1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Prosthetic Device Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Raquel M. Martinez1, Thomas R. Bowen2, Michael A. Foltzer3
  • Editors: Randall T. Hayden4, Donna M. Wolk5, Karen C. Carroll6, Yi-Wei Tang7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Clinical Molecular Microbiology, Geisinger Health System, Danville, PA 17822; 2: Orthopedic Surgery, Geisinger Health System, Danville, PA 17822; 3: Infectious Disease, Geisinger Health System, Danville, PA 17822; 4: St. Jude’s Children’s Research Hospital, Memphis, TN; 5: Geisinger Clinic, Danville, PA; 6: Johns Hopkins University Hospital, Baltimore, MD; 7: Memorial Sloan-Kettering Institute, New York, NY
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015
  • Received 05 March 2015 Accepted 26 April 2016 Published 08 July 2016
  • Michael A. Foltzer, mafoltzer@geisinger.edu
image of Prosthetic Device Infections
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Prosthetic Device Infections, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0004-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0004-2015-2.gif
  • Abstract:

    The immunocompromised host is a particularly vulnerable population in whom routine and unusual infections can easily and frequently occur. Prosthetic devices are commonly used in these patients and the infections associated with those devices present a number of challenges for both the microbiologist and the clinician. Biofilms play a major role in device-related infections, which may contribute to failed attempts to recover organisms from routine culture methods. Moreover, device-related microorganisms can be difficult to eradicate by antibiotic therapy alone. Changes in clinical practice and advances in laboratory diagnostics have provided significant improvements in the detection and accurate diagnosis of device-related infections. Disruption of the bacterial biofilm plays an essential role in recovering the causative agent in culture. Various culture and nucleic acid amplification techniques are more accurate to guide directed treatment regimens. This chapter reviews the performance characteristics of currently available diagnostic assays and summarizes published guidelines, where available, for addressing suspected infected prosthetic devices.

  • Citation: Martinez R, Bowen T, Foltzer M. 2016. Prosthetic Device Infections. Microbiol Spectrum 4(4):DMIH2-0004-2015. doi:10.1128/microbiolspec.DMIH2-0004-2015.

References

1. Römling U, Balsalobre C. 2012. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561. [CrossRef]
2. Wolcott RD, Ehrlich GD. 2008. Biofilms and chronic infections. JAMA 299:2682–2684. [CrossRef]
3. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T. 2012. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65:127–145. [CrossRef]
4. Percival SL, Suleman L, Vuotto C, Donelli G. 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334. [CrossRef]
5. Pasquaroli S, Zandri G, Vignaroli C, Vuotto C, Donelli G, Biavasco F. 2013. Antibiotic pressure can induce the viable but non-culturable state in Staphylococcus aureus growing in biofilms. J Antimicrob Chemother 68:1812–1817. [CrossRef]
6. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305. [CrossRef]
7. Costerton JW. 1999. Introduction to biofilm. Int J Antimicrob Agents 11:217–221, discussion 237–239. [CrossRef]
8. Francolini I, Donelli G. 2010. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238. [CrossRef]
9. Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138. [CrossRef]
10. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R. 2007. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663. [CrossRef]
11. Tande AJ, Patel R. 2014. Prosthetic joint infection. Clin Microbiol Rev 27:302–345. [CrossRef]
12. Melter O, Radojevič B. 2010. Small colony variants of Staphylococcus aureus—review. Folia Microbiol (Praha) 55:548–558. [CrossRef]
13. Kriegeskorte A, Lorè NI, Bragonzi A, Riva C, Kelkenberg M, Becker K, Proctor RA, Peters G, Kahl BC. 2015. Thymidine-dependent Staphylococcus aureus small-colony variants are induced by trimethoprim-sulfamethoxazole (SXT) and have increased fitness during SXT challenge. Antimicrob Agents Chemother 59:7265–7272. [CrossRef]
