1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Selected Topics in Anaerobic Bacteriology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Deirdre L. Church1
  • Editors: Randall T. Hayden2, Donna M. Wolk3, Karen C. Carroll4, Yi-Wei Tang5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Pathology & Laboratory Medicine and Medicine, University of Calgary, and Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada T2N 1N4; 2: St. Jude Children’s Research Hospital, Memphis, TN; 3: Geisinger Clinic, Danville, PA; 4: Johns Hopkins University Hospital, Baltimore, MD; 5: Memorial Sloan-Kettering Institute, New York, NY
  • Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
  • Received 05 June 2015 Accepted 27 August 2015 Published 12 August 2016
  • Deirdre L. Church, deirdre.church@cls.ab.ca, d.church@shaw.ca
image of Selected Topics in Anaerobic Bacteriology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Selected Topics in Anaerobic Bacteriology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0015-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0015-2015-2.gif
  • Abstract:

    Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent infection, and may become feasible for other conditions in the future.

  • Citation: Church D. 2016. Selected Topics in Anaerobic Bacteriology. Microbiol Spectrum 4(4):DMIH2-0015-2015. doi:10.1128/microbiolspec.DMIH2-0015-2015.

References

1. Taur Y, Pamer EG. 2013. The intestinal microbiota and susceptibility to infection in immunocompromised patients. Curr Opin Infect Dis 26:332–337. [PubMed][CrossRef]
2. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336:1268–1273. [PubMed][CrossRef]
3. Morgan XC, Huttenhower C. 2012. Chapter 12: Human microbiome analysis. PLoS Comp Biol 8:e1002808. doi:10.1371/journal.pcbi.1002808 [PubMed][CrossRef]
4. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. [PubMed][CrossRef]
5. Chen YE, Tsao H. 2013. The skin microbiome: current perspectives and future challenges. J Am Acad Dermatol 69:143–155. [PubMed][CrossRef]
6. Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, Jefferson KK; Vaginal Microbiome Consortium (additional members), Buck GA. 2012. Species-level classification of the vaginal microbiome. BMC Genomics 13(Suppl 8):S17. [PubMed]
7. Lamont RF, Sobel JD, Akins RA, Hassan SS, Chaiworapongsa T, Kusanovic JP, Romero R. 2011. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG 118:533–549. [PubMed][CrossRef]
8. Sweeney TE, Morton JM. 2013. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg 148:563–569. [PubMed][CrossRef]
9. Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. 2015. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis 21:1219–1228. [PubMed]
10. Sekirov I, Finlay BB. 2009. The role of the intestinal microbiota in enteric infection. J Physiol 587:4159–4167. [PubMed][CrossRef]
11. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323. [PubMed][CrossRef]
12. Vollaard EJ, Clasener HA. 1994. Colonization resistance. Antimicrob Agents Chemother 38:409–414. [PubMed][CrossRef]
13. Roghmann MC, McCarter RJ Jr, Brewrink J, Cross AS, Morris JG Jr. 1997. Clostridium difficile infection is a risk factor for bacteremia due to vancomycin-resistant enterococci (VRE) in VRE-colonized patients with acute leukemia. Clin Infect Dis 25:1056–1059. [PubMed][CrossRef]
14. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, Benecke A, Van Maele L, Sirard JC, Mueller AJ, Heikenwalder M, Macpherson AJ, Strugnell R, von Mering C, Hardt WD. 2010. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog 6:e1001097. doi:10.1371/journal.ppat.1001097 [CrossRef]
15. Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL, Croxen MA, Finlay BB. 2011. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One 6:e20338. doi:10.1371/journal.pone.0020338 [CrossRef]
16. Stecher B, Hardt WD. 2011. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91. [PubMed][CrossRef]
17. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, Lipuma L, Ling L, Gobourne A, No D, Taur Y, Jenq RR, van den Brink MR, Xavier JB, Pamer EG. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973. [PubMed][CrossRef]
18. Hentges DJ, Freter R. 1962. In vivo and in vitro antagonism of intestinal bacteria against Shigella flexneri. I. Correlation between various tests. J Infect Dis 110:30–37. [PubMed][CrossRef]
19. Hughes V. 2012. Microbiome: cultural differences. Nature 492:S14–S15. [PubMed][CrossRef]
20. Vollaard EJ, Clasener HA, Janssen AJ. 1990. The contribution of Escherichia coli to microbial colonization resistance. J Antimicrob Chemother 26:411–418. [PubMed][CrossRef]
21. Vollaard EJ, Clasener HA, Janssen AJ, Wynne HJ. 1990. Influence of cefotaxime on microbial colonization resistance in healthy volunteers. J Antimicrob Chemother 26:117–123. [PubMed][CrossRef]
22. Vollaard EJ, Clasener HA, Janssen AJ, Wynne HJ. 1990. Influence of amoxycillin on microbial colonization resistance in healthy volunteers. A methodological study. J Antimicrob Chemother 25:861–871. [PubMed][CrossRef]
23. Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, Macpherson AJ, Hardt WD. 2010. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6:e1000711. doi:10.1371/journal.ppat.1000711 [CrossRef]
24. El-Sharif A, Elkhatib WF, Ashour HM. 2012. Nosocomial infections in leukemic and solid-tumor cancer patients: distribution, outcome and microbial spectrum of anaerobes. Future Microbiol 7:1423–1429. [PubMed][CrossRef]
25. Brook I. 2008. Microbiology and management of soft tissue and muscle infections. Int J Surg 6:328–338. [PubMed][CrossRef]
26. Brook I. 2010. The role of anaerobic bacteria in bacteremia. Anaerobe 16:183–189. [PubMed][CrossRef]
27. Goldstein EJ. 1996. Anaerobic bacteremia. Clin Infect Dis 23(Suppl 1):S97–S101. [PubMed][CrossRef]
28. Hasegawa M, Kamada N, Jiao Y, Liu MZ, Nuñez G, Inohara N. 2012. Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J Immunol 189:3085–3091. [PubMed][CrossRef]
29. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, Raad, II, Rolston KV, Young JA, Wingard JR; Infectious Diseases Society of America. 2011. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 52:e56–e93. [PubMed][CrossRef]
30. Gafter-Gvili A, Fraser A, Paul M, Vidal L, Lawrie TA, van de Wetering MD, Kremer LC, Leibovici L. 2012. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev 1:CD004386. [PubMed][CrossRef]
31. Finegold S, George WL. 1989. Anaerobic Infections in Humans. Academic Press, Inc, San Diego, CA.
32. Hofstad T. 1992. Virulence factors in anaerobic bacteria. Eur J Microbiol Infect Dis 11:1044–1048. [PubMed][CrossRef]
33. Duerden BI. 1994. Virulence factors in anaerobes. Clin Infect Dis 18(Suppl 4):S253–S259. [PubMed][CrossRef]
34. Holden J. 2010. Collection and transport of clinical specimens for anaerobic culture, chapter 4.2. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
35. Clinical and Laboratory Standards Institute (CLSI). 2014. Principles and Procedures for Detection of Anaerobes in Clinical Specimens; Approved Standard. CLSI document M56. Clinical and Laboratory Standards Institute, Wayne, PA.
36. Mangels J. 2010. Culture media for anaerobes, chapter 4.3. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
37. Mangels J. 2010. Incubation techniques for anaerobic bacteriology specimens, chapter 4.5. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
38. Summanen P. 2010. Rapid disk, spot tests, and other methods for the identification of anaerobes, chapter 4.6. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
39. Mangels J. 2010. Rapid biochemical tests (4 hours or less) for the identification of anaerobes, chapter 4.9. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
40. Mangels J. 2010. Commercial kit overnight biochemical systems for the identification of anaerobes, chapter 4.7. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
41. Mangels J. 2010. Rapid enzymatic systems for the identification of anaerobes, chapter 4.8. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed, vol. 1. ASM Press, Washington, DC.
42. Barba MJ, Fernández A, Oviaño M, Fernández B, Velasco D, Bou G. 2014. Evaluation of MALDI-TOF mass spectrometry for identification of anaerobic bacteria. Anaerobe 30:126–128. [PubMed][CrossRef]
43. Barreau M, Pagnier I, La Scola B. 2013. Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. Anaerobe 22:123–125. [PubMed][CrossRef]
44. Chean R, Kotsanas D, Francis MJ, Palombo EA, Jadhav SR, Awad MM, Lyras D, Korman TM, Jenkin GA. 2014. Comparing the identification of Clostridium spp. by two matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry platforms to 16S rRNA PCR sequencing as a reference standard: a detailed analysis of age of culture and sample preparation. Anaerobe 30:85–89. [PubMed][CrossRef]
45. Coltella L, Mancinelli L, Onori M, Lucignano B, Menichella D, Sorge R, Raponi M, Mancini R, Russo C. 2013. Advancement in the routine identification of anaerobic bacteria by MALDI-TOF mass spectrometry. Eur J Microbiol Infect Dis 32:1183–1192. [PubMed][CrossRef]
