1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Herpes Simplex Virus and Varicella-Zoster Virus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Myron J. Levin1, Adriana Weinberg2, D. Scott Schmid3
  • Editors: Randall T. Hayden4, Donna M. Wolk5, Karen C. Carroll6, Yi-Wei Tang7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Pediatrics and Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO 80045; 2: Departments of Pediatrics, Medicine and Pathology, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO 80045; 3: Centers for Disease Control and Prevention, Herpesvirus Team, NCID/DVD/MMRHLB, Atlanta, GA 30333; 4: St. Jude’s Children’s Research Hospital, Memphis, TN; 5: Geisinger Clinic, Danville, PA; 6: Johns Hopkins University Hospital, Baltimore, MD; 7: Memorial Sloane-Kettering Institute, New York, NY
  • Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
  • Received 25 June 2015 Accepted 06 November 2015 Published 24 June 2016
  • Myron J. Levin, myron.levin@ucdenver.edu
image of Herpes Simplex Virus and Varicella-Zoster Virus
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Herpes Simplex Virus and Varicella-Zoster Virus, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/DMIH2-0017-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/DMIH2-0017-2015-2.gif
  • Abstract:

    The most common specimens from immunocompromised patients that are analyzed for detection of herpes simplex virus (HSV) or varicella-zoster virus (VZV) are from skin lesions. Many types of assays are applicable to these samples, but some, such as virus isolation and direct fluorescent antibody testing, are useful only in the early phases of the lesions. In contrast, nucleic acid (NA) detection methods, which generally have superior sensitivity and specificity, can be applied to skin lesions at any stage of progression. NA methods are also the best choice, and sometimes the only choice, for detecting HSV or VZV in blood, cerebrospinal fluid, aqueous or vitreous humor, and from mucosal surfaces. NA methods provide the best performance when reliability and speed (within 24 hours) are considered together. They readily distinguish the type of HSV detected or the source of VZV detected (wild type or vaccine strain). Nucleic acid detection methods are constantly being improved with respect to speed and ease of performance. Broader applications are under study, such as the use of quantitative results of viral load for prognosis and to assess the efficacy of antiviral therapy.

  • Citation: Levin M, Weinberg A, Schmid D. 2016. Herpes Simplex Virus and Varicella-Zoster Virus. Microbiol Spectrum 4(3):DMIH2-0017-2015. doi:10.1128/microbiolspec.DMIH2-0017-2015.

Key Concept Ranking

Multiplex Real-Time PCR
0.5096996
Restriction Fragment Length Polymorphism
0.44082385
0.5096996