14. Wolter DJ, Emerson JC, McNamara S, Buccat AM, Qin X, Cochrane E, Houston LS, Rogers GB, Marsh P, Prehar K, Pope CE, Blackledge M, Déziel E, Bruce KD, Ramsey BW, Gibson RL, Burns JL, Hoffman LR. 2013. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 57:384–391. [CrossRef]
15. Tande AJ, Osmon DR, Greenwood-Quaintance KE, Mabry TM, Hanssen AD, Patel R. 2014. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci. mBio 5:e01910–e01914. [CrossRef]
16. Proctor RA, Kahl B, von Eiff C, Vaudaux PE, Lew DP, Peters G. 1998. Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27(Suppl 1):S68–S74. [CrossRef]
17. Chopra V, O’Horo JC, Rogers MA, Maki DG, Safdar N. 2013. The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 34:908–918. [CrossRef]
18. Schiffer CA, Mangu PB, Wade JC, Camp-Sorrell D, Cope DG, El-Rayes BF, Gorman M, Ligibel J, Mansfield P, Levine M. 2013. Central venous catheter care for the patient with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 31:1357–1370. [CrossRef]
19. Lebeaux D, Fernández-Hidalgo N, Chauhan A, Lee S, Ghigo JM, Almirante B, Beloin C. 2014. Management of infections related to totally implantable venous-access ports: challenges and perspectives. Lancet Infect Dis 14:146–159. [CrossRef]
20. Safdar N, Maki DG. 2005. Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 128:489–495. [CrossRef]
21. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJ, Sherertz RJ, Warren DK. 2009. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45. [CrossRef]
22. Raad I, Hanna H, Maki D. 2007. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 7:645–657. [CrossRef]
23. Coyle VM, McMullan R, Morris TC, Rooney PJ, Hedderwick S. 2004. Catheter-related bloodstream infection in adult haematology patients: catheter removal practice and outcome. J Hosp Infect 57:325–331. [CrossRef]
24. Chee L, Brown M, Sasadeusz J, MacGregor L, Grigg AP. 2008. Gram-negative organisms predominate in Hickman line-related infections in non-neutropenic patients with hematological malignancies. J Infect 56:227–233. [CrossRef]
25. McGuire KP, Santillan AA, Kaur P, Meade T, Parbhoo J, Mathias M, Shamehdi C, Davis M, Ramos D, Cox CE. 2009. Are mastectomies on the rise? A 13-year trend analysis of the selection of mastectomy versus breast conservation therapy in 5865 patients. Ann Surg Oncol 16:2682–2690. [CrossRef]
26. Kurian AW, Lichtensztajn DY, Keegan TH, Nelson DO, Clarke CA, Gomez SL. 2014. Use of and mortality after bilateral mastectomy compared with other surgical treatments for breast cancer in California, 1998–2011. JAMA 312:902–914. [CrossRef]
27. Pittet B, Montandon D, Pittet D. 2005. Infection in breast implants. Lancet Infect Dis 5:94–106. [CrossRef]
28. Washer LL, Gutowski K. 2012. Breast implant infections. Infect Dis Clin North Am 26:111–125. [CrossRef]
29. De Groote MA, Huitt G. 2006. Infections due to rapidly growing mycobacteria. Clin Infect Dis 42:1756–1763. [CrossRef]
30. Viola GM, Raad II, Rolston KV. 2014. Breast tissue expander-related infections: perioperative antimicrobial regimens. Infect Control Hosp Epidemiol 35:75–81. [CrossRef]
31. Macadam SA, Mehling BM, Fanning A, Dufton JA, Kowalewska-Grochowska KT, Lennox P, Anzarut A, Rodrigues M. 2007. Nontuberculous mycobacterial breast implant infections. Plast Reconstr Surg 119:337–344. [CrossRef]
32. del Pozo JL, Auba C. 2015. Role of biofilms in breast implant associated infections and capsular contracture. Adv Exp Med Biol 831:53–67. [CrossRef]
33. Ahn CY, Ko CY, Wagar EA, Wong RS, Shaw WW. 1996. Microbial evaluation: 139 implants removed from symptomatic patients. Plast Reconstr Surg 98:1225–1229. [CrossRef]
34. Spear SL, Seruya M. 2010. Management of the infected or exposed breast prosthesis: a single surgeon’s 15-year experience with 69 patients. Plast Reconstr Surg 125:1074–1084. [CrossRef]
35. Henriksen TF, Fryzek JP, Hölmich LR,McLaughlin JK, Kjøller K, Høyer AP, Olsen JH, Friis S. 2005. Surgical intervention and capsular contracture after breast augmentation: a prospective study of risk factors. Ann Plast Surg 54:343–351. [CrossRef]
36. Ravi B, Croxford R, Hollands S, Paterson JM, Bogoch E, Kreder H, Hawker GA. 2014. Increased risk of complications following total joint arthroplasty in patients with rheumatoid arthritis. Arthritis Rheumatol 66:254–263. [CrossRef]