46. De Vreese K, Verhaegen J. 2013. Identification of coryneform Actinomyces neuii by MALDI-TOF MS: 5 case reports and review of literature. Acta Clin Belg 68:210–214. [PubMed][CrossRef]
47. Fenyvesi VS, Urbán E, Bartha N, Abrók M, Kostrzewa M, Nagy E, Minárovits J, Sóki J. 2014. Use of MALDI-TOF/MS for routine detection of cfiA gene-positive Bacteroides fragilis strains. Int J Antimicrob Agents 44:474–475. [PubMed][CrossRef]
48. Fournier R, Wallet F, Grandbastien B, Dubreuil L, Courcol R, Neut C, Dessein R. 2012. Chemical extraction versus direct smear for MALDI-TOF mass spectrometry identification of anaerobic bacteria. Anaerobe 18:294–297. [PubMed][CrossRef]
49. Hsu YM, Burnham CA. 2014. MALDI-TOF MS identification of anaerobic bacteria: assessment of pre-analytical variables and specimen preparation techniques. Diagn Microbiol Infect Dis 79:144–148. [PubMed][CrossRef]
50. Jamal WY, Shahin M, Rotimi VO. 2013. Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. J Med Microbiol 62:540–544. [PubMed][CrossRef]
51. Kierzkowska M, Majewska A, Kuthan RT, Sawicka-Grzelak A, Mlynarczyk G. 2013. A comparison of Api 20A vs MALDI-TOF MS for routine identification of clinically significant anaerobic bacterial strains to the species level. J Microbiol Methods 92:209–212. [PubMed][CrossRef]
52. La Scola B, Fournier PE, Raoult D. 2011. Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. Anaerobe 17:106–112. [PubMed][CrossRef]
53. Li Y, Gu B, Liu G, Xia W, Fan K, Mei Y, Huang P, Pan S. 2014. MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria. J Thorac Dis 6:517–523. [PubMed]
54. Meex C, Neuville F, Descy J, Huynen P, Hayette MP, De Mol P, Melin P. 2012. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction. J Med Microbiol 61:1511–1516. [PubMed][CrossRef]
55. Nagy E, Becker S, Kostrzewa M, Barta N, Urbán E. 2012. The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61:1393–1400. [PubMed][CrossRef]
56. Veloo AC, Erhard M, Welker M, Welling GW, Degener JE. 2011. Identification of Gram-positive anaerobic cocci by MALDI-TOF mass spectrometry. Syst Appl Microbiol 34:58–62. [PubMed][CrossRef]
57. Veloo AC, Welling GW, Degener JE. 2011. The identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe 17:211–212. [PubMed][CrossRef]
58. Clinical and Laboratory Standards Institute (CLSI). 2008. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing; Approved Guideline, p 1–73, MM18-A. CLSI, Wayne, PA.
59. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14:908–934. [PubMed][CrossRef]
60. Simmon KE, Croft AC, Petti CA. 2006. Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. J Clin Microbiol 44:4400–4406. [PubMed][CrossRef]
61. Stingu CS, Borgmann T, Rodloff AC, Vielkind P, Jentsch H, Schellenberger W, Eschrich K. 2015. Rapid identification of oral Actinomyces species cultivated from subgingival biofilm by MALDI-TOF-MS. J Oral Microbiol 7:26110. [PubMed][CrossRef]
62. Murphy EC, Frick IM. 2013. Gram-positive anaerobic cocci—commensals and opportunistic pathogens. FEMS Microbiol Rev 37:520–553. [PubMed][CrossRef]
63. Couturier MR, Slechta ES, Goulston C, Fisher MA, Hanson KE. 2012. Leptotrichia bacteremia in patients receiving high-dose chemotherapy. J Clin Microbiol 50:1228–1232. [PubMed][CrossRef]
64. Stîngu CS, Rodloff AC, Jentsch H, Schaumann R, Eschrich K. 2008. Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol 23:372–376. [PubMed][CrossRef]
65. Novak A, Rubic Z, Dogas V, Goic-Barisic I, Radic M, Tonkic M. 2015. Antimicrobial susceptibility of clinically isolated anaerobic bacteria in a University Hospital Centre Split, Croatia in 2013. Anaerobe 31:31–36. [PubMed][CrossRef]
66. Brook I, Wexler HM, Goldstein EJC. 2013. Antiaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev 26:526–546. [PubMed][CrossRef]
67. Schuetz AN. 2014. Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Clin Infect Dis 59:698–705. [PubMed][CrossRef]
68. Sadarangani SP, Cunningham SA, Jeraldo PR, Wilson JW, Khare R, Patel R. 2015. Metronidazole- and carbapenem-resistant Bacteroides thetaiotaomicron isolated in Rochester, Minnesota in 2014. Antimicrob Agents Chemother 59:4157–4161. [PubMed][CrossRef]
69. Meggersee R, Abratt V. 2015. The occurrence of antibiotic resistance genes in drug resistant Bacteroides fragilis isolates from Groote Schuur Hospital, South Africa. Anaerobe 32:1–6. [PubMed][CrossRef]
70. Karlowsky JA, Zhanel GG, Hammond GW, Rubinstein E, Wylie J, Du T, Mulvey MR, Alfa MJ. 2012. Multidrug-resistant North American pulsotype 2 Clostridium difficile was the predominant toxigenic hospital-acquired strain in the province of Manitoba, Canada, in 2006-2007. J Med Microbiol 61:693–700. [PubMed][CrossRef]
71. Liu CY, Huang YT, Liao CH, Yen LC, Lin HY, Hsueh PR. 2008. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother 52:3161–3168. [PubMed][CrossRef]
72. Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. [PubMed][CrossRef]
73. Veloo AC, van Winkelhoff AJ. 2015. Antibiotic susceptibility profiles of anaerobic pathogens in The Netherlands. Anaerobe 31:19–24. [PubMed][CrossRef]
74. Nagy E, Urbán E, Nord CE; ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. 2011. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17:371–379. [PubMed][CrossRef]
75. Snydman DR, Jacobus NV, McDermott LA, Golan Y, Hecht DW, Goldstein EJ, Harrell L, Jenkins S, Newton D, Pierson C, Rihs JD, Yu VL, Venezia R, Finegold SM, Rosenblatt JE, Gorbach SL. 2010. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005-2007). Clin Infect Dis 50(Suppl 1):S26–S33. [PubMed][CrossRef]
76. Karlowsky JA, Walkty AJ, Adam HJ, Baxter MR, Hoban DJ, Zhanel GG. 2012. Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother 56:1247–1252. [PubMed][CrossRef]
77. Roberts SA, Shore KP, Paviour SD, Holland D, Morris AJ. 2006. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003. J Antimicrob Chemother 57:992–998. [PubMed][CrossRef]
78. Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, Patrick S. 2011. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 17:152–155. [PubMed][CrossRef]
79. Hartmeyer GN, Sóki J, Nagy E, Justesen US. 2012. Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microbiol 61:1784–1788. [PubMed][CrossRef]
80. Ank N, Sydenham TV, Iversen LH, Justesen US, Wang M. 2015. Characterisation of a multidrug-resistant Bacteroides fragilis isolate recovered from blood of a patient in Denmark using whole-genome sequencing. Int J Antimicrob Agents 46:117–121. [PubMed][CrossRef]
81. Centers for Disease Control and Prevention. 2013. Multidrug-resistant Bacteroides fragilis--Seattle, Washington, 2013. MMWR 62:694–696. [PubMed]
82. Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V, Wexler HM. 2013. Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 57:3767–3774. [PubMed][CrossRef]
83. Katsandri A, Papaparaskevas J, Pantazatou A, Petrikkos GL, Thomopoulos G, Houhoula DP, Avlamis A. 2006. Two cases of infections due to multidrug-resistant Bacteroides fragilis group strains. J Clin Microbiol 44:3465–3467. [PubMed][CrossRef]
84. Nagy E. 2010. Anaerobic infections: update on treatment considerations. Drugs 70:841–858. [PubMed][CrossRef]
85. Hecht DW. 2006. Anaerobes: antibiotic resistance, clinical significance, and the role of susceptibility testing. Anaerobe 12:115–121. [PubMed][CrossRef]
86. Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for Antimicrobial Susceptibility Testing for Anaerobic Bacteria (M11-A8). Clinical and Laboratory Standards Institute, Wayne, PA.
87. Clinical and Laboratory Standards institute (CLSI). 2015. Performance Standards for Antimicrobial Susceptibility Testing (M100–S25). Clinical Laboratory Standards Institute, Wayne, PA.
88. Gal M, Brazier JS. 2004. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54:109–116. [PubMed][CrossRef]
89. Rosenblatt JE, Gustafson DR. 1995. Evaluation of the Etest for susceptibility testing of anaerobic bacteria. Diagn Microbiol Infect Dis 22:279–284. [PubMed][CrossRef]
90. Citron DM, Ostovari MI, Karlsson A, Goldstein EJ. 1991. Evaluation of the E test for susceptibility testing of anaerobic bacteria. J Clin Microbiol 29:2197–2203. [PubMed]
91. Cormican MG, Erwin ME, Jones RN. 1996. False resistance to metronidazole by E-test among anaerobic bacteria investigations of contributing test conditions and medium quality. Diagn Microbiol Infect Dis 24:117–119. [PubMed][CrossRef]
92. Treviño M, Areses P, Peñalver MD, Cortizo S, Pardo F, del Molino ML, García-Riestra C, Hernández M, Llovo J, Regueiro BJ. 2012. Susceptibility trends of Bacteroides fragilis group and characterisation of carbapenemase-producing strains by automated REP-PCR and MALDI TOF. Anaerobe 18:37–43. [PubMed][CrossRef]
93. Legaria MC, Lumelsky G, Rodriguez V, Rosetti S. 2005. Clindamycin-resistant Fusobacterium varium bacteremia and decubitus ulcer infection. J Clin Microbiol 43:4293–4295. [PubMed][CrossRef]
