10.1016/j.vaccine.2012.09.045. [PubMed]
175. Pandey M, Batzloff MR, Good MF. 2012. Vaccination against rheumatic heart disease: a review of current research strategies and challenges. Curr Infect Dis Rep 14:381–390 http://dx.doi.org/10.1007/s11908-012-0263-7. [PubMed]
176. Good MF, Batzloff MR, Pandey M. 2013. Strategies in the development of vaccines to prevent infections with group A streptococcus. Hum Vaccin Immunother 9:2393–2397 http://dx.doi.org/10.4161/hv.25506. [PubMed]
177. Henningham A, Gillen CM, Walker MJ. 2013. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 368:207–242 http://dx.doi.org/10.1007/82_2012_284. [PubMed]
178. Henningham A, Ericsson DJ, Langer K, Casey LW, Jovcevski B, Chhatwal GS, Aquilina JA, Batzloff MR, Kobe B, Walker MJ. 2013. Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. MBio 4:e00509-13 http://dx.doi.org/10.1128/mBio.00509-13. [PubMed]
179. McNeil SA, Halperin SA, Langley JM, Smith B, Warren A, Sharratt GP, Baxendale DM, Reddish MA, Hu MC, Stroop SD, Linden J, Fries LF, Vink PE, Dale JB. 2005. Safety and immunogenicity of 26-valent group A streptococcus vaccine in healthy adult volunteers. Clin Infect Dis 41:1114–1122 http://dx.doi.org/10.1086/444458. [PubMed]
180. Pandey M, Wykes MN, Hartas J, Good MF, Batzloff MR. 2013. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T cell help. J Immunol 190:2692–2701 http://dx.doi.org/10.4049/jimmunol.1202333. [PubMed]
181. Bauer MJ, Georgousakis MM, Vu T, Henningham A, Hofmann A, Rettel M, Hafner LM, Sriprakash KS, McMillan DJ. 2012. Evaluation of novel Streptococcus pyogenes vaccine candidates incorporating multiple conserved sequences from the C-repeat region of the M-protein. Vaccine 30:2197–2205 http://dx.doi.org/10.1016/j.vaccine.2011.12.115. [PubMed]
182. McNeilly C, Cosh S, Vu T, Nichols J, Henningham A, Hofmann A, Fane A, Smeesters PR, Rush CM, Hafner LM, Ketheesan N, Sriprakash KS, McMillan DJ. 2016. Predicted coverage and immuno-safety of a recombinant C-repeat region based Streptococcus pyogenes vaccine candidate. PLoS One 11:e0156639 http://dx.doi.org/10.1371/journal.pone.0156639. [PubMed]
183. Bessen D, Fischetti VA. 1988. Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun 56:2666–2672. [PubMed]
184. De Amicis KM, Freschi de Barros S, Alencar RE, Postol E, Martins CD, Arcuri HA, Goulart C, Kalil J, Guilherme L. 2013. Analysis of the coverage capacity of the StreptInCor candidate vaccine against Streptococcus pyogenes. Vaccine 32:4104–4110. [PubMed]
185. Fischetti VA, Hodges WM, Hruby DE. 1989. Protection against streptococcal pharyngeal colonization with a vaccinia: M protein recombinant. Science 244:1487–1490 http://dx.doi.org/10.1126/science.2660266. [PubMed]
186. Dale JB, Penfound TA, Chiang EY, Walton WJ. 2011. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 29:8175–8178 http://dx.doi.org/10.1016/j.vaccine.2011.09.005. [PubMed]
187. Denny FW Jr, Perry WD, Wannamaker LW. 1957. Type-specific streptococcal antibody. J Clin Invest 36:1092–1100 http://dx.doi.org/10.1172/JCI103504. [PubMed]
188. Wannamaker LW, Denny FW, Perry WD, Siegel AC, Rammelkamp CH Jr. 1953. Studies on immunity to streptococcal infections in man. AMA Am J Dis Child 86:347–348. [PubMed]
189. Watson RF, Rothbard S, Swift HF. 1946. Type-specific protection and immunity following intranasal inoculation of monkeys with group A hemolytic streptococci. J Exp Med 84:127–142 http://dx.doi.org/10.1084/jem.84.2.127.
190. Lancefield RC. 1959. Persistence of type-specific antibodies in man following infection with group A streptococci. J Exp Med 110:271–292 http://dx.doi.org/10.1084/jem.110.2.271. [PubMed]