37. Bongartz T, Halligan CS, Osmon DR, Reinalda MS, Bamlet WR, Crowson CS, Hanssen AD, Matteson EL. 2008. Incidence and risk factors of prosthetic joint infection after total hip or knee replacement in patients with rheumatoid arthritis. Arthritis Rheum 59:1713–1720. [CrossRef]
38. Kaspar S, de V de Beer J. 2005. Infection in hip arthroplasty after previous injection of steroid. J Bone Joint Surg Br 87:454–457. [CrossRef]
39. Papavasiliou AV, Isaac DL, Marimuthu R, Skyrme A, Armitage A. 2006. Infection in knee replacements after previous injection of intra-articular steroid. J Bone Joint Surg Br 88:321–323. [CrossRef]
40. Berbari EF, Marculescu C, Sia I, Lahr BD, Hanssen AD, Steckelberg JM, Gullerud R, Osmon DR. 2007. Culture-negative prosthetic joint infection. Clin Infect Dis 45:1113–1119. [CrossRef]
41. Gomez E, Cazanave C, Cunningham SA, Greenwood-Quaintance KE, Steckelberg JM, Uhl JR, Hanssen AD, Karau MJ, Schmidt SM, Osmon DR, Berbari EF, Mandrekar J, Patel R. 2012. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 50:3501–3508. [CrossRef]
42. Parvizi J, Erkocak OF, Della Valle CJ. 2014. Culture-negative periprosthetic joint infection. J Bone Joint Surg Am 96:430–436. [CrossRef]
43. Berbari EF, Osmon DR, Duffy MC, Harmssen RN, Mandrekar JN, Hanssen AD, Steckelberg JM. 2006. Outcome of prosthetic joint infection in patients with rheumatoid arthritis: the impact of medical and surgical therapy in 200 episodes. Clin Infect Dis 42:216–223. [CrossRef]
44. Klatt BA, Steele GD, Fedorka CJ, Sánchez AI, Chen AF, Crossett LS. 2013. Solid organ transplant patients experience high rates of infection and other complications after total knee arthroplasty. J Arthroplasty 28:960–963. [CrossRef]
45. Bennett DM, Shekhel T, Radelet M, Miller MD. 2014. Isolated Lactobacillus chronic prosthetic knee infection. Orthopedics 37:e83–e86. [CrossRef]
46. Chavada R, Keighley C, Quadri S, Asghari R, Hofmeyr A, Foo H. 2014. Uncommon manifestations of Listeria monocytogenes infection. BMC Infect Dis 14:641. [CrossRef]
47. Shah NB, Tande AJ, Patel R, Berbari EF. 2015. Anaerobic prosthetic joint infection. Anaerobe 36:1–8. [CrossRef]
48. Mehta H, Mackie I. 2004. Prosthetic joint infection with Pasturella multocida following cat scratch: a report of 2 cases. J Arthroplasty 19:525–527. [CrossRef]
49. Gupta A, Berbari EF, Osmon DR, Virk A. 2014. Prosthetic joint infection due to Salmonella species: a case series. BMC Infect Dis 14:633. [CrossRef]
50. Marchevsky AM, Damsker B, Green S, Tepper S. 1985. The clinicopathological spectrum of non-tuberculous mycobacterial osteoarticular infections. J Bone Joint Surg Am 67:925–929.
51. Spinner RJ, Sexton DJ, Goldner RD, Levin LS. 1996. Periprosthetic infections due to Mycobacterium tuberculosis in patients with no prior history of tuberculosis. J Arthroplasty 11:217–222. [CrossRef]
52. Zimmerli W, Trampuz A, Ochsner PE. 2004. Prosthetic-joint infections. N Engl J Med 351:1645–1654. [CrossRef]
53. Shahi A, Deirmengian C, Higuera C, Chen A, Restrepo C, Zmistowski B, Parvizi J. 2015. Premature therapeutic antimicrobial treatments can compromise the diagnosis of late periprosthetic joint infection. Clin Orthop Relat Res 473:2244–2249. [CrossRef]
54. Parvizi J, Gehrke T; International Consensus Group on Periprosthetic Joint Infection. 2014. Definition of periprosthetic joint infection. J Arthroplasty 29:1331. [CrossRef]
55. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR; Infectious Diseases Society of America. 2013. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:1–10. [CrossRef]
56. Tsaras G, Maduka-Ezeh A, Inwards CY, Mabry T, Erwin PJ, Murad MH, Montori VM, West CP, Osmon DR, Berbari EF. 2012. Utility of intraoperative frozen section histopathology in the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am 94:1700–1711. [CrossRef]
57. Butler-Wu SM, Burns EM, Pottinger PS, Magaret AS, Rakeman JL, Matsen FA III, Cookson BT. 2011. Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. J Clin Microbiol 49:2490–2495. [CrossRef]
58. Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, Steckelberg J, Osmon D. 2010. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am 92:2102–2109. [CrossRef]