References

1. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E. 2009. The order Herpesvirales. Arch Virol 154:171–177. [PubMed][CrossRef]
2. Hofstetter AM, Rosenthal SL, Stanberry LR. 2014. Current thinking on genital herpes. Curr Opin Infect Dis 27:75–83. [PubMed][CrossRef]
3. Roizman B, Knipe D, Whitley R. 2013. Herpes Simplex Viruses, p 1823–1897. In Knipe D, Howley P (ed), Fields Virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
4. Kimberlin DW, Rouse DJ. 2004. Clinical practice. Genital herpes. N Engl J Med 350:1970–1977. [PubMed][CrossRef]
5. Phipps W, Saracino M, Magaret A, Selke S, Remington M, Huang ML, Warren T, Casper C, Corey L, Wald A. 2011. Persistent genital herpes simplex virus-2 shedding years following the first clinical episode. J Infect Dis 203:180–187. [PubMed][CrossRef]
6. Schiffer JT, Wald A, Selke S, Corey L, Magaret A. 2011. The kinetics of mucosal herpes simplex virus-2 infection in humans: evidence for rapid viral-host interactions. J Infect Dis 204:554–561. [PubMed][CrossRef]
7. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L. 2007. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603. [PubMed][CrossRef]
8. Gnann JW. 2010. Herpes simplex and varicella-zoster virus infection after hematopoietic stem cell or solid organ transplantation, p 391–410. In Bowden R, Ljungman P, Snydman D (ed), Transplant Infections, 3rd ed. Lippincott, Williams & Wilkins, Philadelphia, PA.
9. Bustamante CI, Wade JC. 1991. Herpes simplex virus infection in the immunocompromised cancer patient. J Clin Oncol 9:1903–1915. [PubMed]
10. Noska A, Kyrillos R, Hansen G, Hirigoyen D, Williams DN. 2015. The role of antiviral therapy in immunocompromised patients with herpes simplex virus meningitis. Clin Infect Dis 60:237–242. [PubMed][CrossRef]
11. Kennedy PG, Steiner I. 2013. Recent issues in herpes simplex encephalitis. J Neurovirol 19:346–350. [PubMed][CrossRef]
12. Roy R, Pal BP, Mathur G, Rao C, Das D, Biswas J. 2014. Acute retinal necrosis: clinical features, management and outcomes—a 10 year consecutive case series. Ocul Immunol Inflamm 22:170–174. [PubMed][CrossRef]
13. Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, Herman M, Cardon A, Durandy A, Bustamante J, Vallabhapurapu S, Bravo J, Warnatz K, Chaix Y, Cascarrigny F, Lebon P, Rozenberg F, Karin M, Tardieu M, Al-Muhsen S, Jouanguy E, Zhang SY, Abel L, Casanova JL. 2010. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33:400–411. [PubMed][CrossRef]
14. Sancho-Shimizu V, Zhang SY, Abel L, Tardieu M, Rozenberg F, Jouanguy E, Casanova JL. 2007. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr Opin Allergy Clin Immunol 7:495–505. [PubMed][CrossRef]
15. Pinninti SG, Kimberlin DW. 2013. Neonatal herpes simplex virus infections. Pediatr Clin North Am 60:351–365. [PubMed][CrossRef]
16. Frederick DM, Bland D, Gollin Y. 2002. Fatal disseminated herpes simplex virus infection in a previously healthy pregnant woman. A case report. J Reprod Med 47:591–596. [PubMed]
17. Chen YK, Hou HA, Chow JM, Chen YC, Hsueh PR, Tien HF. 2011. The impact of oral herpes simplex virus infection and candidiasis on chemotherapy-induced oral mucositis among patients with hematological malignancies. Eur J Clin Microbiol Infect Dis 30:753–759. [PubMed][CrossRef]
18. Wald A, Huang ML, Carrell D, Selke S, Corey L. 2003. Polymerase chain reaction for detection of herpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSV isolation in cell culture. J Infect Dis 188:1345–1351. [PubMed][CrossRef]
19. Wald A, Krantz E, Selke S, Lairson E, Morrow RA, Zeh J. 2006. Knowledge of partners’ genital herpes protects against herpes simplex virus type 2 acquisition. J Infect Dis 194:42–52. [PubMed][CrossRef]
20. Workowski KA, Berman S, Centers for Disease C, Prevention. 2010. Sexually transmitted diseases treatment guidelines. MMWR Recomm Rep 59:1–110. [PubMed]
21. Remeijer L, Duan R, van Dun JM, Wefers Bettink MA, Osterhaus AD, Verjans GM. 2009. Prevalence and clinical consequences of herpes simplex virus type 1 DNA in human cornea tissues. J Infect Dis 200:11–19. [PubMed][CrossRef]
22. Reeves WC, Corey L, Adams HG, Vontver LA, Holmes KK. 1981. Risk of recurrence after first episodes of genital herpes. Relation to HSV type and antibody response. N Engl J Med 305:315–319. [PubMed][CrossRef]
23. Engelberg R, Carrell D, Krantz E, Corey L, Wald A. 2003. Natural history of genital herpes simplex virus type 1 infection. Sex Transm Dis 30:174–177. [PubMed][CrossRef]
24. Brown ZA, Wald A, Morrow RA, Selke S, Zeh J, Corey L. 2003. Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. JAMA 289:203–209. [PubMed][CrossRef]
25. Duan R, de Vries RD, van Dun JM, van Loenen FB, Osterhaus AD, Remeijer L, Verjans GM. 2009. Acyclovir susceptibility and genetic characteristics of sequential herpes simplex virus type 1 corneal isolates from patients with recurrent herpetic keratitis. J Infect Dis 200:1402–1414. [PubMed][CrossRef]
26. Pan D, Kaye SB, Hopkins M, Kirwan R, Hart IJ, Coen DM. 2014. Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J Infect Dis 209:345–349. [PubMed][CrossRef]
27. De Tiege X, Heron B, Lebon P, Ponsot G, Rozenberg F. 2003. Limits of early diagnosis of herpes simplex encephalitis in children: a retrospective study of 38 cases. Clin Infect Dis 36:1335–1339. [PubMed][CrossRef]
28. Boivin G, Goyette N, Sergerie Y, Keays S, Booth T. 2006. Longitudinal evaluation of herpes simplex virus DNA load during episodes of herpes labialis. J Clin Virol 37:248–251. [PubMed][CrossRef]
29. Gupta R, Hill EL, McClernon D, Davis G, Selke S, Corey L, Wald A. 2005. Acyclovir sensitivity of sequential herpes simplex virus type 2 isolates from the genital mucosa of immunocompetent women. J Infect Dis 192:1102–1107. [PubMed][CrossRef]