191. Smeesters PR, Vergison A, Campos D, de Aguiar E, Miendje Deyi VY, Van Melderen L. 2006. Differences between Belgian and Brazilian group A Streptococcus epidemiologic landscape. PLoS One 1:e10 http://dx.doi.org/10.1371/journal.pone.0000010. [PubMed]
192. Smeesters PR, McMillan DJ, Sriprakash KS, Georgousakis MM. 2009. Differences among group A streptococcus epidemiological landscapes: consequences for M protein-based vaccines? Expert Rev Vaccines 8:1705–1720 http://dx.doi.org/10.1586/erv.09.133. [PubMed]
193. Tewodros W, Kronvall G. 2005. M protein gene (emm type) analysis of group A beta-hemolytic streptococci from Ethiopia reveals unique patterns. J Clin Microbiol 43:4369–4376 http://dx.doi.org/10.1128/JCM.43.9.4369-4376.2005. [PubMed]
194. Dey N, McMillan DJ, Yarwood PJ, Joshi RM, Kumar R, Good MF, Sriprakash KS, Vohra H. 2005. High diversity of group A streptococcal emm types in an Indian community: the need to tailor multivalent vaccines. Clin Infect Dis 40:46–51 http://dx.doi.org/10.1086/426443. [PubMed]
195. Steer AC, Magor G, Jenney AW, Kado J, Good MF, McMillan D, Batzloff M, Carapetis JR. 2009. emm and C-repeat region molecular typing of beta-hemolytic streptococci in a tropical country: implications for vaccine development. J Clin Microbiol 47:2502–2509 http://dx.doi.org/10.1128/JCM.00312-09. [PubMed]
196. Smeesters PR, Mardulyn P, Vergison A, Leplae R, Van Melderen L. 2008. Genetic diversity of group A Streptococcus M protein: implications for typing and vaccine development. Vaccine 26:5835–5842 http://dx.doi.org/10.1016/j.vaccine.2008.08.037. [PubMed]
197. Smeesters PR, Dramaix M, Van Melderen L. 2010. The emm-type diversity does not always reflect the M protein genetic diversity: is there a case for designer vaccine against GAS. Vaccine 28:883–885 http://dx.doi.org/10.1016/j.vaccine.2009.10.137. [PubMed]
198. Dale JB, Smeesters PR, Courtney HS, Penfound TA, Hohn CM, Smith JC, Baudry JY. 2017. Structure-based design of broadly protective group a streptococcal M protein-based vaccines. Vaccine 35:19–26 http://dx.doi.org/10.1016/j.vaccine.2016.11.065. [PubMed]
199. Frost HR, Laho D, Sanderson-Smith ML, Licciardi P, Donath S, Curtis N, Kado J, Dale JB, Steer AC, Smeesters PR. 2017. Immune cross-opsonization within emm clusters following group A Streptococcus skin infection: broadening the scope of type-specific immunity. Clin Infect Dis 65:1523–1531 http://dx.doi.org/10.1093/cid/cix599. [PubMed]
200. Tsoi SK, Smeesters PR, Frost HR, Licciardi P, Steer AC. 2015. Correlates of protection for M protein-based vaccines against group A Streptococcus. J Immunol Res 2015:167089 http://dx.doi.org/10.1155/2015/167089. [PubMed]
201. Hausdorff WP, Van Dyke MK, Van Effelterre T. 2012. Serotype replacement after pneumococcal vaccination. Lancet 379:1387–1388, author reply 1388–1389 http://dx.doi.org/10.1016/S0140-6736(12)60589-3.
202. Lipsitch M. 1997. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci USA 94:6571–6576 http://dx.doi.org/10.1073/pnas.94.12.6571. [PubMed]
203. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530 http://dx.doi.org/10.1128/JB.186.5.1518-1530.2004. [PubMed]
204. Friães A, Machado MP, Pato C, Carriço J, Melo-Cristino J, Ramirez M. 2015. Emergence of the same successful clade among distinct populations of emm89 Streptococcus pyogenes in multiple geographic regions. MBio 6:e01780–e15 http://dx.doi.org/10.1128/mBio.01780-15. [PubMed]
205. Turner KM, Hanage WP, Fraser C, Connor TR, Spratt BG. 2007. Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol 7:30 http://dx.doi.org/10.1186/1471-2180-7-30. [PubMed]
206. Feil EJ, Holmes EC, Bessen DE, Chan M-S, Day NPJ, Enright MC, Goldstein R, Hood DW, Kalia A, Moore CE, Zhou J, Spratt BG. 2001. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98:182–187 http://dx.doi.org/10.1073/pnas.98.1.182. [PubMed]