59. Austin MS, Ghanem E, Joshi A, Lindsay A, Parvizi J. 2008. A simple, cost-effective screening protocol to rule out periprosthetic infection. J Arthroplasty 23:65–68. [CrossRef]
60. Trampuz A, Hanssen AD, Osmon DR, Mandrekar J, Steckelberg JM, Patel R. 2004. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am J Med 117:556–562. [CrossRef]
61. Parvizi J, Jacovides C, Antoci V, Ghanem E. 2011. Diagnosis of periprosthetic joint infection: the utility of a simple yet unappreciated enzyme. J Bone Joint Surg Am 93:2242–2248. [CrossRef]
62. Della Valle CJ, Sporer SM, Jacobs JJ, Berger RA, Rosenberg AG, Paprosky WG. 2007. Preoperative testing for sepsis before revision total knee arthroplasty. J Arthroplasty 22(Suppl 2):90–93. [CrossRef]
63. Bedair H, Ting N, Jacovides C, Saxena A, Moric M, Parvizi J, Della Valle CJ. 2011. The Mark Coventry Award: diagnosis of early postoperative TKA infection using synovial fluid analysis. Clin Orthop Relat Res 469:34–40. [CrossRef]
64. Yi PH, Cross MB, Moric M, Sporer SM, Berger RA, Della Valle CJ. 2014. The 2013 Frank Stinchfield Award: diagnosis of infection in the early postoperative period after total hip arthroplasty. Clin Orthop Relat Res 472:424–429. [CrossRef]
65. Cipriano CA, Brown NM, Michael AM, Moric M, Sporer SM, Della Valle CJ. 2012. Serum and synovial fluid analysis for diagnosing chronic periprosthetic infection in patients with inflammatory arthritis. J Bone Joint Surg Am 94:594–600. [CrossRef]
66. Parvizi J, Jacovides C, Adeli B, Jung KA, Hozack WJ. 2012. Mark B. Coventry Award: synovial C-reactive protein: a prospective evaluation of a molecular marker for periprosthetic knee joint infection. Clin Orthop Relat Res 470:54–60. [CrossRef]
67. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Booth RE Jr, Parvizi J. 2015. The alpha-defensin test for periprosthetic joint infection outperforms the leukocyte esterase test strip. Clin Orthop Relat Res 473:198–203. [CrossRef]
68. Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. 2014. Combined measurement of synovial fluid α-defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection. J Bone Joint Surg Am 96:1439–1445. [CrossRef]
69. Hsieh PH, Lee MS, Hsu KY, Chang YH, Shih HN, Ueng SW. 2009. Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis 49:1036–1043. [CrossRef]
70. Sendi P, Frei R, Maurer TB, Trampuz A, Zimmerli W, Graber P. 2010. Escherichia coli variants in periprosthetic joint infection: diagnostic challenges with sessile bacteria and sonication. J Clin Microbiol 48:1720–1725. [CrossRef]
71. Anderson SW, Stapp JR, Burns JL, Qin X. 2007. Characterization of small-colony-variant Stenotrophomonas maltophilia isolated from the sputum specimens of five patients with cystic fibrosis. J Clin Microbiol 45:529–535. [CrossRef]
72. Ho G Jr. 2001. Bacterial arthritis. Curr Opin Rheumatol 13:310–314. [CrossRef]
73. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD. 1995. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin infect Dis 20:95–102. [CrossRef]
74. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. 2006. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43:961–967. [CrossRef]
75. Garcia LS, York MK. 2010. Aerobic bacteriology, p. 3.2.1.17. In Garcia LS (ed), Clinical Microbiology Procedures Handbook. 3rd ed. ASM Press, Washington, DC.
76. Donlan RM. 2005. New approaches for the characterization of prosthetic joint biofilms. Clin Orthop Relat Res 437:12–19. [CrossRef]
77. Lee A, Mirrett S, Reller LB, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol 45:3546–3548. [CrossRef]
78. DeHaan A, Huff T, Schabel K, Doung YC, Hayden J, Barnes P. 2013. Multiple cultures and extended incubation for hip and knee arthroplasty revision: impact on clinical care. J Arthroplasty 28(8 Suppl):59–65. [CrossRef]
79. Atkins BL, Athanasou N, Deeks JJ, Crook DW, Simpson H, Peto TE, McLardy-Smith P, Berendt AR. 1998. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J Clin Microbiol 36:2932–2939.
80. Bourbeau P, Riley J, Heiter BJ, Master R, Young C, Pierson C. 1998. Use of the BacT/Alert blood culture system for culture of sterile body fluids other than blood. J Clin Microbiol 36:3273–3277.
81. Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, Osmon DR, McDowell A, Patrick S, Steckelberg JM, Mandrekar JN, Fernandez Sampedro M, Patel R. 2009. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 47:1878–1884. [CrossRef]
82. Schäfer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L. 2008. Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis 47:1403–1409. [CrossRef]
83. Roux AL, Sivadon-Tardy V, Bauer T, Lortat-Jacob A, Herrmann JL, Gaillard JL, Rottman M. 2011. Diagnosis of prosthetic joint infection by beadmill processing of a periprosthetic specimen. Clin Microbiol Infect 17:447–450. [CrossRef]
84. Kobayashi H, Oethinger M, Tuohy MJ, Procop GW, Bauer TW. 2009. Improved detection of biofilm-formative bacteria by vortexing and sonication: a pilot study. Clin Orthop Relat Res 467:1360–1364. [CrossRef]
85. Portillo ME, Salvadó M, Trampuz A, Plasencia V, Rodriguez-Villasante M, Sorli L, Puig L, Horcajada JP. 2013. Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol 51:591–594. [CrossRef]
86. Monsen T, Lövgren E, Widerström M, Wallinder L. 2009. In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections. J Clin Microbiol 47:2496–2501. [CrossRef]
87. Harrington SM. 2014. If specimen collection and processing guidelines fall, does anyone hear them? Pre-analytical conundrums in clinical microbiology. Clin Microbiol Newsl 36:105–114. [CrossRef]
88. Oliva A, Pavone P, D’Abramo A, Iannetta M, Mastroianni CM, Vullo V. 2016. Role of sonication in the microbiological diagnosis of implant-associated infections: beyond the orthopedic prosthesis. Adv Exp Med Biol 897:85–102. [CrossRef]
89. Kipp F, Kahl BC, Becker K, Baron EJ, Proctor RA, Peters G, von Eiff C. 2005. Evaluation of two chromogenic agar media for recovery and identification of Staphylococcus aureus small-colony variants. J Clin Microbiol 43:1956–1959. [CrossRef]
90. Kipp F, Becker K, Peters G, von Eiff C. 2004. Evaluation of different methods to detect methicillin resistance in small-colony variants of Staphylococcus aureus. J Clin Microbiol 42:1277–1279. [CrossRef]
91. Kahl BC. 2014. Small colony variants (SCVs) of Staphylococcus aureus—a bacterial survival strategy. Infect Genet Evol 21:515–522. [CrossRef]
92. Nonhoff C, Roisin S, Hallin M, Denis O. 2012. Evaluation of Clearview Exact PBP2a, a new immunochromatographic assay, for detection of low-level methicillin-resistant Staphylococcus aureus (LL-MRSA). J Clin Microbiol 50:3359–3360. [CrossRef]
93. Portillo ME, Salvadó M, Sorli L, Alier A, Martínez S, Trampuz A, Gómez J, Puig L, Horcajada JP. 2012. Multiplex PCR of sonication fluid accurately differentiates between prosthetic joint infection and aseptic failure. J Infect 65:541–548. [CrossRef]
94. Cazanave C, Greenwood-Quaintance KE, Hanssen AD, Karau MJ, Schmidt SM, Gomez Urena EO, Mandrekar JN, Osmon DR, Lough LE, Pritt BS, Steckelberg JM, Patel R. 2013. Rapid molecular microbiologic diagnosis of prosthetic joint infection. J Clin Microbiol 51:2280–2287. [CrossRef]
95. Safdar N, Fine JP, Maki DG. 2005. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 142:451–466. [CrossRef]
96. Park KH, Lee MS, Lee SO, Choi SH, Sung H, Kim MN, Kim YS, Woo JH, Kim SH. 2014. Diagnostic usefulness of differential time to positivity for catheter-related candidemia. J Clin Microbiol 52:2566–2572. [CrossRef]
97. Ben-Ami R, Weinberger M, Orni-Wasserlauff R, Schwartz D, Itzhaki A, Lazarovitch T, Bash E, Aharoni Y, Moroz I, Giladi M. 2008. Time to blood culture positivity as a marker for catheter-related candidemia. J Clin Microbiol 46:2222–2226. [CrossRef]
98. Bouza E, Alcalá L, Muñoz P, Martín-Rabadán P, Guembe M, Rodríguez-Créixems M, GEIDI and the COMIC Study Groups. 2013. Can microbiologists help to assess catheter involvement in candidaemic patients before removal? Clin Microbiol Infect 19:E129–E135. [CrossRef]
99. Erb S, Frei R, Schregenberger K, Dangel M, Nogarth D, Widmer AF. 2014. Sonication for diagnosis of catheter-related infection is not better than traditional roll-plate culture: a prospective cohort study with 975 central venous catheters. Clin Infect Dis 59:541–544. [CrossRef]
