1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Risk Factors for Shiga Toxin-Producing Associated Human Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    340.87 Kb
  • HTML
    105.05 Kb
  • XML
    109.53 Kb
  • Authors: Marta Rivas1, Isabel Chinen2, Elizabeth Miliwebsky3, Marcelo Masana4
  • Editors: Vanessa Sperandio5, Carolyn J. Hovde6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. C. G. Malbrán,” (1281) Buenos Aires, Argentina; 2: Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. C. G. Malbrán,” (1281) Buenos Aires, Argentina; 3: Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. C. G. Malbrán,” (1281) Buenos Aires, Argentina; 4: Instituto Tecnología de Alimentos, Centro de Investigación de Agroindustria, Instituto Nacional de Tecnología Agropecuaria, (B1708WAB) Morón, Pcia. de Buenos Aires, Argentina; 5: University of Texas Southwestern Medical Center, Dallas, TX; 6: University of Idaho, Moscow, ID
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0002-2013
  • Received 29 April 2013 Accepted 23 July 2013 Published 12 September 2014
  • Marta Rivas, mrivas@anlis.gov.ar
image of Risk Factors for Shiga Toxin-Producing <span class="jp-italic">Escherichia coli-</span>Associated Human Diseases
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Risk Factors for Shiga Toxin-Producing Associated Human Diseases, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0002-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0002-2013-2.gif
  • Abstract:

    We have reviewed the risk factors for the occurrence of Shiga toxin-producing (STEC)-associated human diseases. The analysis of STEC surveillance data and trends shows differences in frequency and severity of the illnesses across countries, whereas the economic and social costs for the affected families, the community, and the health system are better estimated in developed countries. The occurrence of STEC infections is determined by the interaction of the pathogen, the reservoirs, and the biological, cultural, and behavioral aspects of the host. The main risk factors identified in earlier case-control and population-based studies were dietary behaviors and beef consumption. However, in recent years, other risky exposures have also emerged, like the consumption of raw vegetables and sprouts, working or camping in rural areas, visiting farms, and person-to-person transmission. Epidemiological changes have also been determined by the intensification of cattle production, the increase in centralized food production and distribution, and the growth in the volume of international trade of foods. The main lessons learned from recent large outbreaks are knowledge of virulence determinants of new pathogenic strains, recognition of new vehicles of infection, development of new methodologies for detecting STEC in foods and humans, improvement in food regulations and hygiene guidelines, new therapeutic approaches in the treatment of infected patients, establishment of continuous educational programs for food consumers, and enhanced cooperation and teamwork of regional and international networks.

  • Citation: Rivas M, Chinen I, Miliwebsky E, Masana M. 2014. Risk Factors for Shiga Toxin-Producing Associated Human Diseases. Microbiol Spectrum 2(5):EHEC-0002-2013. doi:10.1128/microbiolspec.EHEC-0002-2013.