207. Hanage WP, Fraser C, Spratt BG. 2006. The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol 239:210–219 http://dx.doi.org/10.1016/j.jtbi.2005.08.035. [PubMed]
208. Vos M, Didelot X. 2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J 3:199–208 http://dx.doi.org/10.1038/ismej.2008.93. [PubMed]
209. Carapetis J, Gardiner D, Currie B, Mathews JD. 1995. Multiple strains of Streptococcus pyogenes in skin sores of aboriginal Australians. J Clin Microbiol 33:1471–1472. [PubMed]
210. Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, Peters TR, Reid SD. 2012. Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr 12:3 http://dx.doi.org/10.1186/1471-2431-12-3. [PubMed]
211. Akiyama H, Morizane S, Yamasaki O, Oono T, Iwatsuki K. 2003. Assessment of Streptococcus pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. J Dermatol Sci 32:193–199 http://dx.doi.org/10.1016/S0923-1811(03)00096-3.
212. Choi SC, Rasmussen MD, Hubisz MJ, Gronau I, Stanhope MJ, Siepel A. 2012. Replacing and additive horizontal gene transfer in Streptococcus. Mol Biol Evol 29:3309–3320 http://dx.doi.org/10.1093/molbev/mss138. [PubMed]
213. Davies MR, McMillan DJ, Beiko RG, Barroso V, Geffers R, Sriprakash KS, Chhatwal GS. 2007. Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals 2 distinct genetic lineages that do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis 44:1442–1454 http://dx.doi.org/10.1086/516780. [PubMed]
214. McMillan DJ, Bessen DE, Pinho M, Ford C, Hall GS, Melo-Cristino J, Ramirez M. 2010. Population genetics of Streptococcus dysgalactiae subspecies equisimilis reveals widely dispersed clones and extensive recombination.PLoS One 5:e11741 http://dx.doi.org/10.1371/journal.pone.0011741. [PubMed]
215. Ahmad Y, Gertz RE Jr, Li Z, Sakota V, Broyles LN, Van Beneden C, Facklam R, Shewmaker PL, Reingold A, Farley MM, Beall BW. 2009. Genetic relationships deduced from emm and multilocus sequence typing of invasive Streptococcus dysgalactiae subsp. equisimilis and S. canis recovered from isolates collected in the United States. J Clin Microbiol 47:2046–2054 http://dx.doi.org/10.1128/JCM.00246-09. [PubMed]
216. Towers RJ, Gal D, McMillan D, Sriprakash KS, Currie BJ, Walker MJ, Chhatwal GS, Fagan PK. 2004. Fibronectin-binding protein gene recombination and horizontal transfer between group A and G streptococci. J Clin Microbiol 42:5357–5361 http://dx.doi.org/10.1128/JCM.42.11.5357-5361.2004. [PubMed]
217. Bessen DE, Manoharan A, Luo F, Wertz JE, Robinson DA. 2005. Evolution of transcription regulatory genes is linked to niche specialization in the bacterial pathogen Streptococcus pyogenes. J Bacteriol 187:4163–4172 http://dx.doi.org/10.1128/JB.187.12.4163-4172.2005. [PubMed]
218. Kalia A, Bessen DE. 2004. Natural selection and evolution of streptococcal virulence genes involved in tissue-specific adaptations. J Bacteriol 186:110–121 http://dx.doi.org/10.1128/JB.186.1.110-121.2004. [PubMed]
219. Giovanetti E, Brenciani A, Morroni G, Tiberi E, Pasquaroli S, Mingoia M, Varaldo PE. 2014. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species. Front Microbiol 5:746. [PubMed]
220. Mashburn-Warren L, Morrison DA, Federle MJ. 2012. The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol 194:4589–4600 http://dx.doi.org/10.1128/JB.00830-12. [PubMed]
221. Woodbury RL, Wang X, Moran CP Jr. 2006. Sigma X induces competence gene expression in Streptococcus pyogenes. Res Microbiol 157:851–856 http://dx.doi.org/10.1016/j.resmic.2006.07.002. [PubMed]
222. Marks LR, Mashburn-Warren L, Federle MJ, Hakansson AP. 2014. Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. J Infect Dis 210:25–34 http://dx.doi.org/10.1093/infdis/jiu058.