94. Sydenham TV, Sóki J, Hasman H, Wang M, Justesen US; ESGAI (ESCMID Study Group on Anaerobic Infections). 2015. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe 31:59–64. [PubMed][CrossRef]
95. Salipante SJ, Kalapila A, Pottinger PS, Hoogestraat DR, Cummings L, Duchin JS, Sengupta DJ, Pergam SA, Cookson BT, Butler-Wu SM. 2015. Characterization of a multidrug-resistant, novel Bacteroides genomospecies. Emerg Infect Dis 21:95–98. [PubMed][CrossRef]
96. Lombardi DP, Engleberg NC. 1992. Anaerobic bacteremia: incidence, patient characteristics, and clinical significance. Am J Med 92:53–60. [CrossRef]
97. Blairon L, De Gheldre Y, Delaere B, Sonet A, Bosly A, Glupczynski Y. 2006. A 62-month retrospective epidemiological survey of anaerobic bacteraemia in a university hospital. Clin Microbiol Infect 12:527–532. [PubMed][CrossRef]
98. Hung MN, Chen SY, Wang JL, Chang SC, Hsueh PR, Liao CH, Chen YC. 2005. Community-acquired anaerobic bacteremia in adults: one-year experience in a medical center. J Microbiol Immunol Infect 38:436–443. [PubMed]
99. Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. 2007. Reemergence of anaerobic bacteremia. Clin Infect Dis 44:895–900. [PubMed][CrossRef]
100. Wong D, Aoki F, Rubinstein E. 2014. Bacteremia caused by Eggerthella lenta in an elderly man with a gastrointestinal malignancy: a case report. Can J Infect Dis Med Microbiol 25:e85–e86. [PubMed][CrossRef]
101. Aronoff DM, Ballard JD. 2009. Clostridium sordellii toxic shock syndrome. Lancet Infect Dis 9:725–726. [PubMed][CrossRef]
102. Matten J, Buechner V, Schwarz R. 2009. A rare case of Clostridium sordellii bacteremia in an immunocompromised patient. Infection 37:368–369. [PubMed][CrossRef]
103. Bhally HS, Lema C, Romagnoli M, Borek A, Wakefield T, Carroll KC. 2005. Leptotrichia buccalis bacteremia in two patients with acute myelogenous leukemia. Anaerobe 11:350–353. [PubMed][CrossRef]
104. Schrimsher JM, McGuirk JP, Hinthorn DR. 2013. Leptotrichia trevisanii sepsis after bone marrow transplantation. Emerg Infect Dis 19:1690–1691. [PubMed][CrossRef]
105. Pienaar C, Kruger AJ, Venter EC, Pitout JD. 2003. Anaerobiospirillum succiniciproducens bacteraemia. J Clin Pathol 56:316–318. [PubMed][CrossRef]
106. Verstreken I, Laleman W, Wauters G, Verhaegen J. 2012. Desulfovibrio desulfuricans bacteremia in an immunocompromised host with a liver graft and ulcerative colitis. J Clin Microbiol 50:199–201. [PubMed][CrossRef]
107. Robert R, Deraignac A, Le Moal G, Ragot S, Grollier G. 2008. Prognostic factors and impact of antibiotherapy in 117 cases of anaerobic bacteraemia. Eur J Clin Microbiol Infect Dis 27:671–678. [PubMed][CrossRef]
108. Gómez J, Baños V, Ruiz J, Herrero F, Pérez M, Pretel L, Canteras M, Valdes M. 1993. Clinical significance of anaerobic bacteremias in a general hospital. A prospective study from 1988 to 1992. Clin Investig 71:595–599. [PubMed]
109. Worth LJ, Slavin MA. 2009. Bloodstream infections in haematology: risks and new challenges for prevention. Blood Rev 23:113–122. [PubMed][CrossRef]
110. Lark RL, McNeil SA, VanderHyde K, Noorani Z, Uberti J, Chenoweth C. 2001. Risk factors for anaerobic bloodstream infections in bone marrow transplant recipients. Clin Infect Dis 33:338–343. [PubMed][CrossRef]
111. Mikulska M, Del Bono V, Raiola AM, Bruno B, Gualandi F, Occhini D, di Grazia C, Frassoni F, Bacigalupo A, Viscoli C. 2009. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: re-emergence of Gram-negative rods and increasing antibiotic resistance. Biol Blood Marrow Transplant 15:47–53. [PubMed][CrossRef]
112. Ngo JT, Parkins MD, Gregson DB, Pitout JD, Ross T, Church DL, Laupland KB. 2013. Population-based assessment of the incidence, risk factors, and outcomes of anaerobic bloodstream infections. Infection 41:41–48. [PubMed][CrossRef]
113. Hang’ombe MB, Mukamoto M, Kohda T, Sugimoto N, Kozaki S. 2004. Cytotoxicity of Clostridium septicum alpha-toxin: its oligomerization in detergent resistant membranes of mammalian cells. Microb Pathog 37:279–286. [PubMed][CrossRef]
114. Burns DA, Heap JT, Minton NP. 2010. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192:657–664. [PubMed][CrossRef]
115. Baron EJ. 2005. Cumitech #1C Blood Cultures IV. ASM Press, Washington, DC.
116. Cockerill FR III, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA II, Wilson WR. 2004. Optimal testing parameters for blood cultures. Clin Infect Dis 38:1724–1730. [PubMed][CrossRef]
117. Li J, Plorde JJ, Carlson LG. 1994. Effects of volume and periodicity on blood cultures. J Clin Microbiol 32:2829–2831. [PubMed]
118. Washington JA II. 1975. Blood cultures: principles and techniques. Mayo Clin Proc 50:91–98. [PubMed]
119. MacGregor RR, Beaty HN. 1972. Evaluation of positive blood cultures. Guidelines for early differentiation of contaminated from valid positive cultures. Arch Intern Med 130:84–87. [PubMed][CrossRef]
120. Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. 1983. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis 5:35–53. [PubMed][CrossRef]
121. Magadia RR, Weinstein MP. 2001. Laboratory diagnosis of bacteremia and fungemia. Infect Dis Clin North Am 15:1009–1024. [PubMed][CrossRef]
122. Richter SS, Beekmann SE, Croco JL, Diekema DJ, Koontz FP, Pfaller MA, Doern GV. 2002. Minimizing the workup of blood culture contaminants: implementation and evaluation of a laboratory-based algorithm. J Clin Microbiol 40:2437–2444. [PubMed][CrossRef]
123. Salventi JF, Davies TA, Randall EL, Whitaker S, Waters JR. 1979. Effect of blood dilution on recovery of organisms from clinical blood cultures in medium containing sodium polyanethol sulfonate. J Clin Microbiol 9:248–252. [PubMed]
124. Reimer LG, Wilson ML, Weinstein MP. 1997. Update on detection of bacteremia and fungemia. Clin Microbiol Rev 10:444–465. [PubMed]
125. Doern GV, Gantz NM. 1983. Detection of bacteremia in patients receiving antimicrobial therapy: an evaluation of the antimicrobial removal device and 16B medium. J Clin Microbiol 18:43–48. [PubMed]
126. Jorgensen JH, Mirrett S, McDonald LC, Murray PR, Weinstein MP, Fune J, Trippy CW, Masterson M, Reller LB. 1997. Controlled clinical laboratory comparison of BACTEC plus aerobic/F resin medium with BacT/Alert aerobic FAN medium for detection of bacteremia and fungemia. J Clin Microbiol 35:53–58. [PubMed]
127. Morris AJ, Wilson ML, Mirrett S, Reller LB. 1993. Rationale for selective use of anaerobic blood cultures. J Clin Microbiol 31:2110–2113. [PubMed]
128. Sharp SE, McLaughlin JC, Goodman JM, Moore J, Spanos SM, Keller DW III, Poppiti RJ Jr. 1993. Clinical assessment of anaerobic isolates from blood cultures. Diagn Microbiol Infect Dis 17:19–22. [CrossRef]
129. Zaidi AK, Knaut AL, Mirrett S, Reller LB. 1995. Value of routine anaerobic blood cultures for pediatric patients. J Pediatr 127:263–268. [PubMed][CrossRef]
130. Ortiz E, Sande MA. 2000. Routine use of anaerobic blood cultures: are they still indicated? Am J Med 108:445–447. [PubMed][CrossRef]
131. Riley JA, Heiter BJ, Bourbeau PP. 2003. Comparison of recovery of blood culture isolates from two BacT/ALERT FAN aerobic blood culture bottles with recovery from one FAN aerobic bottle and one FAN anaerobic bottle. J Clin Microbiol 41:213–217. [PubMed][CrossRef]
132. Hecht DW. 2007. Routine anaerobic blood cultures: back where we started? Clin Infect Dis 44:901–903. [PubMed][CrossRef]
133. Nguyen MH, Yu VL, Morris AJ, McDermott L, Wagener MW, Harrell L, Snydman DR. 2000. Antimicrobial resistance and clinical outcome of Bacteroides bacteremia: findings of a multicenter prospective observational trial. Clin Infect Dis 30:870–876. [PubMed][CrossRef]
134. Evans MR, Truant AL, Kostman J, Locke L. 1991. The detection of positive blood cultures by the BACTEC NR660. The clinical importance of four-day versus seven-day testing. Diagn Microbiol Infect Dis 4:107–110. [PubMed][CrossRef]
135. Hardy DJ, Hulbert BB, Migneault PC. 1992. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5- to 7-day negative cultures. J Clin Microbiol 30:2743–2745. [PubMed]
136. Masterson KC, McGowan JE Jr. 1988. Detection of positive blood cultures by the Bactec NR660. The clinical importance of five versus seven days of testing Am J Clin Pathol 90:91–94. [PubMed][CrossRef]
137. Brook I. 2007. The role of anaerobic bacteria in cutaneous and soft tissue abscesses and infected cysts. Anaerobe 13:171–177. [PubMed][CrossRef]
138. Larson CM, Bubrick MP, Jacobs DM, West MA. 1995. Malignancy, mortality, and medicosurgical management of Clostridium septicum infection. Surgery 118:592–597, discussion 597–598. [PubMed][CrossRef]
139. Bryant AE, Stevens DL. 2012. ‘Flesh-eating’ necrotizing infections: must we amputate? Expert Rev Anti Infect Ther 10:1–3. [PubMed][CrossRef]
140. Stevens DL, Aldape MJ, Bryant AE. 2012. Life-threatening clostridial infections. Anaerobe 18:254–259. [PubMed][CrossRef]