Key Concept Ranking

Type III Secretion System
0.41222772
0.41222772

References

1. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli O157:H7 serotype. N Engl J Med 308:681–685. [PubMed][CrossRef]
2. Gyles CL. 2007. Shiga toxin-producing Escherichia coli: An overview. J Anim Sci 85:E45–E62. [PubMed][CrossRef]
3. Karmali MA, Steele BT, Petric M, Lim C. 1983. Sporadic cases of hemolytic uremic syndrome associated with fecal cytotoxin and cytotoxin producing Escherichia coli. Lancet i:619–620. [PubMed][CrossRef]
4. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. 1985. The association between hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 151:775–782. [PubMed][CrossRef]
5. Palermo MS, Exeni RA, Fernández GC. 2009. Hemolytic uremic syndrome: pathogenesis and update of interventions. Expert Rev Anti Infect Ther 7:697–707. [PubMed][CrossRef]
6. Caprioli A, Morabito S, Brugère H, Oswald E. 2005. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res 36:289–311. [PubMed][CrossRef]
7. Erickson MC, Doyle MP. 2007. Food as vehicle for transmission of Shiga toxin-producing Escherichia coli. J Food Prot 70:2426–2449. [PubMed]
8. Guth BEC, Prado V, Rivas M. 2010. Shiga toxin-producing Escherichia coli, p 65–83. In Torres AG (ed), Pathogenic Escherichia coli in Latin America. Betham Science Publishers Ltd., Sharjah, United Arab Emirates.
9. Mora A, Blanco M, Blanco JE, Dahbi G, López C, Justel P, Alonso MP, Echeita A, Bernárdez MI, González EA, Blanco J. 2007. Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003. BMC Microbiol 1:7–13. [PubMed]
10. Karmali MA, Mascarenhas M, Shen S, Ziebell K, Johnson S, Reid-Smith R, Isaac-Renton J, Clark C, Rahn K, Kaper JB. 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41:4930–4940. [PubMed][CrossRef]
11. Centers for Disease Control and Prevention. 2012. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2011 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/foodnet/PDFs/2011_annual_report_508c.pdf. Accessed 25 June 2014.
12. Government of Canada, National Integrated Enteric Pathogen SurveillanceSystem (C-EnterNet). 2012. 2011 Short Report. Guelph, ON: Public Health Agency of Canada, Guelph, ON. http://www.phac-aspc.gc.ca/c-enternet/publications-eng.php#a2. Accessed 17 April 2013.
13. European Centre for Disease Prevention and Control. 2013. Annual epidemiological report 2012. Reporting on 2010 surveillance data and 2011 epidemic intelligence data. ECDC, Stockholm, Sweden. http://ecdc.europa.eu/en/Publications/Annual-Epidemiological-Report-2012.pdf. Accessed 17 April 2013.
14. Vally H, Hall G, Dyda A, Raupach J, Knope K, Combs B, Desmarchelier P. 2012. Epidemiology of Shiga toxin-producing Escherichia coli in Australia, 2000–2010. BMC Public Health 12:63–74. [PubMed][CrossRef]
15. Guth BEC, Picheth CF, Gomes TAT. 2010. Escherichia coli situation in Brazil, p 162–178. In Torres AG (ed), Pathogenic Escherichia coli in Latin America. Betham Science Publishers Ltd., Sharjah, United Arab Emirates.
16. Varela G, Gómez-Duarte OG, Ochoa T. 2010. Diarrheigenic Escherichia coli in children from Uruguay, Colombia and Perú, p 209–222. In Torres AG (ed), Pathogenic Escherichia coli in Latin America. Betham Science Publishers Ltd., Sharjah, United Arab Emirates.
17. Löfdahl S. 2008. How global is VTEC?, p 65–67. Epidemiology and Transmission of VTEC and Other Pathogenic Escherichia coli. Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
18. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15. [PubMed][CrossRef]
19. Frenzen PD, Drake A, Angulo FJ, the Emerging Infections Program Foodnet Working Group. 2005. Economic cost of illness due to Escherichia coli O157 infections in the United States. J Food Prot 68:2623–2630. [PubMed]
20. Buzby JC, Roberts T. 2009. The economics of enteric infections: human foodborne disease costs. Gastroenterology 136:1851–1862. [PubMed][CrossRef]
21. Scharff RL, McDowell J, Medeiros L. 2009. Economic cost of foodborne illness in Ohio. J Food Prot 72:128–136. [PubMed]
22. Havelaar AH, van Duynhoven YTHP, Nauta MJ, Bouwknegt M, Heuvelink AE, de Wit GA, Nieuwenhuizen MGM, van de Kar NCAJ. 2004. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichiacoli O157. Epidemiol Infect 132:467–484. [PubMed][CrossRef]
23. Tariq L, Haagsma J, Havelaar A. 2011. Cost of illness and disease burden in The Netherlands due to infections with Shiga toxin–producing Escherichia coli O157. J Food Prot 74:545–552. [PubMed][CrossRef]
24. McPherson M, Kirk MD, Raupach J, Combs B, Butler JRG. 2011. Economic costs of Shiga toxin-producing Escherichia coli infection in Australia. Foodborne Pathog Dis 8:55–62. [PubMed][CrossRef]