30. Guerry SL, Bauer HM, Klausner JD, Branagan B, Kerndt PR, Allen BG, Bolan G. 2005. Recommendations for the selective use of herpes simplex virus type 2 serological tests. Clin Infect Dis 40:38–45. [PubMed][CrossRef]
31. Ashley R, Cent A, Maggs V, Nahmias A, Corey L. 1991. Inability of enzyme immunoassays to discriminate between infections with herpes simplex virus types 1 and 2. Ann Intern Med 115:520–526. [PubMed][CrossRef]
32. Leyland B, Kennedy MR, Wimberly YH, Levine BJ, Cherpes TL. 2009. Serologic detection of herpes simplex virus type 2 antibodies among pregnant women using a point-of-care test from Focus Diagnostics. J Clin Virol 44:125–128. [PubMed][CrossRef]
33. LeGoff J, Mayaud P, Gresenguet G, Weiss HA, Nzambi K, Frost E, Pepin J, Belec L, Group AS. 2008. Performance of HerpeSelect and Kalon assays in detection of antibodies to herpes simplex virus type 2. J Clin Microbiol 46:1914–1918. [PubMed][CrossRef]
34. Martins TB, Welch RJ, Hill HR, Litwin CM. 2009. Comparison of a multiplexed herpes simplex virus type-specific immunoglobulin G serology assay to immunoblot, Western blot, and enzyme-linked immunosorbent assays. Clin Vaccine Immunol 16:55–60. [PubMed][CrossRef]
35. Binnicker MJ, Jespersen DJ, Harring JA. 2010. Evaluation of three multiplex flow immunoassays compared to an enzyme immunoassay for the detection and differentiation of IgG class antibodies to herpes simplex virus types 1 and 2. Clin Vaccine Immunol 17:253–257. [PubMed][CrossRef]
36. Morrow RA, Friedrich D, Meier A, Corey L. 2005. Use of “biokit HSV-2 Rapid Assay” to improve the positive predictive value of Focus HerpeSelect HSV-2 ELISA. BMC Infect Dis 5:84. [PubMed][CrossRef]
37. Martins TB, Woolstenhulme RD, Jaskowski TD, Hill HR, Litwin CM. 2001. Comparison of four enzyme immunoassays with a western blot assay for the determination of type-specific antibodies to herpes simplex virus. Am J Clin Pathol 115:272–277. [PubMed][CrossRef]
38. Alanen A, Hukkanen V. 2000. Herpes simplex virus DNA in amniotic fluid without neonatal infection. Clin Infect Dis 30:363–367. [PubMed][CrossRef]
39. Morrow R, Friedrich D. 2006. Performance of a novel test for IgM and IgG antibodies in subjects with culture-documented genital herpes simplex virus-1 or -2 infection. Clin Microbiol Infect 12:463–469. [PubMed][CrossRef]
40. Reiber H, Lange P. 1991. Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160. [PubMed]
41. Madhavan HN, Biswas J, Gopal L, Sharma T. 1995. Investigations in the virological etiology in acute retinal inflammation. Indian J Med Res 101:233–237. [PubMed]
42. Stranska R, Schuurman R, de Vos M, van Loon AM. 2004. Routine use of a highly automated and internally controlled real-time PCR assay for the diagnosis of herpes simplex and varicella-zoster virus infections. J Clin Virol 30:39–44. [PubMed][CrossRef]
43. Scoular A. 2002. Using the evidence base on genital herpes: optimising the use of diagnostic tests and information provision. Sex Transm Infect 78:160–165. [PubMed][CrossRef]
44. Kowalski RP, Karenchak LM, Shah C, Gordon JS. 2002. ELVIS: a new 24-hour culture test for detecting herpes simplex virus from ocular samples. Arch Ophthalmol 120:960–962. [PubMed][CrossRef]
45. Caviness AC, Oelze LL, Saz UE, Greer JM, Demmler-Harrison GJ. 2010. Direct immunofluorescence assay compared to cell culture for the diagnosis of mucocutaneous herpes simplex virus infections in children. J Clin Virol 49:58–60. [PubMed][CrossRef]
46. Landry ML, Ferguson D, Wlochowski J. 1997. Detection of herpes simplex virus in clinical specimens by cytospin-enhanced direct immunofluorescence. J Clin Microbiol 35:302–304. [PubMed]
47. Reina J, Saurina J, Fernandez-Baca V, Munar M, Blanco I. 1997. Evaluation of a direct immunofluorescence cytospin assay for the detection of herpes simplex virus in clinical samples. Eur J Clin Microbiol Infect Dis 16:851–854. [PubMed][CrossRef]
48. O’Sullivan CE, Aksamit AJ, Harrington JR, Harmsen WS, Mitchell PS, Patel R. 2003. Clinical spectrum and laboratory characteristics associated with detection of herpes simplex virus DNA in cerebrospinal fluid. Mayo Clin Proc 78:1347–1352. [PubMed][CrossRef]
49. Athmanathan S, Reddy SB, Nutheti R, Rao GN. 2002. Comparison of an immortalized human corneal epithelial cell line with Vero cells in the isolation of Herpes simplex virus-1 for the laboratory diagnosis of Herpes simplex keratitis. BMC Ophthalmol 2:3. [PubMed][CrossRef]
50. Markoulatos P, Georgopoulou A, Siafakas N, Plakokefalos E, Tzanakaki G, Kourea-Kremastinou J. 2001. Laboratory diagnosis of common herpesvirus infections of the central nervous system by a multiplex PCR assay. J Clin Microbiol 39:4426–4432. [PubMed][CrossRef]
51. Nicoll S, Brass A, Cubie HA. 2001. Detection of herpes viruses in clinical samples using real-time PCR. J Virol Methods 96:25–31. [PubMed][CrossRef]
52. Kobayashi T, Yagami A, Suzuki K, Ihira M, Toshikawa T, Matsunaga K. 2013. Clinical utility of loop-mediated isothermal amplification assay for the diagnosis of common alpha herpesvirus skin infections. J Dermatol 40:1033–1037. [PubMed][CrossRef]
53. Teo JWP, Chiang D, Jureen R, Lin RTP. 2015. Clinical evaluation of a helicase-dependent amplification (HAD)-based commercial assay for the simultaneous detection of HSV-1 and HSV-2. Diagn Microbiol Infect Dis 83:261–262. [PubMed][CrossRef]
54. Weil AA, Glaser CA, Amad Z, Forghani B. 2002. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin Infect Dis 34:1154–1157. [PubMed][CrossRef]
55. Lackner A, Kessler HH, Walch C, Quasthoff S, Raggam RB. 2010. Early and reliable detection of herpes simplex virus type 1 and varicella zoster virus DNAs in oral fluid of patients with idiopathic peripheral facial nerve palsy: Decision support regarding antiviral treatment? J Med Virol 82:1582–1585. [PubMed][CrossRef]