223. Scott J, Thompson-Mayberry P, Lahmamsi S, King CJ, McShan WM. 2008. Phage-associated mutator phenotype in group A streptococcus. J Bacteriol 190:6290–6301 http://dx.doi.org/10.1128/JB.01569-07. [PubMed]
224. Kalia A, Spratt BG, Enright MC, Bessen DE. 2002. Influence of recombination and niche separation on the population genetic structure of the pathogen Streptococcus pyogenes. Infect Immun 70:1971–1983 http://dx.doi.org/10.1128/IAI.70.4.1971-1983.2002. [PubMed]
225. Gupta S, Maiden MC, Feavers IM, Nee S, May RM, Anderson RM. 1996. The maintenance of strain structure in populations of recombining infectious agents. Nat Med 2:437–442 http://dx.doi.org/10.1038/nm0496-437. [PubMed]
226. Bessen DE, Hollingshead SK. 1994. Allelic polymorphism of emm loci provides evidence for horizontal gene spread in group A streptococci. Proc Natl Acad Sci USA 91:3280–3284 http://dx.doi.org/10.1073/pnas.91.8.3280. [PubMed]
227. Bessen DE, Izzo MW, McCabe EJ, Sotir CM. 1997. Two-domain motif for IgG-binding activity by group A streptococcal emm gene products. Gene 196:75–82 http://dx.doi.org/10.1016/S0378-1119(97)00201-1.
228. Bessen DE. 1994. Localization of immunoglobulin A-binding sites within M or M-like proteins of group A streptococci. Infect Immun 62:1968–1974. [PubMed]
229. O’Toole PW, Stenberg L, Rissler M, Lindahl G. 1992. Two major classes in the M protein family in group A streptococci. Proc Natl Acad Sci USA 89:8661–8665 http://dx.doi.org/10.1073/pnas.89.18.8661. [PubMed]
230. Johnsson E, Andersson G, Lindahl G, Hedén L-O. 1994. Identification of the IgA-binding region in streptococcal protein Arp. J Immunol 153:3557–3564. [PubMed]
231. Bessen DE, McGregor KF, Whatmore AM. 2008. Relationships between emm and multilocus sequence types within a global collection of Streptococcus pyogenes. BMC Microbiol 8:59 http://dx.doi.org/10.1186/1471-2180-8-59. [PubMed]
232. Kalia A, Spratt BG, Enright MC, Bessen DE. 2002. Influence of recombination and niche separation on the population genetic structure of the pathogen Streptococcus pyogenes. Infect Immun 70:1971–1983 http://dx.doi.org/10.1128/IAI.70.4.1971-1983.2002. [PubMed]
233. Beres SB, Sylva GL, Sturdevant DE, Granville CN, Liu M, Ricklefs SM, Whitney AR, Parkins LD, Hoe NP, Adams GJ, Low DE, DeLeo FR, McGeer A, Musser JM. 2004. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc Natl Acad Sci U S A 101:11833–11838 http://dx.doi.org/10.1073/pnas.0404163101. [PubMed]
234. Shea PR, Beres SB, Flores AR, Ewbank AL, Gonzalez-Lugo JH, Martagon-Rosado AJ, Martinez-Gutierrez JC, Rehman HA, Serrano-Gonzalez M, Fittipaldi N, Ayers SD, Webb P, Willey BM, Low DE, Musser JM. 2011. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc Natl Acad Sci U S A 108:5039–5044 http://dx.doi.org/10.1073/pnas.1016282108. [PubMed]
235. Olsen RJ, Laucirica DR, Watkins ME, Feske ML, Garcia-Bustillos JR, Vu C, Cantu C, Shelburne SA III, Fittipaldi N, Kumaraswami M, Shea PR, Flores AR, Beres SB, Lovgren M, Tyrrell GJ, Efstratiou A, Low DE, Van Beneden CA, Musser JM. 2012. Polymorphisms in regulator of protease B (RopB) alter disease phenotype and strain virulence of serotype M3 group A Streptococcus. J Infect Dis 205:1719–1729 http://dx.doi.org/10.1093/infdis/jir825. [PubMed]
236. Ikebe T, Ato M, Matsumura T, Hasegawa H, Sata T, Kobayashi K, Watanabe H. 2010. Highly frequent mutations in negative regulators of multiple virulence genes in group A streptococcal toxic shock syndrome isolates. PLoS Pathog 6:e1000832 http://dx.doi.org/10.1371/journal.ppat.1000832. [PubMed]