25. Caletti MG, Petetta D, Jaitt M, Casaliba S, Gimenez A. 2006. Evaluación de costos directos e indirectos del tratamiento del Síndrome Urémico Hemolítico en sus distintas etapas evolutivas. Medicina (Buenos Aires) 66(Suppl.):22–26. [PubMed]
26. Beutin L. 2006. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. J Vet Med B Infect Dis Vet Public Health 53:299–305. [PubMed][CrossRef]
27. Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37:497–503. [PubMed]
28. Bielaszewska M, Friedrich AW, Aldick T, Schurk-Bulgrin R, Karch H. 2006. Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. Clin Infect Dis 43:1160–1167. [PubMed][CrossRef]
29. Coombes BK, Wickham ME, Mascarenhas M, Gruenheid S, Finlay BB, Karmali MA. 2008. Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains. Appl Environ Microbiol 74:2153–2160. [PubMed][CrossRef]
30. Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mladonicky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D, Whittam TS. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA 105:4868–4873. [PubMed][CrossRef]
31. Mellor GE, Sim EM, Barlow RS, D’Astek BA, Galli L, Chinen I, Rivas M, Gobius KS. 2012. Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 78:4724–4731. [PubMed][CrossRef]
32. Clarke MB, Sperandio V. 2005. Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signalling among microbial flora, host, and pathogens: there is a whole lot of talking going on. Am J Physiol Gastrointest Liver Physiol 288:G1105–G1109. [PubMed][CrossRef]
33. Vaillant V, Espié E, de Valk H, Durr U, Barataud D, Bouvet P, Grimont F, Desenclos JC. 2009. Undercooked ground beef and person-to-person transmission as major risk factors for sporadic hemolytic uremic syndrome related to Shiga-toxin producing Escherichia coli infections in children in France. Pediatr Infect Dis J 28:650–653. [PubMed][CrossRef]
34. Rivas M, Sosa-Estani S, Rangel J, Caletti MG, Vallés P, Roldán CD, Balbi L, Marsano de Mollar MC, Amoedo D, Miliwebsky E, Chinen I, Hoekstra RM, Mead P, Griffin PM. 2008. Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina. Emerg Infect Dis 14:763–771. [PubMed][CrossRef]
35. Werber D, Behnke SC, Fruth A, Merle R, Menzler S, Glaser S, Kreienbrock L, Prager R, Tschape H, Roggentin P. 2007. Shiga toxin-producing Escherichia coli infection in Germany: different risk factors for different age groups. Am J Epidemiol 165:425–434. [PubMed][CrossRef]
36. Jalava K, Ollgren J, Eklund M, Sitonen A, Kuusi M. 2011. Agricultural, socioeconomic and environmental variables as risks for human verotoxigenic Escherichia coli (VTEC) infection in Finland. BMC Infect Dis 11:275. [PubMed][CrossRef]
37. McPherson M, Lalor K, Combs B, Raupach J, Stafford R, Kirk MD. 2009. Serogroup-specific risk factors for Shiga toxin–producing Escherichia coli infection in Australia. Clin Infect Dis 49:249–256. [PubMed][CrossRef]
38. Hadler JL, Clogher P, Hurd S, Phan Q, Mandour M, Bemis K, Marcus R. 2011. Ten-year trends and risk factors for non-O157 Shiga toxin-producing Escherichia coli found through Shiga toxin testing, Connecticut, 2000–2009. Clin Infect Dis 53:269–276. [PubMed][CrossRef]
39. Rivero MA, Passucci JA, Rodriguez EM, Signorini ML, Tarabla HD, Parma AE. 2011. Factors associated with sporadic verotoxigenic Escherichia coli infection in children with diarrhea from the Central Eastern Area of Argentina. Foodborne Pathog Dis 8:901–906. [PubMed][CrossRef]
40. Bentancor AB, Ameal LA, Calvino MF, Martinez MC, Miccio L, Osvaldo J, Degregorio OJ. 2012. Risk factors for Shiga toxin-producing Escherichia coli infections in preadolescent schoolchildren in Buenos Aires, Argentina. J Infect Dev Ctries 6:378–386. [PubMed][CrossRef]
41. Di Pietro S, Stafforini G, Cifone N, Alvarez ML, Arellano O, Manzini S, Haritchabalet K, Nóbile M, Chinen I, Miliwebsky E, Rivas M, Larrieu E. 2013. Epidemiología del síndrome urémico hemolítico, Viedma, Provincia de Río Negro 2003–2012. Rev Arg Zoonosis III:11–15.
42. Ferens WA, Hovde CJ. 2011. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 8:465–487. [PubMed][CrossRef]
43. Rhoades JR, Duffy G, Koutsoumanis K. 2009. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Food Microbiol 4:357–376. [PubMed][CrossRef]
44. Renter DG, Sargeant JM, Oberst RD, Samadpour M. 2003. Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Appl Environ Microbiol 69:542–547. [PubMed][CrossRef]
45. Masana MO, Leotta GA, Del Castillo LL, D’Astek BA, Palladino PM, Galli L, Vilacoba E, Carbonari C, Rodríguez HR, Rivas M. 2010. Prevalence, characterization, and genotypic analysis of Escherichia coli O157:H7/NM from selected beef exporting abattoirs of Argentina. J Food Prot 73:649–656. [PubMed]
46. Kalchayanand N, Arthur TM, Bosilevac JM, Wells JE, Wheeler TL. 2013. Chromogenic agar medium for detection and isolation of Escherichia coli serogroups O26, O45, O103, O121 and O145 from fresh beef and cattle feces. J Food Prot 76:192–199. [PubMed][CrossRef]