56. Wensing B, Relvas LM, Caspers LE, Valentincic NV, Stunf S, de Groot-Mijnes JD, Rothova A. 2011. Comparison of rubella virus- and herpes virus-associated anterior uveitis: clinical manifestations and visual prognosis. Ophthalmology 118:1905–1910. [PubMed][CrossRef]
57. Lakeman FD, Whitley RJ. 1995. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 171:857–863. [PubMed][CrossRef]
58. Pillet S, Verhoeven PO, Epercieux A, Bourlet T, Pozzetto B. 2015. Development and validation of a laboratory-developed multiplex real-time PCR Assay on the BD Max system for detection of herpes simplex virus and varicella-zoster virus DNA in various clinical specimens. J Clin Microbiol 53:1921–1926. [PubMed][CrossRef]
59. Schrader C, Schielke A, Ellerbroek L, Johne R. 2012. PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:1014–1026. [PubMed][CrossRef]
60. De Clercq E. 2012. Human viral diseases: what is next for antiviral drug discovery? Curr Opin Virol 2:572–579. [PubMed][CrossRef]
61. Weinberg A, Leary JJ, Sarisky RT, Levin MJ. 2007. Factors that affect in vitro measurement of the susceptibility of herpes simplex virus to nucleoside analogues. J Clin Virol 38:139–145. [PubMed][CrossRef]
62. Bodsworth N, Fife K, Koltun W, Tyring S, Abudalu M, Prichard M, Hamed K. 2009. Single-day famciclovir for the treatment of genital herpes: follow-up results of time to next recurrence and assessment of antiviral resistance. Curr Med Res Opin 25:483–487. [PubMed][CrossRef]
63. Andrei G, van den Oord J, Fiten P, Opdenakker G, De Wolf-Peeters C, De Clercq E, Snoeck R. 2005. Organotypic epithelial raft cultures as a model for evaluating compounds against alphaherpesviruses. Antimicrob Agents Chemother 49:4671–4680. [PubMed][CrossRef]
64. Tardif KD, Jorgensen S, Langer J, Prichard M, Schlaberg R. 2014. Simultaneous titration and phenotypic antiviral drug susceptibility testing for herpes simplex virus 1 and 2. J Clin Virol 61:382–386. [PubMed][CrossRef]
65. Burrel S, Deback C, Agut H, Boutolleau D. 2010. Genotypic characterization of UL23 thymidine kinase and UL30 DNA polymerase of clinical isolates of herpes simplex virus: natural polymorphism and mutations associated with resistance to antivirals. Antimicrob Agents Chemother 54:4833–4842. [PubMed][CrossRef]
66. Saijo M, Suzutani T, Morikawa S, Kurane I. 2005. Genotypic characterization of the DNA polymerase and sensitivity to antiviral compounds of foscarnet-resistant herpes simplex virus type 1 (HSV-1) derived from a foscarnet-sensitive HSV-1 strain. Antimicrob Agents Chemother 49:606–611. [PubMed][CrossRef]
67. Morfin F, Souillet G, Bilger K, Ooka T, Aymard M, Thouvenot D. 2000. Genetic characterization of thymidine kinase from acyclovir-resistant and -susceptible herpes simplex virus type 1 isolated from bone marrow transplant recipients. J Infect Dis 182:290–293. [PubMed][CrossRef]
68. Schubert A, Gentner E, Bohn K, Schwarz M, Mertens T, Sauerbrei A. 2014. Single nucleotide polymorphisms of thymidine kinase and DNA polymerase genes in clinical herpes simplex virus type 1 isolates associated with different resistance phenotypes. Antiviral Res 107:16–22. [PubMed][CrossRef]
69. Andrei G, Snoeck R. 2013. Herpes simplex virus drug-resistance: new mutations and insights. Curr Opin Infect Dis 26:551–560. [PubMed][CrossRef]
70. James SH, Prichard MN. 2014. Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance. Curr Opin Virol 8:54–61. [PubMed][CrossRef]
71. Piret J, Boivin G. 2011. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55:459–472. [PubMed][CrossRef]
72. Arvin AM, Gilden, D. 2013. Varicella-Zoster Virus, p 2015–2057. In Knipe D, Howley P (ed), Fields Virology, 6th ed. Lippincott, Williams and Wilkins, Philadelphia, PA.
73. Zell R, Taudien S, Pfaff F, Wutzler P, Platzer M, Sauerbrei A. 2012. Sequencing of 21 varicella-zoster virus genomes reveals two novel genotypes and evidence of recombination. J Virol 86:1608–1622. [PubMed][CrossRef]
74. Gershon AA, Gershon MD. 2013. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev 26:728–743. [PubMed][CrossRef]
75. Zerboni L, Sen N, Oliver SL, Arvin AM. 2014. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 12:197–210. [PubMed][CrossRef]
76. Soong W, Schultz JC, Patera AC, Sommer MH, Cohen JI. 2000. Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J Virol 74:1864–1870. [PubMed][CrossRef]
77. Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. 2004. Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 200:917–925. [PubMed][CrossRef]
78. Triebwasser JH, Harris RE, Bryant RE, Rhoades ER. 1967. Varicella pneumonia in adults. Report of seven cases and a review of literature. Medicine (Baltimore) 46:409–423. [CrossRef]
79. Preblud SR. 1981. Age-specific risks of varicella complications. Pediatrics 68:14–17. [PubMed]
80. Cohrs RJ, Randall J, Smith J, Gilden DH, Dabrowski C, van Der Keyl H, Tal-Singer R. 2000. Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471. [PubMed][CrossRef]
81. Levin MJ, Cai GY, Manchak MD, Pizer LI. 2003. Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol 77:6979–6987. [PubMed][CrossRef]
82. Wilson A, Sharp M, Koropchak CM, Ting SF, Arvin AM. 1992. Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplantation. J Infect Dis 165:119–126. [PubMed][CrossRef]
83. Ljungman P, Lonnqvist B, Gahrton G, Ringden O, Sundqvist VA, Wahren B. 1986. Clinical and subclinical reactivations of varicella-zoster virus in immunocompromised patients. J Infect Dis 153:840–847. [PubMed][CrossRef]
84. Levin MJ. 2014. Varicella-zoster virus and virus DNA in the blood and oropharynx of people with latent or active varicella-zoster virus infections. J Clin Virol 61:487–495. [PubMed][CrossRef]
85. Gnann JW, Jr. 2002. Varicella-zoster virus: atypical presentations and unusual complications. J Infect Dis 186(Suppl 1):S91–S98. [PubMed][CrossRef]
86. Morgan ER, Smalley LA. 1983. Varicella in immunocompromised children. Incidence of abdominal pain and organ involvement. Am J Dis Child 137:883–885. [PubMed][CrossRef]