100. Zandri G, Pasquaroli S, Vignaroli C, Talevi S, Manso E, Donelli G, Biavasco F. 2012. Detection of viable but non-culturable staphylococci in biofilms from central venous catheters negative on standard microbiological assays. Clin Microbiol Infect 18:E259–E261. [CrossRef]
101. Kite P, Dobbins BM, Wilcox MH, McMahon MJ. 1999. Rapid diagnosis of central-venous-catheter-related bloodstream infection without catheter removal. Lancet 354:1504–1507. [CrossRef]
102. Krause R, Salzer HF, Hönigl M, Valentin T, Auner HW, Zollner-Schwetz I. 2010. Comparison of fluorescence in situ hybridisation using peptide nucleic acid probes, Gram stain/acridine orange leukocyte cytospin and differential time to positivity methods for detection of catheter-related bloodstream infection in patients after haematopoietic stem cell transplantation. Clin Microbiol Infect 16:1591–1593. [CrossRef]
103. Krause R, Auner HW, Gorkiewicz G, Wölfler A, Daxboeck F, Linkesch W, Krejs GJ, Wenisch C, Reisinger EC. 2004. Detection of catheter-related bloodstream infections by the differential-time-to-positivity method and gram stain-acridine orange leukocyte cytospin test in neutropenic patients after hematopoietic stem cell transplantation. J Clin Microbiol 42:4835–4837. [CrossRef]
104. Guembe M, Rodríguez-Créixems M, Sánchez-Carrillo C, Martín-Rabadán P, Bouza E. 2012. Differential time to positivity (DTTP) for the diagnosis of catheter-related bloodstream infection: do we need to obtain one or more peripheral vein blood cultures? Eur J Clin Microbiol Infect Dis 31:1367–1372. [CrossRef]
105. Krause R, Valentin T, Salzer H, Hönigl M, Valentin A, Auner H, Zollner-Schwetz I. 2013. Which lumen is the source of catheter-related bloodstream infection in patients with multi-lumen central venous catheters? Infection 41:49–52. [CrossRef]
106. Freeman JT, Elinder-Camburn A, McClymont C, Anderson DJ, Bilkey M, Williamson DA, Berkahn L, Roberts SA. 2013. Central line-associated bloodstream infections in adult hematology patients with febrile neutropenia: an evaluation of surveillance definitions using differential time to blood culture positivity. Infect Control Hosp Epidemiol 34:89–92. [CrossRef]
107. Boyce JM, Nadeau J, Dumigan D, Miller D, Dubowsky C, Reilly L, Hannon CV. 2013. Obtaining blood cultures by venipuncture versus from central lines: impact on blood culture contamination rates and potential effect on central line-associated bloodstream infection reporting. Infect Control Hosp Epidemiol 34:1042–1047. [CrossRef]
108. Macadam SA, Clugston PA, Germann ET. 2004. Retrospective case review of capsular contracture after two-stage breast reconstruction: is colonization of the tissue expander pocket associated with subsequent implant capsular contracture? Ann Plast Surg 53:420–424. [CrossRef]
109. Rieger UM, Pierer G, Lüscher NJ, Trampuz A. 2009. Sonication of removed breast implants for improved detection of subclinical infection. Aesthetic Plast Surg 33:404–408. [CrossRef]
110. Rieger UM, Mesina J, Kalbermatten DF, Haug M, Frey HP, Pico R, Frei R, Pierer G, Lüscher NJ, Trampuz A. 2013. Bacterial biofilms and capsular contracture in patients with breast implants. Br J Surg 100:768–774. [CrossRef]
111. Del Pozo JL, Tran NV, Petty PM, Johnson CH, Walsh MF, Bite U, Clay RP, Mandrekar JN, Piper KE, Steckelberg JM, Patel R. 2009. Pilot study of association of bacteria on breast implants with capsular contracture. J Clin Microbiol 47:1333–1337. [CrossRef]
112. Hughes JG, Vetter EA, Patel R, Schleck CD, Harmsen S, Turgeant LT, Cockerill FR III. 2001. Culture with BACTEC Peds Plus/F bottle compared with conventional methods for detection of bacteria in synovial fluid. J Clin Microbiol 39:4468–4471. [CrossRef]
113. Qu X, Zhai Z, Wu C, Jin F, Li H, Wang L, Liu G, Liu X, Wang W, Li H, Zhang X, Zhu Z, Dai K. 2013. Preoperative aspiration culture for preoperative diagnosis of infection in total hip or knee arthroplasty. J Clin Microbiol 51:3830–3834. [CrossRef]
114. Larsen LH, Lange J, Xu Y, Schønheyder HC. 2012. Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995. J Med Microbiol 61:309–316. [CrossRef]
115. Font-Vizcarra L, García S, Martínez-Pastor JC, Sierra JM, Soriano A. 2010. Blood culture flasks for culturing synovial fluid in prosthetic joint infections. Clin Orthop Relat Res 468:2238–2243. [CrossRef]