47. Thomas KM, McCann MS, Collery MM, Logan A, Whyte P, McDowell DA, Duffy G. 2012. Tracking verotoxigenic Escherichia coli O157, O26, O111, O103 and O145 in Irish cattle. Int J Food Microbiol 153:288–296. [PubMed][CrossRef]
48. Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Koohmaraie, M. 2003. Seasonal prevalence of Shiga toxin-producing Escherichia coli including O157 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66:1978–1986. [PubMed]
49. Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. 2009. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr Issues Mol Biol 11:67–79. [PubMed]
50. Callaway TR, Carroll JA, Arthington JD, Edrington TS, Rossman ML, Carr MA, Krueger NA, Ricke SC, Crandall P, Nisbet DJ. 2011. Escherichia coli O157:H7 populations in ruminants can be reduced by orange peel product feeding. J Food Prot 74:1917–1921. [PubMed][CrossRef]
51. Matthews L, McKendrick IJ, Ternent H, Gunn GJ, Synge B, Woolhouse ME. 2006. Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiol Infect 134:131–142. [PubMed][CrossRef]
52. Arthur TM, Keen JE, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, Shackelford SD, Wheeler TL, Nou X, Koohmaraie M. 2009. Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Appl Environ Microbiol 75:6515–6523. [PubMed][CrossRef]
53. Arthur TM, Brichta-Harhay DM, Bosilevac JM, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2010. Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef contamination. Meat Sci 86:32–37. [PubMed][CrossRef]
54. Fukushima H, Hoshina K, Gomyoda M. 1999. Long-term survival of Shiga toxin-producing Escherichia coli O26, O111, and O157 in bovine feces. Appl Environ Microbiol 65:5177–5181. [PubMed]
55. Fremaux B, Prigent-Combaret C, Delignette-Muller ML, Dothal M, Vernozy-Rozand C. 2007. Persistence of Shiga toxin-producing Escherichia coli O26 in cow slurry. Lett Appl Microbiol 45:55–61. [PubMed][CrossRef]
56. Fremaux B, Delignette-Muller ML, Prigent-Combaret C, Gleizal A, Vernozy-Rozand C. 2007. Growth and survival of non-O157:H7 Shiga toxin-producing Escherichia coli in cow manure. J Appl Microbiol 102:89–99. [PubMed][CrossRef]
57. Park S, Szonyi B, Gautam R, Nightingale K, Anciso J, Ivanek R. 2012. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review. J Food Prot 11:2055–2081. [PubMed][CrossRef]
58. Centers for Disease Control and Prevention. 2006. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach—United States, September 2006. Morbid Mortal Wkly Rep 55:1045–1046. [PubMed]
59. Frank C, Kapfhammer S, Werber D, Stark K, Held L. 2008. Cattle density and Shiga toxin-producing Escherichia coli infection in Germany: increased risk for most but not all serotypes. Vector Borne Zoonotic Dis 8:635–643. [PubMed][CrossRef]
60. Strachan NJC, Dunn GM, Locking ME, Reid TMS, Ogden ID. 2006. Escherichia coli O157: burger bug or environmental pathogen? Int J Food Microbiol 112:129–137. [PubMed][CrossRef]
61. Kistemann T, Zimmer S, Vagsholm I, Andersson Y. 2004. GIS-supported investigation of human EHEC and cattle VTEC O157 infections in Sweden: geographical distribution, spatial variation and possible risk factors. Epidemiol Infect 132:495–505. [PubMed][CrossRef]
62. Tanaro JD, Leotta GA, Lound LH, Galli L, Piaggio MC, Carbonari CC, Araujo S, Rivas M. 2010. Escherichia coli O157 in bovine feces and surface water streams in a beef cattle farm of Argentina. Foodborne Pathog Dis 7:475–477. [PubMed][CrossRef]
63. Armstrong GL, Hollingsworth J, Morris, Jr, JG. 1996. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev 18:29–51. [PubMed][CrossRef]
64. Arthur TM, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, King DA, Shackelford SD, Wheeler TL, Koohmaraie M. 2008. Source tracking of Escherichia coli O157:H7 and Salmonella contamination in the lairage environment of commercial U.S. beef processing plants and identification of an effective intervention. J Food Prot 71:1752–1760. [PubMed]
65. Masana MO, D’Astek BA, Palladino PM, Galli L, Del Castillo LL, Carbonari C, Leotta GA, Vilacoba E, Irino K, Rivas M. 2011. Genotypic characterization of non-O157 Shiga toxin-producing Escherichia coli in beef abattoirs of Argentina. J Food Prot 74:2008–2017. [PubMed][CrossRef]
66. D’Astek BA, Del Castillo LL, Miliwebsky E, Carbonari C, Palladino PM, Deza N, Chinen I, Manfredi E, Leotta GA, Masana MO, Rivas M. 2012. Subtyping of Escherichia coli O157:H7 strains isolated from human infections and healthy cattle in Argentina. Foodborne Pathog Dis 9:457–464. [PubMed][CrossRef]
67. Smith BA, Fazil A, Lammerding AM. 2013. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: evaluating the effects of interventions. Food Control 29:364–381. [CrossRef]