87. Ahmed AM, Brantley JS, Madkan V, Mendoza N, Tyring SK. 2007. Managing herpes zoster in immunocompromised patients. Herpes 14:32–36. [PubMed]
88. Schimpff S, Serpick A, Stoler B, Rumack B, Mellin H, Joseph JM, Block J. 1972. Varicella-Zoster infection in patients with cancer. Ann Intern Med 76:241–254. [PubMed][CrossRef]
89. Levin MJ, Dahl KM, Weinberg A, Giller R, Patel A, Krause PR. 2003. Development of resistance to acyclovir during chronic infection with the Oka vaccine strain of varicella-zoster virus, in an immunosuppressed child. J Infect Dis 188:954–959. [PubMed][CrossRef]
90. Austin RB. 2000. Progressive outer retinal necrosis syndrome: a comprehensive review of its clinical presentation, relationship to immune system status, and management. Clin Eye Vis Care 12:119–129. [PubMed][CrossRef]
91. Feldman S, Hughes WT, Daniel CB. 1975. Varicella in children with cancer: Seventy-seven cases. Pediatrics 56:388–397. [PubMed]
92. Banovic T, Yanilla M, Simmons R, Robertson I, Schroder WA, Raffelt NC, Wilson YA, Hill GR, Hogan P, Nourse CB. 2011. Disseminated varicella infection caused by varicella vaccine strain in a child with low invariant natural killer T cells and diminished CD1d expression. J Infect Dis 204:1893–1901. [PubMed][CrossRef]
93. Levy O, Orange JS, Hibberd P, Steinberg S, LaRussa P, Weinberg A, Wilson SB, Shaulov A, Fleisher G, Geha RS, Bonilla FA, Exley M. 2003. Disseminated varicella infection due to the vaccine strain of varicella-zoster virus, in a patient with a novel deficiency in natural killer T cells. J Infect Dis 188:948–953. [PubMed][CrossRef]
94. Lecuyer A, Levy C, Gaudelus J, Floret D, Soubeyrand B, Caulin E, Cohen R, Grimprel E, Pediatricians Working Group. 2010. Hospitalization of newborns and young infants for chickenpox in France. Eur J Pediatr 169:1293–1297. [PubMed][CrossRef]
95. Meyers JD. 1974. Congenital varicella in term infants: risk reconsidered. J Infect Dis 129:215–217. [PubMed][CrossRef]
96. Enders G, Miller E, Cradock-Watson J, Bolley I, Ridehalgh M. 1994. Consequences of varicella and herpes zoster in pregnancy: prospective study of 1739 cases. Lancet 343:1548–1551. [PubMed][CrossRef]
97. Nathwani D, Maclean A, Conway S, Carrington D. 1998. Varicella infections in pregnancy and the newborn. A review prepared for the UK Advisory Group on Chickenpox on behalf of the British Society for the Study of Infection. J Infect 36(Suppl 1):59–71. [CrossRef]
98. Zhang HJ, Patenaude V, Abenhaim HA. 2015. Maternal outcomes in pregnancies affected by varicella zoster virus infections: population-based study on 7.7 million pregnancy admissions. J Obstet Gynaecol Res 41:62–68. [PubMed][CrossRef]
99. Boelle PY, Hanslik T. 2002. Varicella in non-immune persons: incidence, hospitalization and mortality rates. Epidemiol Infect 129:599–606. [PubMed][CrossRef]
100. Weinberg A, Levin MJ. 2010. VZV T cell-mediated immunity. Current Top Microbiol Immunol 342:341–357. [PubMed][CrossRef]
101. Asada H, Nagayama K, Okazaki A, Mori Y, Okuno Y, Takao Y, Miyazaki Y, Onishi F, Okeda M, Yano S, Kumihashi H, Gomi Y, Maeda K, Ishikawa T, Iso H, Yamanishi K, Shozu Herpes Zoster Study. 2013. An inverse correlation of VZV skin-test reaction, but not antibody, with severity of herpes zoster skin symptoms and zoster-associated pain. J Dermatol Sci 69:243–249. [PubMed][CrossRef]
102. Chen SY, Suaya JA, Li Q, Galindo CM, Misurski D, Burstin S, Levin MJ. 2014. Incidence of herpes zoster in patients with altered immune function. Infection 42:325–334. [PubMed][CrossRef]
103. Drolet M, Brisson M, Levin MJ, Schmader KE, Oxman MN, Johnson RW, Camden S, Mansi JA. A prospective study of the herpes zoster severity of illness. Clin J Pain 26:656–666. [PubMed][CrossRef]
104. Marin M, Guris D, Chaves SS, Schmid S, Seward JF. 2007. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 56:1–40. [PubMed]
105. Bialek SR, Perella D, Zhang J, Mascola L, Viner K, Jackson C, Lopez AS, Watson B, Civen R. 2013. Impact of a routine two-dose varicella vaccination program on varicella epidemiology. Pediatrics 132:e1134–1140. [PubMed][CrossRef]
106. Josephson A, Gombert ME. 1988. Airborne transmission of nosocomial varicella from localized zoster. J Infect Dis 158:238–241. [PubMed][CrossRef]
107. Lopez AS, Burnett-Hartman A, Nambiar R, Ritz L, Owens P, Loparev VN, Guris D, Schmid DS. 2008. Transmission of a newly characterized strain of varicella-zoster virus from a patient with herpes zoster in a long-term-care facility, West Virginia, 2004. J Infect Dis 197:646–653. [PubMed][CrossRef]
108. Levin MJ. 2012. Immune senescence and vaccines to prevent herpes zoster in older persons. Curr Opin Immunol 24:494–500. [PubMed][CrossRef]
109. Harpaz R, Ortega-Sanchez IR, Seward JF. 2008. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 57:1–30. [PubMed]
110. Tseng HF, Tartof S, Harpaz R, Luo Y, Sy LS, Hetcher RC, Jacobsen SJ. 2014. Vaccination against zoster remains effective in older adults who later undergo chemotherapy. Clin Infect Dis 59:913–919. [PubMed][CrossRef]
111. Boeckh M, Kim HW, Flowers ME, Meyers JD, Bowden RA. 2006. Long-term acyclovir for prevention of varicella zoster virus disease after allogeneic hematopoietic cell transplantation--a randomized double-blind placebo-controlled study. Blood 107:1800–1805. [PubMed][CrossRef]
112. Grossberg R, Harpaz R, Rubtcova E, Loparev V, Seward JF, Schmid DS. 2006. Secondary transmission of varicella vaccine virus in a chronic care facility for children. J Pediatr 148:842–844. [PubMed][CrossRef]
113. Leung J, Siegel S, Jones JF, Schulte C, Blog D, Schmid DS, Bialek SR, Marin M. 2014. Fatal varicella due to the vaccine-strain varicella-zoster virus. Hum Vaccin Immunother 10:146–149. [PubMed][CrossRef]