141. Wróblewska M, Kuzaka B, Borkowski T, Kuzaka P, Kawecki D, Radziszewski P. 2014. Fournier’s gangrene--current concepts. Pol J Microbiol 63:267–273. [PubMed]
142. Abella BS, Kuchinic P, Hiraoka T, Howes DS. 2003. Atraumatic clostridial myonecrosis: case report and literature review. J Emerg Med 24:401–405. [PubMed][CrossRef]
143. Chipp E, Phillips C, Rubin P. 2009. Successful management of spontaneous Clostridium septicum myonecrosis. J Plast Reconstr Aesthet Surg 62:e391–e393. [PubMed][CrossRef]
144. Pelfrey TM, Turk RP, Peoples JB, Elliott DW. 1984. Surgical aspects of Clostridium septicum septicemia. Arch Surg 119:546–550. [PubMed][CrossRef]
145. Mayer G, Kang R. 1985. Gas gangrene, diabetes, and cholecystitis. Am J Emerg Med 3:42–45. [PubMed][CrossRef]
146. Kornbluth AA, Danzig JB, Bernstein LH. 1989. Clostridium septicum infection and associated malignancy. Report of 2 cases and review of the literature. Medicine (Baltimore) 68:30–37. [PubMed][CrossRef]
147. Pelletier JP, Plumbley JA, Rouse EA, Cina SJ. 2000. The role of Clostridium septicum in paraneoplastic sepsis. Arch Pathol Lab Med 124:353–356. [PubMed]
148. Turnbull TL, Cline KS. 1985. Spontaneous clostridial myonecrosis. J Emerg Med 3:353–360. [PubMed][CrossRef]
149. Cline KA, Turnbull TL. 1985. Clostridial myonecrosis. Ann Emerg Med 14:459–466. [PubMed][CrossRef]
150. Schmidt J, Jentsch H, Stingu CS, Sack U. 2014. General immune status and oral microbiology in patients with different forms of periodontitis and healthy control subjects. PLoS One 9:e109187. doi:10.1371/journal.pone.0109187 [CrossRef]
151. Keller D. 2006. Management of periodontitis for HIV-AIDS patients: case study. Dent Today 25:110, 112–113. [PubMed]
152. AlJehani YA. 2014. Risk factors of periodontal disease: review of the literature. Int J Dent 2014:182513. [PubMed][CrossRef]
153. Yamagata K, Onizawa K, Yanagawa T, Takeuchi Y, Hasegawa Y, Chiba S, Bukawa H. 2011. Prospective study establishing a management plan for impacted third molar in patients undergoing hematopoietic stem cell transplantation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:146–152. [PubMed][CrossRef]
154. Könönen E, Müller HP. 2014. Microbiology of aggressive periodontitis. Periodontol 2000 65:46–78. [PubMed][CrossRef]
155. Haffajee AD, Socransky SS. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5:78–111. [CrossRef]
156. Kou Y, Inaba H, Kato T, Tagashira M, Honma D, Kanda T, Ohtake Y, Amano A. 2008. Inflammatory responses of gingival epithelial cells stimulated with Porphyromonas gingivalis vesicles are inhibited by hop-associated polyphenols. J Periodontol 79:174–180. [PubMed][CrossRef]
157. Lovegrove JM. 2004. Dental plaque revisited: bacteria associated with periodontal disease. J N Z Soc Periodontol 87:7–21. [PubMed]
158. Delaney JE, Kornman KS. 1987. Microbiology of subgingival plaque from children with localized prepubertal periodontitis. Oral Microbiol Immunol 2:71–76. [PubMed][CrossRef]
159. Tanabe S, Bodet C, Grenier D. 2007. Peptostreptococcus micros cell wall elicits a pro-inflammatory response in human macrophages. J Endotoxin Res 13:219–226. [PubMed][CrossRef]
160. Saito Y, Fujii R, Nakagawa KI, Kuramitsu HK, Okuda K, Ishihara K. 2008. Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis. Oral Microbiol Immunol 23:1–6. [PubMed][CrossRef]
161. Lin YY, Huang JH, Lai YY, Huang HC, Hu SW. 2005. Tissue destruction induced by Porphyromonas gingivalis infection in a mouse chamber model is associated with host tumor necrosis factor generation. Infect Immun 73:7946–7952. [PubMed][CrossRef]
162. Akintoye SO, Brennan MT, Graber CJ, McKinney BE, Rams TE, Barrett AJ, Atkinson JC. 2002. A retrospective investigation of advanced periodontal disease as a risk factor for septicemia in hematopoietic stem cell and bone marrow transplant recipients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:581–588. [PubMed][CrossRef]
163. Yamagata K, Onizawa K, Yanagawa T, Hasegawa Y, Kojima H, Nagasawa T, Yoshida H. 2006. A prospective study to evaluate a new dental management protocol before hematopoietic stem cell transplantation. Bone Marrow Transplant 38:237–242. [PubMed][CrossRef]
164. Schulenburg A, Turetschek K, Wrba F, Vogelsang H, Greinix HT, Keil F, Mitterbauer M, Kalhs P. 2004. Early and late gastrointestinal complications after myeloablative and nonmyeloablative allogeneic stem cell transplantation. Ann Hematol 83:101–106. [PubMed][CrossRef]
165. Spencer GD, Hackman RC, McDonald GB, Amos DE, Cunningham BA, Meyers JD, Thomas ED. 1986. A prospective study of unexplained nausea and vomiting after marrow transplantation. Transplantation 42:602–607. [PubMed][CrossRef]
166. McDonald GB, Shulman HM, Sullivan KM, Spencer GD. 1986. Intestinal and hepatic complications of human bone marrow transplantation. Part II. Gastroenterol 90:770–784. [PubMed][CrossRef]
167. McDonald GB, Shulman HM, Sullivan KM, Spencer GD. 1986. Intestinal and hepatic complications of human bone marrow transplantation. Part I. Gastroenterol 90:460–477. [CrossRef]
168. Cox GJ, Matsui SM, Lo RS, Hinds M, Bowden RA, Hackman RC, Meyer WG, Mori M, Tarr PI, Oshiro LS, Ludert JE, Meters JD, McDonald GB. 1994. Etiology and outcome of diarrhea after marrow transplantation: a prospective study. Gastroenterology 107:1398–1407. [CrossRef]
169. Hsu YC, Liao WC, Wang HP, Yao M, Lin JT. 2009. Catastrophic gastrointestinal manifestations of post-transplant lymphoproliferative disorder. Dig Liver Dis 41:238–241. [PubMed][CrossRef]
170. Schulenburg A, Kalhs P, Rabitsch W. 2005. Recommendations for diagnosis of acute gastrointestinal graft-versus-host disease in the small intestine. Transplantation 79:1767. [PubMed][CrossRef]
171. Prochaska L, Vacek J, Madan R, Abhyankar S, Ganguly S, McGuirk JP, Lin TL, Aljitawi OS. 2014. Intestinal ischemia after allogeneic stem cell transplantation: a report of four cases. Transplant Proc 46:1536–1539. [PubMed][CrossRef]
172. Aljitawi OS, Rodriguez L, Madan R, Ganguly S, Abhyankar S, McGuirk JP. 2010. Late-onset intestinal perforation in the setting of posttransplantation microangiopathy: a case report. Transplant Proc 42:3892–3893. [PubMed][CrossRef]
173. Palaniappa NC, Doyon L, Divino CM. 2012. Colonic perforation in graft versus host disease: a case report. Int Surg 97:14–16. [PubMed][CrossRef]
174. Nishida T, Hamaguchi M, Hirabayashi N, Haneda M, Terakura S, Atsuta Y, Imagama S, Kanie T, Murata M, Taji H, Suzuki R, Morishita Y, Kodera Y. 2004. Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease. Bone Marrow Transplant 33:1143–1150. [PubMed][CrossRef]
175. Armenian SH, Sun CL, Vase T, Ness KK, Blum E, Francisco L, Venkataraman K, Samoa R, Wong FL, Forman SJ, Bhatia S. 2012. Cardiovascular risk factors in hematopoietic cell transplantation survivors: role in development of subsequent cardiovascular disease. Blood 120:4505–4512. [PubMed][CrossRef]
176. Annaloro C, Usardi P, Airaghi L, Giunta V, Forti S, Orsatti A, Baldini M, Delle Volpe A, Lambertenghi Deliliers G. 2008. Prevalence of metabolic syndrome in long-term survivors of hematopoietic stem cell transplantation. Bone Marrow Transplant 41:797–804. [PubMed][CrossRef]
177. Marks WH, Ilsley JN, Dharnidharka VR. 2011. Posttransplantation lymphoproliferative disorder in kidney and heart transplant recipients receiving thymoglobulin: a systematic review. Transplant Proc 43:1395–1404. [PubMed][CrossRef]
178. Morton M, Coupes B, Roberts SA, Klapper PE, Byers RJ, Vallely PJ, Ryan K, Picton ML. 2013. Epidemiology of posttransplantation lymphoproliferative disorder in adult renal transplant recipients. Transplantation 95:470–478. [PubMed][CrossRef]
179. Muchtar E, Kramer MR, Vidal L, Ram R, Gurion R, Rosenblat Y, Bakal I, Shpilberg O. 2013. Posttransplantation lymphoproliferative disorder in lung transplant recipients: a 15-year single institution experience. Transplantation 96:657–663. [PubMed][CrossRef]
180. O’Connor JA, Cogley C, Burton M, Lancaster-Weiss K, Cordle RA. 2000. Posttransplantation lymphoproliferative disorder: endoscopic findings. J Pediatr Gastroenterol Nutr 31:458–461. [PubMed][CrossRef]
181. Orazi A, Hromas RA, Neiman RS, Greiner TC, Lee CH, Rubin L, Haskins S, Heerema NA, Gharpure V, Abonour R, Srour EF, Cornetta K. 1997. Posttransplantation lymphoproliferative disorders in bone marrow transplant recipients are aggressive diseases with a high incidence of adverse histologic and immunobiologic features. Am J Clin Pathol 107:419–429. [PubMed][CrossRef]
182. Peterson MR, Emery SC, Yung GL, Masliah E, Yi ES. 2006. Epstein-Barr virus-associated posttransplantation lymphoproliferative disorder following lung transplantation is more commonly of host origin. Arch Pathol Lab Med 130:176–180. [PubMed]
183. Schooler VC, Ragland B, Lazenby A, Eloubeidi MA. 2004. Post-transplantation lymphoproliferative disorder. Gastrointest Endosc 60:989–990. [CrossRef]