237. Riddle DJ, Bessen DE, Caparon MG. 2010. Variation in Streptococcus pyogenes NAD+ glycohydrolase is associated with tissue tropism. J Bacteriol 192:3735–3746 http://dx.doi.org/10.1128/JB.00234-10. [PubMed]
238. Sanson M, O’Neill BE, Kachroo P, Anderson JR, Flores AR, Valson C, Cantu CC, Makthal N, Karmonik C, Fittipaldi N, Kumaraswami M, Musser JM, Olsen RJ. 2015. A naturally occurring single amino acid replacement in multiple gene regulator of group A Streptococcus significantly increases virulence. Am J Pathol 185:462–471 http://dx.doi.org/10.1016/j.ajpath.2014.10.018. [PubMed]
239. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V. 2007. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13:981–985 http://dx.doi.org/10.1038/nm1612. [PubMed]
240. Flores AR, Jewell BE, Yelamanchili D, Olsen RJ, Musser JM. 2015. A single amino acid replacement in the sensor kinase LiaS contributes to a carrier phenotype in group A Streptococcus. Infect Immun 83:4237–4246 http://dx.doi.org/10.1128/IAI.00656-15. [PubMed]
241. Lau EH, Nishiura H, Cowling BJ, Ip DK, Wu JT. 2012. Scarlet fever outbreak, Hong Kong, 2011. Emerg Infect Dis 18:1700–1702 http://dx.doi.org/10.3201/eid1810.120062. [PubMed]
242. Luk EY, Lo JY, Li AZ, Lau MC, Cheung TK, Wong AY, Wong MM, Wong CW, Chuang SK, Tsang T. 2012. Scarlet fever epidemic, Hong Kong, 2011. Emerg Infect Dis 18:1658–1661 http://dx.doi.org/10.3201/eid1810.111900. [PubMed]
243. Hsieh YC, Huang YC. 2011. Scarlet fever outbreak in Hong Kong, 2011. J Microbiol Immunol Infect 44:409–411 http://dx.doi.org/10.1016/j.jmii.2011.07.003. [PubMed]
244. Tse H, Bao JY, Davies MR, Maamary P, Tsoi HW, Tong AH, Ho TC, Lin CH, Gillen CM, Barnett TC, Chen JH, Lee M, Yam WC, Wong CK, Ong CL, Chan YW, Wu CW, Ng T, Lim WW, Tsang TH, Tse CW, Dougan G, Walker MJ, Lok S, Yuen KY. 2012. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis 206:341–351 http://dx.doi.org/10.1093/infdis/jis362. [PubMed]
245. Lamagni T, Guy R, Chand M, Henderson KL, Chalker V, Lewis J, Saliba V, Elliot AJ, Smith GE, Rushton S, Sheridan EA, Ramsay M, Johnson AP. 2017. Resurgence of scarlet fever in England, 2014-16: a population-based surveillance study. Lancet Infect Dis 10.1016/S1473-3099(17)30693-X.
246. Chalker V, Jironkin A, Coelho J, Al-Shahib A, Platt S, Kapatai G, Daniel R, Dhami C, Laranjeira M, Chambers T, Guy R, Lamagni T, Harrison T, Chand M, Johnson AP, Underwood A, Scarlet Fever Incident Management Team. 2017. Genome analysis following a national increase in scarlet fever in England 2014. BMC Genomics 18:224 http://dx.doi.org/10.1186/s12864-017-3603-z. [PubMed]
247. Turner CE, Pyzio M, Song B, Lamagni T, Meltzer M, Chow JY, Efstratiou A, Curtis S, Sriskandan S. 2016. Scarlet fever upsurge in England and molecular-genetic analysis in North-West London, 2014. Emerg Infect Dis 22:1075–1078 http://dx.doi.org/10.3201/eid2206.151726. [PubMed]
248. Grundmann H, Hori S, Tanner G. 2001. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol 39:4190–4192 http://dx.doi.org/10.1128/JCM.39.11.4190-4192.2001. [PubMed]
249. Linke C, Young PG, Kang HJ, Bunker RD, Middleditch MJ, Caradoc-Davies TT, Proft T, Baker EN. 2010. Crystal structure of the minor pilin FctB reveals determinants of group A streptococcal pilus anchoring. J Biol Chem 285:20381–20389 http://dx.doi.org/10.1074/jbc.M109.089680. [PubMed]
250. Facklam R, Beall B, Efstratiou A, Fischetti V, Johnson D, Kaplan E, Kriz P, Lovgren M, Martin D, Schwartz B, Totolian A, Bessen D, Hollingshead S, Rubin F, Scott J, Tyrrell G. 1999. emm typing and validation of provisional M types for group A streptococci. Emerg Infect Dis 5:247–253 http://dx.doi.org/10.3201/eid0502.990209. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.CPP3-0009-2018
2018-09-06
2018-09-24