114. Rau R, Fitzhugh CD, Baird K, Cortez KJ, Li L, Fischer SH, Cowen EW, Balow JE, Walsh TJ, Cohen JI, Wayne AS. 2008. Triad of severe abdominal pain, inappropriate antidiuretic hormone secretion, and disseminated varicella-zoster virus infection preceding cutaneous manifestations after hematopoietic stem cell transplantation: utility of PCR for early recognition and therapy. Pediatr Infect Dis J 27:265–268. [PubMed][CrossRef]
115. Weinmann S, Chun C, Mullooly JP, Riedlinger K, Houston H, Loparev VN, Schmid DS, Seward JF. 2008. Laboratory diagnosis and characteristics of breakthrough varicella in children. J Infect Dis 197(Suppl 2):S132–S138. [PubMed][CrossRef]
116. Behrman A, Lopez AS, Chaves SS, Watson BM, Schmid DS. 2013. Varicella immunity in vaccinated healthcare workers. J Clin Virol 57:109–114. [PubMed][CrossRef]
117. Gershon AA. 2007. Varicella-zoster vaccine, p In Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds), Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press, Cambridge. Available from: http://www.ncbi.nlm.nih.gov/books/NBK47376/ [CrossRef]
118. Gershon AA, LaRussa P, Steinberg S, Mervish N, Lo SH, Meier P. 1996. The protective effect of immunologic boosting against zoster: an analysis in leukemic children who were vaccinated against chickenpox. J Infect Dis 173:450–453. [PubMed][CrossRef]
119. Reynolds MA, Kruszon-Moran D, Jumaan A, Schmid DS, McQuillan GM. 2010. Varicella seroprevalence in the U.S.: data from the National Health and Nutrition Examination Survey, 1999-2004. Public Health Rep 125:860–869. [PubMed]
120. Maple PA, Gray J, Breuer J, Kafatos G, Parker S, Brown D. 2006. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clin Vaccine Immunol 13:214–218. [PubMed][CrossRef]
121. McDonald SL, Maple PA, Andrews N, Brown KE, Ayres KL, Scott FT, Al Bassam M, Gershon AA, Steinberg SP, Breuer J. 2011. Evaluation of the time resolved fluorescence immunoassay (TRFIA) for the detection of varicella zoster virus (VZV) antibodies following vaccination of healthcare workers. J Virol Methods 172:60–65. [PubMed][CrossRef]
122. Gilden DH, Bennett JL, Kleinschmidt-DeMasters BK, Song DD, Yee AS, Steiner I. 1998. The value of cerebrospinal fluid antiviral antibody in the diagnosis of neurologic disease produced by varicella zoster virus. J Neurol Sci 159:140–144. [PubMed][CrossRef]
123. Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. 2010. Neurological disease produced by varicella zoster virus reactivation without rash. Curr Top Microbiol Immunol 342:243–253. [PubMed][CrossRef]
124. Schirm J, Meulenberg JJ, Pastoor GW, van Voorst Vader PC, Schroder FP. 1989. Rapid detection of varicella-zoster virus in clinical specimens using monoclonal antibodies on shell vials and smears. J Med Virol 28:1–6. [PubMed][CrossRef]
125. Beards G, Graham C, Pillay D. 1998. Investigation of vesicular rashes for HSV and VZV by PCR. J Med Virol 54:155–157. [PubMed][CrossRef]
126. Sauerbrei A, Eichhorn U, Schacke M, Wutzler P. 1999. Laboratory diagnosis of herpes zoster. J Clin Virol 14:31–36. [PubMed][CrossRef]
127. Schmid DS, Jumaan AO. 2010. Impact of varicella vaccine on varicella-zoster virus dynamics. Clin Microbiol Rev 23:202–217. [PubMed][CrossRef]
128. Coffin SE, Hodinka RL. 1995. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J Clin Microbiol 33:2792–2795. [PubMed]
129. Binkhamis K, Al-Siyabi T, Heinstein C, Hatchette TF, LeBlanc JJ. 2014. Molecular detection of varicella zoster virus while keeping an eye on the budget. J Virol Methods 202:24–27. [PubMed][CrossRef]
130. Santos RA, Padilla JA, Hatfield C, Grose C. 1998. Antigenic variation of varicella zoster virus Fc receptor gE: loss of a major B cell epitope in the ectodomain. Virology 249:21–31. [PubMed][CrossRef]
131. Wirgart BZ, Estrada V, Jackson W, Linde A, Grose C. 2006. A novel varicella-zoster virus gE mutation discovered in two Swedish isolates. J Clin Virol 37:134–136. [PubMed][CrossRef]
132. Loparev VN, Argaw T, Krause PR, Takayama M, Schmid DS. 2000. Improved identification and differentiation of varicella-zoster virus (VZV) wild-type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62-based PCR. J Clin Microbiol 38:3156–3160. [PubMed]
133. LaRussa P, Lungu O, Hardy I, Gershon A, Steinberg SP, Silverstein S. 1992. Restriction fragment length polymorphism of polymerase chain reaction products from vaccine and wild-type varicella-zoster virus isolates. J Virol 66:1016–1020. [PubMed]
134. Tan TY, Zou H, Ong DC, Ker KJ, Chio MT, Teo RY, Koh MJ. 2013. Development and clinical validation of a multiplex real-time PCR assay for herpes simplex and varicella zoster virus. Diagn Mol Pathol 22:245–248. [PubMed][CrossRef]
135. Tang YW, Allawi HT, DeLeon-Carnes M, Li H, Day SP, Schmid D. 2007. Detection and differentiation of wild-type and vaccine mutant varicella-zoster viruses using an Invader Plus method. J Clin Virol 40:129–134. [PubMed][CrossRef]
136. Fan F, Stiles J, Mikhlina A, Lu X, Babady NE, Tang YW. 2014. Clinical validation of the Lyra direct HSV 1+2/VZV assay for simultaneous detection and differentiation of three herpesviruses in cutaneous and mucocutaneous lesions. J Clin Microbiol 52:3799–3801. [PubMed][CrossRef]
137. Kleines M, Scheithauer S, Schiefer J, Hausler M. 2014. Clinical application of viral cerebrospinal fluid PCR testing for diagnosis of central nervous system disorders: a retrospective 11-year experience. Diagn Microbiol Infect Dis 80:207–215. [PubMed][CrossRef]
138. Takahashi T, Tamura M, Takasu T. 2013. Diagnostic value of a “wide-range” quantitative nested real-time PCR assay for varicella zoster virus myelitis. J Med Virol 85:2042–2055. [PubMed][CrossRef]
139. Rodrigues D, de-Paris F, Paiva RM. 2013. Minimum detection limit of an in-house nested-PCR assay for herpes simplex virus and varicella zoster virus. Rev Soc Bras Med Trop 46:625–628. [PubMed][CrossRef]