184. Hepgur M, Ahluwalia MS, Anne N, Thomas J, Liu H, Schiff MD, Loud PA, Hahn TE, Bullard Dunn KM, McCarthy PL Jr. 2011. Medical management of pneumatosis intestinalis in patients undergoing allogeneic blood and marrow transplantation. Bone Marrow Transplant 46:876–879. [PubMed][CrossRef]
185. Day DL, Ramsay NK, Letourneau JG. 1988. Pneumatosis intestinalis after bone marrow transplantation. AJR Am J Roentgenol 151:85–87. [PubMed][CrossRef]
186. Shimojima Y, Ishii W, Matsuda M, Tojo K, Watanabe R, Ikeda S. 2011. Pneumatosis cystoides intestinalis in neuropsychiatric systemic lupus erythematosus with diabetes mellitus: case report and literature review. Mod Rheumatol 21:415–419. [PubMed][CrossRef]
187. Morrison WJ, Siegelman SS. 1976. Pneumatosis intestinalis in association with connective tissue disease. Sci Med J 69:1536–1539. [CrossRef]
188. Gagliardi G, Thompson IW, Hershman MJ, Forbes A, Hawley PR, Talbot IC. 1996. Pneumatosis coli: a proposed pathogenesis based on study of 25 cases and review of the literature. Int J Colorectal Dis 11:111–118. [PubMed][CrossRef]
189. Pun YL, Russell DM, Taggart GJ, Barraclough DR. 1991. Pneumatosis intestinalis and pneumoperitoneum complicating mixed connective tissue disease. Br J Rheumatol 30:146–149. [PubMed][CrossRef]
190. Pruitt RE, Tumminello VV, Reveille JD. 1988. Pneumatosis cystoides intestinalis and benign pneumoperitoneum in a patient with antinuclear antibody negative systemic lupus erythematosus. J Rheumatol 15:1575–1577. [PubMed]
191. Kim JM, Park Y, Joh JW, Kwon CH, Kim SJ, Hong SH, Lee SK. 2011. Pneumatosis intestinalis after adult liver transplantation. J Korean Surg Soc 80(Suppl 1):S47–S50. [PubMed][CrossRef]
192. Sivit CJ, Josephs SH, Taylor GA, Kushner DC. 1990. Pneumatosis intestinalis in children with AIDS. AJR Am J Roentgenol 155:133–134. [PubMed][CrossRef]
193. Patel A, Creery D. 1990. Pneumatosis intestinalis in AIDS: an unreported complication. Br J Clin Pract 44:768–770. [PubMed]
194. Seto T, Koide N, Taniuchi N, Yamada T, Hamaguchi M, Goto S. 2001. Pneumatosis cystoides intestinalis complicating carcinoma of the small intestine. Am J Surg 182:287–288. [PubMed][CrossRef]
195. Petrides C, Kyriakos N, Andreas I, Konstantinos P, Chrysanthos G, Athanasios P, Pikoulis E. 2015. Pneumatosis cystoides intestinalis after cetuximab chemotherapy for squamous cell carcinoma of parotid gland. Case Rep Surg 2015:530680. [PubMed][CrossRef]
196. Hawn MT, Canon CL, Lockhart ME, Gonzalez QH, Shore G, Bondora A, Vickers SM. 2004. Serum lactic acid determines the outcomes of CT diagnosis of pneumatosis of the gastrointestinal tract. Am Surg 70:19–23; discussion 23–24. [PubMed]
197. Skibber JM, Matter GJ, Pizzo PA, Lotze MT. 1987. Right lower quadrant pain in young patients with leukemia. A surgical perspective. Ann Surg 206:711–716. [PubMed][CrossRef]
198. Forghieri F, Luppi M, Narni F, Morselli M, Potenza L, Bresciani P, Volzone F, Rossi G, Rossi A, Trenti L, Barozzi P, Torelli G. 2008. Acute appendicitis in adult neutropenic patients with hematologic malignancies. Bone Marrow Transplant 42:701–703. [PubMed][CrossRef]
199. Altinel E, Yarali N, Isik P, Bay A, Kara A, Tunc B. 2012. Typhlitis in acute childhood leukemia. Med Princ Pract 21:36–39. [PubMed][CrossRef]
200. Pastore D, Specchia G, Mele G, Montagna MT, Margari A, Carluccio P, Nacchiero M, Liso V. 2002. Typhlitis complicating induction therapy in adult acute myeloid leukemia. Leuk Lymphoma 43:911–914. [PubMed][CrossRef]
201. Lehrnbecher T, Marshall D, Gao C, Chanock SJ. 2002. A second look at anorectal infections in cancer patients in a large cancer institute: the success of early intervention with antibiotics and surgery. Infection 30:272–276. [PubMed][CrossRef]
202. Nagy E, Schuetz A. 2015. Is there a need for the antibiotic susceptibility testing of anaerobic bacteria? Anaerobe 31:2–3. [PubMed][CrossRef]
203. Blot S, De Waele JJ. 2005. Critical issues in the clinical management of complicated intra-abdominal infections. Drugs 65:1611–1620. [PubMed][CrossRef]
204. Christou NV, Turgeon P, Wassef R, Rotstein O, Bohnen J, Potvin M. 1996. Management of intra-abdominal infections. The case for intraoperative cultures and comprehensive broad-spectrum antibiotic coverage. The Canadian Intra-abdominal Infection Study Group. Arch Surg 131:1193–1201. [CrossRef]
205. Gerding DN, Olson MM, Peterson LR, Teasley DG, Gebhard RL, Schwartz ML, Lee JT Jr. 1986. Clostridium difficile-associated diarrhea and colitis in adults. A prospective case-controlled epidemiologic study. Arch Intern Med 146:95–100. [PubMed][CrossRef]
206. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH; Society for Healthcare Epidemiology of America; Infectious Diseases Society of America. 2010. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455. [PubMed][CrossRef]
207. Evans CT, Safdar N. 2015. Current trends in the epidemiology and outcomes of Clostridium difficile infection. Clin Infect Dis 60(Suppl 2):S66–S71. [PubMed][CrossRef]
208. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK; Emerging Infections Program Healthcare-Associated Infections, Antimicrobial Use Prevalence Survey Team. 2014. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208. [PubMed][CrossRef]
209. Gabriel L, Beriot-Mathiot A. 2014. Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect 88:12–21. [PubMed][CrossRef]
210. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA, Russell G, Surawicz C; Fecal Microbiota Transplantation Workgroup. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9:1044–1049. [PubMed][CrossRef]
211. Bakken JS, Polgreen PM, Beekmann SE, Riedo FX, Streit JA. 2013. Treatment approaches including fecal microbiota transplantation for recurrent Clostridium difficile infection (RCDI) among infectious disease physicians. Anaerobe 24:20–24. [PubMed][CrossRef]
212. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, Aroniadis O, Barto A, Borody T, Giovanelli A, Gordon S, Gluck M, Hohmann EL, Kao D, Kao JY, McQuillen DP, Mellow M, Rank KM, Rao K, Ray A, Schwartz MA, Singh N, Stollman N, Suskind DL, Vindigni SM, Youngster I, Brandt L. 2014. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 109:1065–1071. [PubMed][CrossRef]
213. Debast SB, Bauer MP, Kuijper EJ; European Society of Clinical Microbiology Infectious Diseases. 2014. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20(Suppl 2):1–26. [PubMed][CrossRef]
214. Denève C, Janoir C, Poilane I, Fantinato C, Collignon A. 2009. New trends in Clostridium difficile virulence and pathogenesis. Int J Antimicrob Agents 33(Suppl 1):S24–S28. [PubMed][CrossRef]
215. Carroll KC, Bartlett JG. 2011. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 65:501–521. [PubMed][CrossRef]
216. Kasper AM, Nyazee HA, Yokoe DS, Mayer J, Mangino JE, Khan YM, Hota B, Fraser VJ, Dubberke ER; Centers for Disease Control and Prevention Epicenters Program. 2012. A multicenter study of Clostridium difficile infection-related colectomy, 2000-2006. Infect Control Hosp Epidemiol 33:470–476. [PubMed][CrossRef]
217. Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G. 2010. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192:4904–4911. [PubMed][CrossRef]
218. Miller M, Gravel D, Mulvey M, Taylor G, Boyd D, Simor A, Gardam M, McGeer A, Hutchinson J, Moore D, Kelly S. 2010. Health care-associated Clostridium difficile infection in Canada: patient age and infecting strain type are highly predictive of severe outcome and mortality. Clin Infect Dis 50:194–201. [PubMed][CrossRef]
219. O’Connor JR, Johnson S, Gerding DN. 2009. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136:1913–1924. [PubMed][CrossRef]
220. Quesada-Gómez C, López-Ureña D, Acuna-Amador L, Villalobos-Zúñiga M, Du T, Freire R, Guzmán-Verri C, del Mar Gamboa-Coronado M, Lawley TD, Moreno E, Mulvey MR, de Castro Brito GA, Rodríguez-Cavallini E, Rodríguez C, Chaves-Olarte E. 2015. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence. J Clin Microbiol 53:1216–1226. [PubMed][CrossRef]
221. Gerding DN. 2010. Global epidemiology of Clostridium difficile infection in 2010. Infect Control Hosp Epidemiol 31(Suppl 1):S32–S34. [PubMed][CrossRef]
222. Pépin J, Valiquette L, Alary ME, Villemure P, Pelletier A, Forget K, Pépin K, Chouinard D. 2004. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171:466–472. [PubMed][CrossRef]
223. Pépin J, Valiquette L, Cossette B. 2005. Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173:1037–1042. [PubMed][CrossRef]
224. Lessa FC, Gould CV, McDonald LC. 2012. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis 55(Suppl 2):S65–S70. [PubMed][CrossRef]
225. Murray CJ, et al. 2014. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:1005–1070. [PubMed][CrossRef]
226. Collini PJ, Kuijper E, Dockrell DH. 2013. Clostridium difficile infection in patients with HIV/AIDS. Curr HIV/AIDS Rep 10:273–282. [PubMed][CrossRef]
227. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP; CONCORD Working Group. 2015. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 385:977–1010. [PubMed][CrossRef]