68. Hurd HS, Malladi S. 2012. An outcomes model to evaluate risks and benefits of Escherichia coli vaccination in beef cattle. Foodborne Pathog Dis 10:952–961. [PubMed][CrossRef]
69. Signorini M, Tarabla H. 2009. Quantitative risk assessment for verocytotoxigenic Escherichia coli in ground beef hamburgers in Argentina. Int J Food Microbiol 132:153–161. [PubMed][CrossRef]
70. World Health Organization. 1997. Prevention and control of enterohaemorrhagic Escherichia coli (EHEC) infections. Report of a WHO Consultation. World Health Organization, Geneva, Switzerland.
71. Robins-Browne RM. 2005. The relentless evolution of pathogenic Escherichia coli. Clin Infect Dis 41:793–794. [PubMed][CrossRef]
72. Mellmann A, Bielaszewska M, Zimmerhackl LB, Prager R, Harmsen D, Tschäpe H, Karch H. 2005. Enterohemorrhagic Escherichia coli in human infection: in vivo evolution of a bacterial pathogen. Clin Infect Dis 41:785–792. [PubMed][CrossRef]
73. Centers for Disease Control and Prevention. 1993. Multistate outbreak of Escherichia coli O157:H7 infections from hamburgers—western United States, 1992–1993. Morbid Mortal Wkly Rep 42:258–263.
74. Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M, Ono A, Yanagawa H. 1999. Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150:787–796. [PubMed][CrossRef]
75. STEC Workshop Reporting Group. 2012. Experiences from the Shiga toxin-producing Escherichia coli O104:H4 outbreak in Germany and research needs in the field, Berlin, 28–29 November 2011. Euro Surveill 17(7):pii=20091. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20091. Accessed 24 April 2013.
76. Matsell DG, White CT. 2009. An outbreak of diarrhea-associated childhood hemolytic uremic syndrome: the Walkerton epidemic. Kidney Int 75:S35–S37. [PubMed][CrossRef]
77. Snedeker KG, Shaw DJ, Locking ME, Prescott RJ. 2009. Primary and secondary cases in Escherichia coli O157 outbreaks: a statistical analysis. BMC Infect Dis 9:144. [PubMed][CrossRef]
78. Miliwebsky E, Deza N, Carbonari C, D’Astek B, Baschkier A, Zolezzi G, Manfredi E, Chinen I, Rivas M. Outbreaks of Shiga toxin-producing Escherichia coli in Argentina, 2007–2011, abstr. P-017, p 107. Abstr. VTEC 2012, Amsterdam, The Netherlands, 6–9 May 2012.
79. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ, Wells JG, Baron R, Kobayashi JA. 1994. A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA 272:1349–1353. [PubMed][CrossRef]
80. Tuttle J, Gomez T, Doyle MP, Wells JG, Zhao T, Tauxe RV, Griffin PM. 1999. Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect 122:185–192. [PubMed][CrossRef]
81. Fukushima I, Hashizume T, Morita Y, Tanaka J, Azuma K, Mizumoto Y, Kaneno M, Matsuura M, Konma K, Kitani T. 1999. Clinical experiences in Sakai City Hospital during the massive outbreak of enterohemorrhagic Escherichia coli O157 infections in Sakai City, 1996. Pediatr Int 41:213–217. [PubMed][CrossRef]
82. Kulasekara BR, Jacobs M, Zhou Y, Wu Z, Sims E, Saenphimmachak C, Rohmer L, Ritchie JM, Radey M, McKevitt M, Freeman TL, Hayden H, Haugen E, Gillett W, Fong C, Chang J, Beskhlebnaya V, Waldor MK, Samadpour M, Whittam TS, Kaul R, Brittnacher M, Miller SI. 2009. Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun 77:3713–3721. [PubMed][CrossRef]
83. Rubino S, Cappuccinelli P, Kelvin DJ. 2011. Escherichia coli (STEC) serotype O104 outbreak causing haemolytic syndrome (HUS) in Germany and France. J Infect Dev Ctries 5:437–440. [PubMed][CrossRef]
84. Hauswaldt S, Nitschke M, Sayk F, Solbach W, Knobloch JKM. 2013. Lessons learned from outbreaks of Shiga toxin-producing Escherichia coli. Curr Infect Dis Rep 15:4–9. [PubMed][CrossRef]
85. Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, Bauwens A, Peters G, Karch H. 2011. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676. [PubMed][CrossRef]
86. Scheutz F, Møller Nielsen E, Frimodt-Møller J, Boisen N, Morabito S, Tozzoli R, Nataro JP, Caprioli A. 2011. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill 16(24):pii=19889. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19889.
87. European Food Safety Authority (EFSA). 2011. Scientific Report of EFSA: Urgent advice on the public health risk of Shiga toxin-producing Escherichia coli in fresh vegetables. EFSA J 9:2274–2324.
88. Weiser AA, Gross S, Schielke A, Wigger JF, Ernert A, Adolphs J, Fetsch A, Müller-Graf C, Käsbohrer A, Mosbach-Schulz O, Appel B, Greiner M. 2013. Trace-back and trace-forward tools developed ad hoc and used during the STEC O104:H4 outbreak 2011 in Germany and generic concepts for future outbreak situations. Foodborne Pathog Dis 10:263–269. [PubMed][CrossRef]
microbiolspec.EHEC-0002-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0002-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0002-2013
2014-09-12
2017-03-25