140. Loparev VN, McCaustland K, Holloway BP, Krause PR, Takayama M, Schmid DS. 2000. Rapid genotyping of varicella-zoster virus vaccine and wild-type strains with fluorophore-labeled hybridization probes. J Clin Microbiol 38:4315–4319. [PubMed]
141. Pahud BA, Glaser CA, Dekker CL, Arvin AM, Schmid DS. 2011. Varicella zoster disease of the central nervous system: epidemiological, clinical, and laboratory features 10 years after the introduction of the varicella vaccine. J Infect Dis 203:316–323. [PubMed][CrossRef]
142. Harbecke R, Oxman MN, Arnold BA, Ip C, Johnson GR, Levin MJ, Gelb LD, Schmader KE, Straus SE, Wang H, Wright PF, Pachucki CT, Gershon AA, Arbeit RD, Davis LE, Simberkoff MS, Weinberg A, Williams HM, Cheney C, Petrukhin L, Abraham KG, Shaw A, Manoff S, Antonello JM, Green T, Wang Y, Tan C, Keller PM. 2009. A real-time PCR assay to identify and discriminate among wild-type and vaccine strains of varicella-zoster virus and herpes simplex virus in clinical specimens, and comparison with the clinical diagnoses. J Med Virol 81:1310–1322. [PubMed][CrossRef]
143. Parker SP, Quinlivan M, Taha Y, Breuer J. 2006. Genotyping of varicella-zoster virus and the discrimination of Oka vaccine strains by TaqMan real-time PCR. J Clin Microbiol 44:3911–3914. [PubMed][CrossRef]
144. Nagel MA, Forghani B, Mahalingam R, Wellish MC, Cohrs RJ, Russman AN, Katzan I, Lin R, Gardner CJ, Gilden DH. 2007. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology 68:1069–1073. [PubMed][CrossRef]
145. Haug A, Mahalingam R, Cohrs RJ, Schmid DS, Corboy JR, Gilden D. 2010. Recurrent polymorphonuclear pleocytosis with increased red blood cells caused by varicella zoster virus infection of the central nervous system: Case report and review of the literature. J Neurol Sci 292:85–88. [PubMed][CrossRef]
146. de Jong MD, Weel JF, Schuurman T, Wertheim-van Dillen PM, Boom R. 2000. Quantitation of varicella-zoster virus DNA in whole blood, plasma, and serum by PCR and electrochemiluminescence. J Clin Microbiol 38:2568–2573. [PubMed]
147. Vossen MT, Gent MR, Peters KM, Wertheim-van Dillen PM, Dolman KM, van Breda A, van Lier RA, Kuijpers TW. 2005. Persistent detection of varicella-zoster virus DNA in a previously healthy child after severe chickenpox. J Clin Microbiol 43:5614–5621. [PubMed][CrossRef]
148. Kronenberg A, Bossart W, Wuthrich RP, Cao C, Lautenschlager S, Wiegand ND, Mullhaupt B, Noll G, Mueller NJ, Speck RF. 2005. Retrospective analysis of varicella zoster virus (VZV) copy DNA numbers in plasma of immunocompetent patients with herpes zoster, of immunocompromised patients with disseminated VZV disease, and of asymptomatic solid organ transplant recipients. Transplant infectious disease: an official journal of the Transplantation Society 7:116–121. [PubMed][CrossRef]
149. Andrei G, Sienaert R, McGuigan C, De Clercq E, Balzarini J, Snoeck R. 2005. Susceptibilities of several clinical varicella-zoster virus (VZV) isolates and drug-resistant VZV strains to bicyclic furano pyrimidine nucleosides. Antimicrob Agents Chemother 49:1081–1086. [PubMed][CrossRef]
150. Sauerbrei A, Taut J, Zell R, Wutzler P. 2011. Resistance testing of clinical varicella-zoster virus strains. Antiviral Res 90:242–247. [PubMed][CrossRef]
151. Schmidt-Chanasit J, Sauerbrei A. 2011. Evolution and world-wide distribution of varicella-zoster virus clades. Infect Gent Evol 11:1–10. [PubMed][CrossRef]
152. Engelmann I, Petzold DR, Kosinska A, Hepkema BG, Schulz TF, Heim A. 2008. Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein-Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens. J Med Virol 80:467–477. [PubMed][CrossRef]
153. Weinberg A, Bate BJ, Masters HB, Schneider SA, Clark JC, Wren CG, Allaman JA, Levin MJ. 1992. In vitro activities of penciclovir and acyclovir against herpes simplex virus types 1 and 2. Antimicrob Agents Chemother 36:2037–2038. [PubMed][CrossRef]
154. Stranska R, Schuurman R, Scholl DR, Jollick JA, Shaw CJ, Loef C, Polman M, van Loon AM. 2004. ELVIRA HSV, a yield reduction assay for rapid herpes simplex virus susceptibility testing. Antimicrob Agents Chemother 48:2331–2333. [PubMed][CrossRef]
155. Piret J, Boivin G. 2014. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev Med Virol 24:186–218. [PubMed][CrossRef]
156. Breuer J, Grose C, Norberg P, Tipples G, Schmid DS. 2010. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24-25 July 2008. J Gen Virol 91:821–828. [PubMed][CrossRef]
157. Okuno Y, Takao Y, Miyazaki Y, Ohnishi F, Okeda M, Yano S, Kumihashi H, Gomi Y, Maeda K, Ishikawa T, Mori Y, Asada H, Iso H, Yamanishi K, Shozu Herpes Zoster Study Group. 2013. Assessment of skin test with varicella-zoster virus antigen for predicting the risk of herpes zoster. Epidemiol Infect 141:706–713. [PubMed][CrossRef]
158. Dlugosch D, Eis-Hubinger AM, Kleim JP, Kaiser R, Bierhoff E, Schneweis KE. 1991. Diagnosis of acute and latent varicella-zoster virus infections using the polymerase chain reaction. J Med Virol 35:136–141. [PubMed][CrossRef]
159. Campsall PA, Au NH, Prendiville JS, Speert DP, Tan R, Thomas EE. 2004. Detection and genotyping of varicella-zoster virus by TaqMan allelic discrimination real-time PCR. J Clin Microbiol 42:1409–1413. [PubMed][CrossRef]
160. Aberle SW, Aberle JH, Steininger C, Puchhammer-Stockl E. 2005. Quantitative real time PCR detection of Varicella-zoster virus DNA in cerebrospinal fluid in patients with neurological disease. Med Microbiol Immunol 194:7–12. [PubMed][CrossRef]
161. Suzuki K, Yoshikawa T, Tomitaka A, Suzuki K, Matsunaga K, Asano Y. 2002. Detection of varicella-zoster virus DNA in throat swabs of patients with herpes zoster and on air purifier filters. J Med Virol 66:567–570. [PubMed][CrossRef]
microbiolspec.DMIH2-0017-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0017-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.DMIH2-0017-2015
2016-06-24
2017-11-20