116. Lee MS, Chang WH, Chen S-C, Hsieh PH, Shih HN, Ueng SWN, Lee GB. 2013. Molecular diagnosis of periprosthetic joint infection by quantitative RT-PCR of bacterial 16S ribosomal RNA. Scientific World Journal 2013:950548. [CrossRef]
117. Aggarwal VK, Higuera C, Deirmengian G, Parvizi J, Austin MS. 2013. Swab cultures are not as effective as tissue cultures for diagnosis of periprosthetic joint infection. Clin Orthop Relat Res 471:3196–3203. [CrossRef]
118. Hughes HC, Newnham R, Athanasou N, Atkins BL, Bejon P, Bowler IC. 2011. Microbiological diagnosis of prosthetic joint infections: a prospective evaluation of four bacterial culture media in the routine laboratory. Clin Microbiol Infect 17:1528–1530. [CrossRef]
119. Blackmur JP, Tang EY, Dave J, Simpson AH. 2014. Use of broth cultures peri-operatively to optimise the microbiological diagnosis of musculoskeletal implant infections. Bone Joint J 96-B:1566–1570. [CrossRef]
120. Minassian AM, Newnham R, Kalimeris E, Bejon P, Atkins BL, Bowler IC. 2014. Use of an automated blood culture system (BD BACTEC™) for diagnosis of prosthetic joint infections: easy and fast. BMC Infect Dis 14:233. [CrossRef]
121. Morgan PM, Sharkey P, Ghanem E, Parvizi J, Clohisy JC, Burnett RS, Barrack RL. 2009. The value of intraoperative Gram stain in revision total knee arthroplasty. J Bone Joint Surg Am 91:2124–2129. [CrossRef]
122. Johnson AJ, Zywiel MG, Stroh DA, Marker DR, Mont MA. 2010. Should gram stains have a role in diagnosing hip arthroplasty infections? Clin Orthop Relat Res 468:2387–2391. [CrossRef]
123. Zywiel MG, Stroh DA, Johnson AJ, Marker DR, Mont MA. 2011. Gram stains have limited application in the diagnosis of infected total knee arthroplasty. Int J Infect Dis 15:e702–e705. [CrossRef]
124. Kunimatsu J, Ohmagari N, Yoshizawa A. 2013. Is Gram staining a diagnostic tool or a guide for optimal empirical therapy? Int J Infect Dis 17:e136. [CrossRef]
125. Bémer P, Plouzeau C, Tande D, Léger J, Giraudeau B, Valentin AS, Jolivet-Gougeon A, Vincent P, Corvec S, Gibaud S, Juvin ME, Héry-Arnaud G, Lemarié C, Kempf M, Bret L, Quentin R, Coffre C, de Pinieux G, Bernard L, Burucoa C, Centre de Référence des Infections Ostéo-articulaires du Grand Ouest (CRIOGO) Study Team. 2014. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study. J Clin Microbiol 52:3583–3589. [CrossRef]
126. Ryu SY, Greenwood-Quaintance KE, Hanssen AD, Mandrekar JN, Patel R. 2014. Low sensitivity of periprosthetic tissue PCR for prosthetic knee infection diagnosis. Diagn Microbiol Infect Dis 79:448–453. [CrossRef]
127. Metso L, Mäki M, Tissari P, Remes V, Piiparinen P, Kirveskari J, Tarkka E, Anttila VJ, Vaara M, Huotari K. 2014. Efficacy of a novel PCR- and microarray-based method in diagnosis of a prosthetic joint infection. Acta Orthop 85:165–170. [CrossRef]
128. Holinka J, Bauer L, Hirschl AM, Graninger W, Windhager R, Presterl E. 2011. Sonication cultures of explanted components as an add-on test to routinely conducted microbiological diagnostics improve pathogen detection. J Orthop Res 29:617–622. [CrossRef]
129. Zhai Z, Li H, Qin A, Liu G, Liu X, Wu C, Li H, Zhu Z, Qu X, Dai K. 2014. Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty. J Clin Microbiol 52:1730–1736. [CrossRef]
130. Puig-Verdié L, Alentorn-Geli E, González-Cuevas A, Sorlí L, Salvadó M, Alier A, Pelfort X, Portillo ME, Horcajada JP. 2013. Implant sonication increases the diagnostic accuracy of infection in patients with delayed, but not early, orthopaedic implant failure. Bone Joint J 95-B:244–249. [CrossRef]
131. Portillo ME, Salvadó M, Alier A, Martínez S, Sorli L, Horcajada JP, Puig L. 2014. Advantages of sonication fluid culture for the diagnosis of prosthetic joint infection. J Infect 69:35–41. [CrossRef]
132. Portillo ME, Salvadó M, Trampuz A, Plasencia V, Rodriguez-Villasante M, Sorli L, Puig L, Horcajada JP. 2013. Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol 51:591–594. [CrossRef]
133. Esteban J, Alvarez-Alvarez B, Blanco A, Fernández-Roblas R, Gadea I, Garcia-Cañete J, Sandoval E, Valdazo M. 2013. Prolonged incubation time does not increase sensitivity for the diagnosis of implant-related infection using samples prepared by sonication of the implants. Bone Joint J 95-B:1001–1006. [CrossRef]