228. Gratwohl A, Baldomero H, Passweg J. 2013. Hematopoietic stem cell transplantation activity in Europe. Curr Opin Hematol 20:485–493. [PubMed][CrossRef]
229. (SRTR). OPaTNOaSRoTR. 2011. OPTN/SRTR 2010 Annual Data Report. Department of Health and Human Services, Health Resources and Services Administration, Health Care Systems Bureau, Division of Transplantation.
230. Vehreschild MJ, Weitershagen D, Biehl LM, Tacke D, Waldschmidt D, Tox U, Wisplinghoff H, Bergwelt-Baildon MV, Cornely OA, Vehreschild JJ. 2014. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation: epidemiology and risk factor analysis. Biol Bone Marr Transpl 20:823–828. [PubMed][CrossRef]
231. Gil L, Styczynski J, Komarnicki M. 2007. Infectious complication in 314 patients after high-dose therapy and autologous hematopoietic stem cell transplantation: risk factors analysis and outcome. Infection 35:421–427. [PubMed][CrossRef]
232. Tai E, Richardson LC, Townsend J, Howard E, McDonald LC. 2011. Clostridium difficile infection among children with cancer. Pediatr Infect Dis J 30:610–612. [PubMed][CrossRef]
233. Price V, Portwine C, Zelcer S, Ethier MC, Gillmeister B, Silva M, Schindera C, Yanofsky R, Mitchell D, Johnston DL, Lewis V, Dix D, Cellot S, Michon B, Bowes L, Stobart K, Brossard J, Beyene J, Sung L. 2013. Clostridium difficile infection in pediatric acute myeloid leukemia: from the Canadian Infections in Acute Myeloid Leukemia Research Group. Ped Infect Dis J 32:610–613. [PubMed][CrossRef]
234. Gorschlüter M, Glasmacher A, Hahn C, Schakowski F, Ziske C, Molitor E, Marklein G, Sauerbruch T, Schmidt-Wolf IG. 2001. Clostridium difficile infection in patients with neutropenia. Clin Infect Dis 33:786–791. [PubMed][CrossRef]
235. Schalk E, Bohr UR, König B, Scheinpflug K, Mohren M. 2010. Clostridium difficile-associated diarrhoea, a frequent complication in patients with acute myeloid leukaemia. Ann Hematol 89:9–14. [PubMed][CrossRef]
236. Dorschner P, McElroy LM, Ison MG. 2014. Nosocomial infections within the first month of solid organ transplantation. Tranplant Infect Dis 16:171–187. [PubMed][CrossRef]
237. Alonso CD, Kamboj M. 2014. Clostridium difficile infection (CDI) in solid organ and hematopoietic stem cell transplant recipients. Curr Infect Dis Rep 16:414. [PubMed][CrossRef]
238. Alonso CD, Marr KA. 2013. Clostridium difficile infection among hematopoietic stem cell transplant recipients: beyond colitis. Curr Opin Infect Dis 26:326–331. [PubMed][CrossRef]
239. Alonso CD, Treadway SB, Hanna DB, Huff CA, Neofytos D, Carroll KC, Marr KA. 2012. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 54:1053–1063. [PubMed][CrossRef]
240. Willems L, Porcher R, Lafaurie M, Casin I, Robin M, Xhaard A, Andreoli AL, Rodriguez-Otero P, Dhedin N, Socié G, Ribaud P, Peffault de Latour R. 2012. Clostridium difficile infection after allogeneic hematopoietic stem cell transplantation: incidence, risk factors, and outcome. Biol Blood Bone Marr Transpl 18:1295–1301. [PubMed][CrossRef]
241. Chakrabarti S, Lees A, Jones SG, Milligan DW. 2000. Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality. Bone Marrow Transplant 26:871–876. [PubMed][CrossRef]
242. Khanafer N, Neuraz A, Bénet T, Cour M, Persat F, Labussière H, Argaud L, Michallet M, Vanhems P. 2015. Acute graft-versus-host disease, invasive aspergillosis and Clostridium difficile colitis after peripheral blood stem cell transplantation: a complex network of causalities and a challenge for prevention. Anaerobe 33:98–100. [PubMed][CrossRef]
243. Pant C, Anderson MP, O’Connor JA, Marshall CM, Deshpande A, Sferra TJ. 2012. Association of Clostridium difficile infection with outcomes of hospitalized solid organ transplant recipients: results from the 2009 Nationwide Inpatient Sample database. Transpl Infect Dis 14:540–547. [PubMed][CrossRef]
244. Lee JT, Hertz MI, Dunitz JM, Kelly RF, D’Cunha J, Whitson BA, Shumway SJ. 2013. The rise of Clostridium difficile infection in lung transplant recipients in the modern era. Clin Transplant 27:303–310. [PubMed][CrossRef]
245. Neofytos D, Kobayashi K, Alonso CD, Cady-Reh J, Lepley D, Harris M, Desai N, Kraus E, Subramanian A, Treadway S, Ostrander D, Thompson C, Marr K. 2013. Epidemiology, risk factors, and outcomes of Clostridium difficile infection in kidney transplant recipients. Transpl Infect Dis 15:134–141. [PubMed][CrossRef]
246. Ali M, Ananthakrishnan AN, Ahmad S, Kumar N, Kumar G, Saeian K. 2012. Clostridium difficile infection in hospitalized liver transplant patients: a nationwide analysis. Liver Transpl 18:972–978. [PubMed][CrossRef]
247. Ananthakrishnan AN. 2012. Detecting and treating Clostridium difficile infections in patients with inflammatory bowel disease. Gastroenterol Clin North Am 41:339–353. [PubMed][CrossRef]
248. Rodemann JF, Dubberke ER, Reske KA, Seo DH, Stone CD. 2007. Incidence of Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol 5:339–344. [PubMed][CrossRef]
249. Ananthakrishnan AN, McGinley EL, Binion DG. 2008. Excess hospitalisation burden associated with Clostridium difficile in patients with inflammatory bowel disease. Gut 57:205–210. [PubMed][CrossRef]
250. Mastroianni A, Coronado O, Nanetti A, Valentini R, Manfredi R, Chiodo F. 1997. Nosocomial Clostridium difficile-associated diarrhea in patients with AIDS: a three-year survey and review. Clin Infect Dis 25(Suppl 2):S204–S205. [PubMed][CrossRef]
251. Sanchez TH, Brooks JT, Sullivan PS, Juhasz M, Mintz E, Dworkin MS, Jones JL; Adult/Adolescent Spectrum of HIV Disease Study Group. 2005. Bacterial diarrhea in persons with HIV infection, United States, 1992-2002. Clin Infect Dis 41:1621–1627. [PubMed][CrossRef]
252. Anastasi JK, Capili B. 2000. HIV and diarrhea in the era of HAART: 1998 New York State hospitalizations. Am J Infect Control 28:262–266. [PubMed][CrossRef]
253. Saddi VR, Glatt AE. 2002. Clostridium difficile-associated diarrhea in patients with HIV: a 4-year survey. J Acquir Immune Defic Syndr 31:542–543. [PubMed]
254. Felder SI, Larson B, Balzer B, Wachsman A, Haker K, Fleshner P, Annamalai A, Margulies DR. 2014. Fulminant Clostridium difficile colitis: comparing computed tomography with histopathology: are they concordant? Am Surg 80:1064–1068. [PubMed]
255. Wilcox MH, Planche T, Fang FC, Gilligan P. 2010. What is the current role of algorithmic approaches for diagnosis of Clostridium difficile infection? J Clin Microbiol 48:4347–4353. [PubMed][CrossRef]
256. Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ. 2009. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15:1053–1066. [PubMed][CrossRef]
257. Swindells J, Brenwald N, Reading N, Oppenheim B. 2010. Evaluation of diagnostic tests for Clostridium difficile infection. J Clin Microbiol 48:606–608. [PubMed][CrossRef]
258. Martin M, Zingg W, Knoll E, Wilson C, Dettenkofer M; PROHIBIT Study Group. 2014. National European guidelines for the prevention of Clostridium difficile infection: a systematic qualitative review. J Hosp Infect 87:212–219. [PubMed][CrossRef]
259. Sharp SE, Ruden LO, Pohl JC, Hatcher PA, Jayne LM, Ivie WM. 2010. Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of Clostridium difficile disease. J Clin Microbiol 48:2082–2086. [PubMed][CrossRef]
260. Fenner L, Widmer AF, Goy G, Rudin S, Frei R. 2008. Rapid and reliable diagnostic algorithm for detection of Clostridium difficile. J Clin Microbiol 46:328–330. [PubMed][CrossRef]
261. Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, Krishna S. 2008. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis 8:777–784. [PubMed][CrossRef]
262. Quinn CD, Sefers SE, Babiker W, He Y, Alcabasa R, Stratton CW, Carroll KC, Tang YW. 2010. C. Diff Quik Chek complete enzyme immunoassay provides a reliable first-line method for detection of Clostridium difficile in stool specimens. J Clin Microbiol 48:603–605. [PubMed][CrossRef]
263. Carroll KC. 2011. Tests for the diagnosis of Clostridium difficile infection: the next generation. Anaerobe 17:170–174. [PubMed][CrossRef]
264. Ticehurst JR, Aird DZ, Dam LM, Borek AP, Hargrove JT, Carroll KC. 2006. Effective detection of toxigenic Clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. J Clin Microbiol 44:1145–1149. [PubMed][CrossRef]
265. Planche T, Wilcox M. 2011. Reference assays for Clostridium difficile infection: one or two gold standards? J Clin Pathol 64:1–5. [PubMed][CrossRef]
266. Planche T, Wilcox MH. 2015. Diagnostic pitfalls in Clostridium difficile infection. Infect Dis Clin North Am 29:63–82. [PubMed][CrossRef]
267. Eastwood K, Else P, Charlett A, Wilcox M. 2009. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol 47:3211–3217. [PubMed][CrossRef]
268. Tenover FC, Baron EJ, Peterson LR, Persing DH. 2011. Laboratory diagnosis of Clostridium difficile infection can molecular amplification methods move us out of uncertainty? J Mol Diagn 13:573–582. [PubMed][CrossRef]