Abstract:

The most common specimens from immunocompromised patients that are analyzed for detection of herpes simplex virus (HSV) or varicella-zoster virus (VZV) are from skin lesions. Many types of assays are applicable to these samples, but some, such as virus isolation and direct fluorescent antibody testing, are useful only in the early phases of the lesions. In contrast, nucleic acid (NA) detection methods, which generally have superior sensitivity and specificity, can be applied to skin lesions at any stage of progression. NA methods are also the best choice, and sometimes the only choice, for detecting HSV or VZV in blood, cerebrospinal fluid, aqueous or vitreous humor, and from mucosal surfaces. NA methods provide the best performance when reliability and speed (within 24 hours) are considered together. They readily distinguish the type of HSV detected or the source of VZV detected (wild type or vaccine strain). Nucleic acid detection methods are constantly being improved with respect to speed and ease of performance. Broader applications are under study, such as the use of quantitative results of viral load for prognosis and to assess the efficacy of antiviral therapy.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

First-episode HSV in an HIV-infected patient. Genital HSV in a renal transplant recipient. Typical recurrent HSV. Atypical chronic recurrent HSV in a bone marrow transplant recipient.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1B
FIGURE 1B

Genital HSV in a renal transplant recipient.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1C
FIGURE 1C

Typical recurrent HSV.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1D
FIGURE 1D

Atypical chronic recurrent HSV in a bone marrow transplant recipient.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Laboratory methods for the diagnosis of HSV infection

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015
Generic image for table
TABLE 2

Laboratory methods for the diagnosis of VZV infection

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.DMIH2-0017-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error