Abstract:

We have reviewed the risk factors for the occurrence of Shiga toxin-producing (STEC)-associated human diseases. The analysis of STEC surveillance data and trends shows differences in frequency and severity of the illnesses across countries, whereas the economic and social costs for the affected families, the community, and the health system are better estimated in developed countries. The occurrence of STEC infections is determined by the interaction of the pathogen, the reservoirs, and the biological, cultural, and behavioral aspects of the host. The main risk factors identified in earlier case-control and population-based studies were dietary behaviors and beef consumption. However, in recent years, other risky exposures have also emerged, like the consumption of raw vegetables and sprouts, working or camping in rural areas, visiting farms, and person-to-person transmission. Epidemiological changes have also been determined by the intensification of cattle production, the increase in centralized food production and distribution, and the growth in the volume of international trade of foods. The main lessons learned from recent large outbreaks are knowledge of virulence determinants of new pathogenic strains, recognition of new vehicles of infection, development of new methodologies for detecting STEC in foods and humans, improvement in food regulations and hygiene guidelines, new therapeutic approaches in the treatment of infected patients, establishment of continuous educational programs for food consumers, and enhanced cooperation and teamwork of regional and international networks.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/EHEC-0002-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0002-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Number of HUS cases, incidence rates, and percentages of lethality in Argentina, 2002–2011. doi:10.1128/microbiolspec.EHEC-0002-2013.f1

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

(a) Top ten XbaI-PFGE patterns associated with human STEC O157 strains in Argentina. (b) Dendrogram of the top ten XbaI-PFGE patterns. (c) Dendrogram of AREHXHX01.0011 pattern and other related patterns. doi:10.1128/microbiolspec.EHEC-0002-2013.f2

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0002-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Risk factors for STEC infections identified by case-control studies and population-based studies. 2000-2012

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0002-2013
Generic image for table

Click to view

TABLE 2

Features of major food-borne outbreaks associated with Shiga toxin-producing

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0002-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error