134. Portillo ME, Salvadó M, Trampuz A, Siverio A, Alier A, Sorli L, Martínez S, Pérez-Prieto D, Horcajada JP, Puig-Verdie L. 2015. Improved diagnosis of orthopedic implant-associated infection by inoculation of sonication fluid into blood culture bottles. J Clin Microbiol 53:1622–1627. [CrossRef]
135. Shen H, Tang J, Wang Q, Jiang Y, Zhang X. 2015. Sonication of explanted prosthesis combined with incubation in BD bactec bottles for pathogen-based diagnosis of prosthetic joint infection. J Clin Microbiol 53:777–781. [CrossRef]
136. Greenwood-Quaintance KE, Uhl JR, Hanssen AD, Sampath R, Mandrekar JN, Patel R. 2014. Diagnosis of prosthetic joint infection by use of PCR-electrospray ionization mass spectrometry. J Clin Microbiol 52:642–649. [CrossRef]
137. Vasoo S, Cunningham SA, Greenwood-Quaintance KE, Mandrekar JN, Hanssen AD, Abdel MP, Osmon DR, Berbari EF, Patel R. 2015. Evaluation of the Filmarray blood culture ID panel on biofilms dislodged from explanted arthroplasties for prosthetic joint infection diagnosis. J Clin Microbiol 53:2790–2792. [CrossRef]
microbiolspec.DMIH2-0004-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0004-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0004-2015
2016-07-08
2017-03-27

Abstract:

The immunocompromised host is a particularly vulnerable population in whom routine and unusual infections can easily and frequently occur. Prosthetic devices are commonly used in these patients and the infections associated with those devices present a number of challenges for both the microbiologist and the clinician. Biofilms play a major role in device-related infections, which may contribute to failed attempts to recover organisms from routine culture methods. Moreover, device-related microorganisms can be difficult to eradicate by antibiotic therapy alone. Changes in clinical practice and advances in laboratory diagnostics have provided significant improvements in the detection and accurate diagnosis of device-related infections. Disruption of the bacterial biofilm plays an essential role in recovering the causative agent in culture. Various culture and nucleic acid amplification techniques are more accurate to guide directed treatment regimens. This chapter reviews the performance characteristics of currently available diagnostic assays and summarizes published guidelines, where available, for addressing suspected infected prosthetic devices.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Small-colony variants. SCV grows approximately 10X better on chocolate agar than on blood agar, incubated in ambient air at 35°C overnight. SCV grows approximately 10X better on blood agar than on MacConkey agar incubated in ambient air at 35°C overnight.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Management of the infected total-joint replacement. One-stage exchange criteria: applies to hip prosthesis only, susceptible to antibiotics with good penetration, adequate soft-tissue coverage, adequate residual bone requires no bone grafting, use antibiotic-impregnated bone cement for reimplantation. Two-stage exchange criteria: nonhip prosthesis OR poor soft-tissue coverage OR prior infected prosthetic joint OR difficult-to-treat organism. Modified with permission from reference ( 55 ).

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Acridine orange. Smear stained with acridine-orange fluorescent dye. Microscopic observation at 1,000X reveals cocci in clusters, bacilli, and budding yeast. Photo courtesy of Jeffrey W. Prichard, D.O., Geisinger Health System.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Prosthetic-joint culture comparison. sonicate fluid with (>100 CFU/10 ml) and (20–50 CFU/10 ml), periprosthetic tissue #1 with moderate and few , periprosthetic tissue #2 with moderate and few , synovial-fluid culture growing only, no .

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Guidelines for prosthetic-joint infection (PJI) diagnosis

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0004-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error