Abstract:

The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels—short, intermediate, and long term—sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Transmission routes for GAS. From the throat, GAS can transmit via the respiratory route to a new host, where it either causes pharyngitis or persists in a quiescent carrier state. In a carrier state, the organism is presumed to be only weakly transmissible. Transmission from the throat to skin is relatively rare. From an impetiginous skin lesion, the organism can be transmitted by direct contact to the slightly damaged skin of a new host or to other damaged skin sites on the same host, causing multiple skin lesions. GAS can also be transmitted from a skin lesion to the throat of the same host, but it is widely assumed to enter a carrier state and is only weakly transmissible. From either the throat or skin, the organism can invade normally sterile deeper tissue, but this is rare relative to superficial infections.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

M protein structure and pattern gene arrangements. Key features of M protein are shown, including the type-specific determinants, cell wall-spanning domain, and C repeat region. Chromosomal arrangement of and the flanking -like genes (, ) gives rise to five patterns, which form three main groupings (A-C, D, E). Transcription of and -like genes is positively regulated by Mga, which is encoded by , which lies immediately upstream of the region.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structure of the pilus-encoding FCT region. Seven forms of the FCT region are shown. For pilus structural protein genes: , , and , backbone pilins; , , , , and , ancillary pilins. In FCT-2, , , and have sequence homology with , , and , respectively, although divergence is high ( 82 ). Pilin adhesins include FctX from FCT-1, AP1 from FCT-2, and Cpa from FCT-3 and FCT-4. Pilin subunits that anchor the pilus shaft to the cell wall include AP2 and FctB ( 249 ). Fibronectin-binding protein genes include (sometimes designated ), (sometimes designated ), and possibly others that remain to be classified.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Chromosomal map of the epidemiological marker genes of GAS. Open circles represent the seven core housekeeping genes used in MLST ( 104 ). The locus, when present, lies ∼15 kb upstream of . The FCT region, which encodes pilus structural proteins and pilus biosynthetic enzymes plus other adhesins and transcriptional regulators, ranges in size from ∼11 to 16 kb. The FCT region lies ∼250 to 300 kb from the region, on the opposite side of the origin of replication (). GAS genomes range in size from ∼1.8 to 1.9 Mb.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model for evolutionary descent (CC407). goeBURST diagram of CC407, which includes single representatives of 41 STs and is based on data from www.pubmlst.org/spyogenes ( 105 ). Unless noted otherwise (orange shaded boxes), all isolates ( = 114) are and were recovered from (i) the 1990s through 2010s, (ii) Europe or North America, and (iii) URT infections or iGAS disease. For evolutionary analysis of (formerly PT4245 [ 250 ]) isolates based on the core genome sequence ( 31 , 111 ), clade 1 strain MGAS11027 is ST407, whereas clade 2 and epidemic clade 3 strains (MGAS23530 and MGAS27061, respectively) are ST101; the epidemic strain H293 from the United Kingdom is also ST101 ( 30 ). Note that ST407 corresponds to GAS with either or ( 105 ). Amino acid sequence identities among predicted FCT region gene products of ST407 (MGAS11027) and ST101 (H293, MGAS23530) strains (all ) via ClustalW alignments.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Trends in the distribution of epidemiological markers. An overview of the diversity and/or occurrence of epidemiological marker genes among three clinico-epidemiologic phenotype groupings of GAS. The relative distribution of FCT region forms is in accordance with one representative isolate for 94 unique types, as reported in reference 82; however, given the extensive HGT of and/or FCT genes to distant genetic backgrounds, the present analysis of the FCT region distribution may be far from complete.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Epidemiological typing methods for group A streptococci

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 2

Distribution of types among pattern groups for 170 types.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 3

Distribution of clusters relative to pattern groups, for 174 types

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 4

Relationships between SOF/ and patterns and clades

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 5

Relationships between pattern and T types for >20,000 GAS isolates

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 6

pattern assignments for GAS recovered in 29 population-based surveys for pharyngitis or impetigo

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 7

cluster and clade assignments for GAS recovered in 29 population-based surveys for pharyngitis or impetigo

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 8

type diversity within communities for the 29 population-based surveys for pharyngitis and impetigo

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018
Generic image for table
TABLE 9

Relationships between pattern or cluster and type and subtype

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.CPP3-0009-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error