269. Kvach EJ, Ferguson D, Riska PF, Landry ML. 2010. Comparison of BD GeneOhm Cdiff real-time PCR assay with a two-step algorithm and a toxin A/B enzyme-linked immunosorbent assay for diagnosis of toxigenic Clostridium difficile infection. J Clin Microbiol 48:109–114. [PubMed][CrossRef]
270. Nolte FS, Ribeiro-Nesbitt DG. 2014. Clinical comparison of Simplexa universal direct and BD GeneOhm tests for detection of toxigenic Clostridium difficile in stool samples. J Clin Microbiol 52:281–282. [PubMed][CrossRef]
271. Selvaraju SB, Gripka M, Estes K, Nguyen A, Jackson MA, Selvarangan R. 2011. Detection of toxigenic Clostridium difficile in pediatric stool samples: an evaluation of Quik Check Complete Antigen assay, BD GeneOhm Cdiff PCR, and ProGastro Cd PCR assays. Diagn Microbiol Infect Dis 71:224–229. [PubMed][CrossRef]
272. Shin BM, Mun SJ, Yoo SJ, Kuak EY. 2012. Comparison of BD GeneOhm Cdiff and Seegene Seeplex ACE PCR assays using toxigenic Clostridium difficile culture for direct detection of tcdB from stool specimens. J Clin Microbiol 50:3765–3767. [PubMed][CrossRef]
273. Terhes G, Urbán E, Sóki J, Nacsa E, Nagy E. 2009. Comparison of a rapid molecular method, the BD GeneOhm Cdiff assay, to the most frequently used laboratory tests for detection of toxin-producing Clostridium difficile in diarrheal feces. J Clin Microbiol 47:3478–3481. [PubMed][CrossRef]
274. Viala C, Le Monnier A, Maataoui N, Rousseau C, Collignon A, Poilane I. 2012. Comparison of commercial molecular assays for toxigenic Clostridium difficile detection in stools: BD GeneOhm Cdiff, XPert C. difficile and illumigene C. difficile. J Microbiol Methods 90:83–85. [PubMed][CrossRef]
275. Babady NE, Stiles J, Ruggiero P, Khosa P, Huang D, Shuptar S, Kamboj M, Kiehn TE. 2010. Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol 48:4519–4524. [PubMed][CrossRef]
276. Chopra T, Alangaden GJ, Chandrasekar P. 2010. Clostridium difficile infection in cancer patients and hematopoietic stem cell transplant recipients. Expert Rev Anti Infect Ther 8:1113–1119. [PubMed][CrossRef]
277. Tenover FC, Novak-Weekley S, Woods CW, Peterson LR, Davis T, Schreckenberger P, Fang FC, Dascal A, Gerding DN, Nomura JH, Goering RV, Akerlund T, Weissfeld AS, Baron EJ, Wong E, Marlowe EM, Whitmore J, Persing DH. 2010. Impact of strain type on detection of toxigenic Clostridium difficile: comparison of molecular diagnostic and enzyme immunoassay approaches. J Clin Microbiol 48:3719–3724. [PubMed][CrossRef]
278. Pancholi P, Kelly C, Raczkowski M, Balada-Llasat JM. 2012. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol 50:1331–1335. [PubMed][CrossRef]
279. Shin S, Kim M, Kim M, Lim H, Kim H, Lee K, Chong Y. 2012. Evaluation of the Xpert Clostridium difficile assay for the diagnosis of Clostridium difficile infection. Ann Lab Med 32:355–358. [PubMed][CrossRef]
280. Dalpke AH, Hofko M, Zorn M, Zimmermann S. 2013. Evaluation of the fully automated BD MAX Cdiff and Xpert C. difficile assays for direct detection of Clostridium difficile in stool specimens. J Clin Microbiol 51:1906–1908. [PubMed][CrossRef]
281. Gyorke CE, Wang S, Leslie JL, Cohen SH, Solnick JV, Polage CR. 2013. Evaluation of Clostridium difficile fecal load and limit of detection during a prospective comparison of two molecular tests, the illumigene C. difficile and Xpert C. difficile/Epi tests. J Clin Microbiol 51:278–280. [PubMed][CrossRef]
282. Williamson DA, Basu I, Freeman J, Swager T, Roberts SA. 2013. Improved detection of toxigenic Clostridium difficile using the Cepheid Xpert C difficile assay and impact on C difficile infection rates in a tertiary hospital: a double-edged sword. Am J Infect Control 41:270–272. [PubMed][CrossRef]
283. Chiang D, Ng S, La MV, Jureen R, Lin RT, Teo JW. 2014. Performance assessment of the BD MAX Cdiff assay in comparison to Xpert C. difficile assay in a setting with very low prevalence of toxigenic Clostridium difficile PCR ribotype 027. Anaerobe 30:156–158. [PubMed][CrossRef]
284. Androga GO, McGovern AM, Elliott B, Chang BJ, Perkins TT, Foster NF, Riley TV. 2015. Evaluation of the Cepheid Xpert C. difficile/Epi and Meridian Bioscience illumigene C. difficile assays for detecting Clostridium difficile ribotype 033 strains. J Clin Microbiol 53:973–975. [PubMed][CrossRef]
285. Doing KM, Hintz MS, Keefe C, Horne S, LeVasseur S, Kulikowski ML. 2010. Reevaluation of the Premier Clostridium difficile toxin A and B immunoassay with comparison to glutamate dehydrogenase common antigen testing evaluating Bartels cytotoxin and Prodesse ProGastro Cd polymerase chain reaction as confirmatory procedures. Diagn Microbiol Infect Dis 66:129–134. [PubMed][CrossRef]
286. Stamper PD, Babiker W, Alcabasa R, Aird D, Wehrlin J, Ikpeama I, Gluck L, Carroll KC. 2009. Evaluation of a new commercial TaqMan PCR assay for direct detection of the Clostridium difficile toxin B gene in clinical stool specimens. J Clin Microbiol 47:3846–3850. [PubMed][CrossRef]
287. Deak E, Miller SA, Humphries RM. 2014. Comparison of Illumigene, Simplexa, and AmpliVue Clostridium difficile molecular assays for diagnosis of C. difficile infection. J Clin Microbiol 52:960–963. [PubMed][CrossRef]
288. Doing KM, Hintz MS. 2012. Prospective evaluation of the Meridian Illumigene loop-mediated amplification assay and the Gen Probe ProGastro Cd polymerase chain reaction assay for the direct detection of toxigenic Clostridium difficile from fecal samples. Diagn Microbiol Infect Dis 72:8–13. [PubMed][CrossRef]
289. Hong G, Park KS, Ki CS, Lee NY. 2014. Evaluation of the illumigene C. difficile assay for toxigenic Clostridium difficile detection: a prospective study of 302 consecutive clinical fecal samples. Diagn Microbiol Infect Dis 80:177–180. [PubMed][CrossRef]
290. Norén T, Unemo M, Magnusson C, Eiserman M, Matussek A. 2014. Evaluation of the rapid loop-mediated isothermal amplification assay Illumigene for diagnosis of Clostridium difficile in an outbreak situation. APMIS 122:155–160. [PubMed][CrossRef]
291. Walkty A, Lagacé-Wiens PR, Manickam K, Adam H, Pieroni P, Hoban D, Karlowsky JA, Alfa M. 2013. Evaluation of an algorithmic approach in comparison with the Illumigene assay for laboratory diagnosis of Clostridium difficile infection. J Clin Microbiol 51:1152–1157. [PubMed][CrossRef]
292. Deshpande A, Pasupuleti V, Rolston DD, Jain A, Deshpande N, Pant C, Hernandez AV. 2011. Diagnostic accuracy of real-time polymerase chain reaction in detection of Clostridium difficile in the stool samples of patients with suspected Clostridium difficile infection: a meta-analysis. Clin Infect Dis 53:e81–e90. [PubMed][CrossRef]
293. Goldenberg SD, Cliff PR, Smith S, Milner M, French GL. 2010. Two-step glutamate dehydrogenase antigen real-time polymerase chain reaction assay for detection of toxigenic Clostridium difficile. J Hosp Infect 74:48–54. [PubMed][CrossRef]
294. Beaulieu C, Dionne LL, Julien AS, Longtin Y. 2014. Clinical characteristics and outcome of patients with Clostridium difficile infection diagnosed by PCR versus a three-step algorithm. Clin Microbiol Infect 20:1067–1073. [PubMed][CrossRef]
295. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449:804–810. [PubMed][CrossRef]
296. Sibley CD, Peirano G, Church DL. 2012. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. Infect Genet Evol 12:505–521. [PubMed][CrossRef]
297. Gray J, Coupland LJ. 2014. The increasing application of nucleic acid detection tests to the diagnosis of syndromic infections. Epidemiol Infect 142:1–11. [PubMed]
298. Wojewoda CM, Sercia L, Navas M, Tuohy M, Wilson D, Hall GS, Procop GW, Richter SS. 2013. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51:2072–2076. [PubMed][CrossRef]
299. Altun O, Almuhayawi M, Ullberg M, Ozenci V. 2013. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood cultures bottles. J Clin Microbiol 51:4130–4136. [PubMed][CrossRef]
300. Navidad JF, Griswold DJ, Gradus MS, Bhattacharyya S. 2013. Evaluation of Luminex XTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. J Clin Microbiol 51:3018–3024. [PubMed][CrossRef]
301. Wessels, E, Rusman LG, van Bussel MJ, Claas EC. 2013. Added value of multiplex Luminex Gastrointestinal Pathogen Panel (xTAG® GPP) testing in the diagnosis of infectious gastroenteritis. Clin Micobiol Infect 20:O182–O197. [PubMed][CrossRef]
302. Anderson NW, Buchan BW, Ledeboer NA. 2014. Comparison of the BD MAX enteric bacterial panel to routine culture methods for detection of Campylobacter, enterohemorrhagic Escherichia coli (0157), Salmonella, and Shigella isolates in preserved stool specimens. J Clin Microbiol 52:1222–1224. [PubMed][CrossRef]
303. Pallen MJ, Loman NJ, Penn CW. 2010. High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Curr Opin Microbiol 13:625–631. [PubMed][CrossRef]
304. Gough E, Shaikh H, Manges AR. 2011. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53:994–1002. [PubMed][CrossRef]
microbiolspec.DMIH2-0015-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0015-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0015-2015
2016-08-12
2017-03-25

Abstract:

Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent infection, and may become feasible for other conditions in the future.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Anaerobic collection devices. BBL Port-A-Cul Transport System (BD Diagnostics); BD Eswab (BD Diagnostics); BBL Anaerobic Vacutainer Specimen Collector (BD Diagnostics); AnaeroGro – Prereduced anaerobic-culture medium (Hardy Diagnostics); Anaerobic Tissue Transport Surgery Pack (Anaerobic Systems); Starplex Anaerobic Transport Medium (Fisher Scientific); Copan Liquid Amies Elution Swab (Eswab) (Copan Diagnostics Inc.); Anaerobic Transport Medium – PRAS (Anaerobic Systems).

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Anaerobic culture-incubation systems. BBL GasPak Plus and Anaerobic Jar (BD Diagnostics); Anoxomat Mark II System and jars (Advanced Instruments, Inc.); Different types of anaerobic chambers, including systems that require the use of gloves to access the chamber (top and middle images are from Plas-Labs and Bactron [ShelLabs]), and gloveless systems (bottom image) (Coy).

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Antibiotic-susceptibility disk testing – Gram-positive anaerobic bacteria.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Antibiotic-susceptibility disk testing – Gram-negative anaerobic bacteria.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Clostridial-necrotizing skin and soft-tissue infection. .

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Yellow pseudomembranes of colitis. .

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Three-step testing algorithm for laboratory diagnosis of infection. Adapted from reference ( 263 ) and reprinted with permission.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

C. DIFF QUIK CHEK Complete Assay. Illustration shows both GDH- and toxin-positive samples on the left, and a GDH-positive but toxin-negative sample on the right; see product monograph (TechLab, Blacksburg, VA, USA. See http://www.techlab.com/diagnostics/c-difficile/c-diff-quik-chek-complete-30525c-30550c-t30525c-t20550c/)

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Diversity of anaerobes in the human body

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 2

Acceptable and unacceptable types of specimens for anaerobic culture

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 3

Description of commonly used anaerobic-culture media

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 4

Rapid identification of anaerobic Gram-negative bacilli

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 5

Rapid identification of spp.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 6

Rapid identification of beta-hemolytic and/or swarming spp.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 7

Rapid identification of spp. that on Gram stain appear Gram-negative

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 8

Rapid identification of aerotolerant spp.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 9

Rapid identification of nonspore-forming anaerobic Gram-positive bacilli

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 10

Rapid identification of anaerobic cocci

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 11

Laboratory guidelines for work-up of anaerobes isolated from nonsterile-specimen cultures

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 12

Clinical indications for susceptibility testing of anaerobic bacteria

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 13

CLSI -suggested grouping of antimicrobial agents to be considered for routine testing and reporting on anaerobic organisms

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 14

Population-based risk for anaerobic bacteremia associated with underlying conditions

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015
Generic image for table
TABLE 15

Guidelines for the use of diagnostic tests for detection of infection

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0015-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error