1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Role of Shiga/Vero Toxins in Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    493.76 Kb
  • XML
    119.38 Kb
  • HTML
    84.07 Kb
  • Authors: Fumiko Obata1, Tom Obrig2
  • Editors: Vanessa Sperandio3, Carolyn J. Hovde4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: University of Maryland School of Medicine, Baltimore, MD 21201; 2: University of Maryland School of Medicine, Baltimore, MD 21201; 3: University of Texas Southwestern Medical Center, Dallas, TX; 4: University of Idaho, Moscow, ID
  • Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
  • Received 01 May 2013 Accepted 29 July 2013 Published 20 June 2014
  • Fumiko Obata, fobata@som.umaryland.edu
image of Role of Shiga/Vero Toxins in Pathogenesis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Role of Shiga/Vero Toxins in Pathogenesis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/3/EHEC-0005-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/3/EHEC-0005-2013-2.gif
  • Abstract:

    Shiga toxin (Stx) is the primary cause of severe host responses including renal and central nervous system disease in Shiga toxin-producing (STEC) infections. The interaction of Stx with different eukaryotic cell types is described. Host responses to Stx and bacterial lipopolysaccharide are compared as related to the features of the STEC-associated hemolytic-uremic syndrome (HUS). Data derived from animal models of HUS and central nervous system disease in vivo and eukaryotic cells in vitro are evaluated in relation to HUS disease of humans.

  • Citation: Obata F, Obrig T. 2014. Role of Shiga/Vero Toxins in Pathogenesis. Microbiol Spectrum 2(3):EHEC-0005-2013. doi:10.1128/microbiolspec.EHEC-0005-2013.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.4842202
Central Nervous System Diseases
0.44609722
0.4842202

References

1. Ohmura M, Yamamoto M, Tomiyama-Miyaji C, Yuki Y, Takeda Y, Kiyono H. 2005. Nontoxic Shiga toxin derivatives from Escherichia coli possess adjuvant activity for the augmentation of antigen-specific immune responses via dendritic cell activation. Infect Immun 73:4088–4097. [PubMed][CrossRef]
2. Tesh VL, Ramegowda B, Samuel JE. 1994. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect Immun 62:5085–5094. [PubMed]
3. Obrig TG. 2010. Escherichia coli Shiga toxin mechanisms of action in renal disease. Toxins (Basel) 2:2769–2794. [PubMed][CrossRef]
4. Obrig TG, Karpman D. 2012. Shiga toxin pathogenesis: kidney complications and renal failure. Curr Top Microbiol Immunol 357:105–136. [PubMed][CrossRef]
5. Karpman D, Sartz L, Johnson S. 2010. Pathophysiology of typical hemolytic uremic syndrome. Semin Thromb Hemost 36:575–585. [PubMed][CrossRef]
6. Habib R, Mathieu H, Royer P. 1967. [Hemolytic-uremic syndrome of infancy: 27 clinical and anatomic observations]. Nephron 4:139–172. (In French.) [PubMed][CrossRef]
7. Obrig TG, Louise CB, Lingwood CA, Boyd B, Barley-Maloney L, Daniel TO. 1993. Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 268:15484–15488. [PubMed]
8. Psotka MA, Obata F, Kolling GL, Gross LK, Saleem MA, Satchell SC, Mathieson PW, Obrig TG. 2009. Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect Immun 77:959–969. [PubMed][CrossRef]
9. Simon M, Cleary TG, Hernandez JD, Abboud HE. 1998. Shiga toxin 1 elicits diverse biologic responses in mesangial cells. Kidney Int 54:1117–1127. [PubMed][CrossRef]
10. Shibolet O, Shina A, Rosen S, Cleary TG, Brezis M, Ashkenazi S. 1997. Shiga toxin induces medullary tubular injury in isolated perfused rat kidneys. FEMS Immunol Med Microbiol 18:55–60. [PubMed][CrossRef]
11. Hughes AK, Stricklett PK, Kohan DE. 1998. Cytotoxic effect of Shiga toxin-1 on human proximal tubule cells. Kidney Int 54:426–437. [PubMed][CrossRef]
12. Ghosh SA, Polanowska-Grabowska RK, Fujii J, Obrig T, Gear AR. 2004. Shiga toxin binds to activated platelets. J Thromb Haemost 2:499–506. [PubMed][CrossRef]
13. Karpman D, Manea M, Vaziri-Sani F, Stahl AL, Kristoffersson AC. 2006. Platelet activation in hemolytic uremic syndrome. Semin Thromb Hemost 32:128–145. [PubMed][CrossRef]
14. Fernandez GC, Rubel C, Dran G, Gomez S, Isturiz MA, Palermo MS. 2000 Shiga toxin-2 induces neutrophilia and neutrophil activation in a murine model of hemolytic uremic syndrome. Clin Immunol 95:227–234. [PubMed][CrossRef]
15. Roche JK, Keepers TR, Gross LK, Seaner RM, Obrig TG. 2007. CXCL1/KC and CXCL2/MIP-2 are critical effectors and potential targets for therapy of Escherichia coli O157:H7-associated renal inflammation. Am J Pathol 170:526–537. [PubMed][CrossRef]
16. Foster GH, Armstrong CS, Sakiri R, Tesh VL. 2000. Shiga toxin-induced tumor necrosis factor alpha expression: requirement for toxin enzymatic activity and monocyte protein kinase C and protein tyrosine kinases. Infect Immun 68:5183–5189. [PubMed][CrossRef]
17. Eaton KA, Friedman DI, Francis GJ, Tyler JS, Young VB, Haeger J, Abu-Ali G, Whittam TS. 2008. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect Immun 76:3054–3063. [PubMed][CrossRef]
18. Stahl AL, Sartz L, Nelsson A, Bekassy ZD, Karpman D. 2009. Shiga toxin and lipopolysaccharide induce platelet-leukocyte aggregates and tissue factor release, a thrombotic mechanism in hemolytic uremic syndrome. PLoS One 4:e6990. [PubMed][CrossRef]
19. Keepers TR, Psotka MA, Gross LK, Obrig TG. 2006. A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J Am Soc Nephrol 17:3400–3414. [PubMed][CrossRef]
20. Keepers TR, Gross LK, Obrig TG. 2007 Monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and RANTES recruit macrophages to the kidney in a mouse model of hemolytic-uremic syndrome. Infect Immun 75:1229–1236. [PubMed][CrossRef]
21. Hasko G, Linden J, Cronstein B, Pacher P. 2008. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. [PubMed][CrossRef]
22. Walters MD, Matthei IU, Kay R, Dillon MJ, Barratt TM. 1989. The polymorphonuclear leucocyte count in childhood haemolytic uraemic syndrome. Pediatr Nephrol 3:130–134. [PubMed][CrossRef]
23. Inward CD, Howie AJ, Fitzpatrick MM, Rafaat F, Milford DV, Taylor CM. 1997. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. Pediatr Nephrol 11:556–559. [PubMed][CrossRef]
24. Griener TP, Strecker JG, Humphries RM, Mulvey GL, Fuentealba C, Hancock RE, Armstrong GD. 2011. Lipopolysaccharide renders transgenic mice expressing human serum amyloid P component sensitive to Shiga toxin 2. PLoS One 6:e21457. [PubMed][CrossRef]
25. Kawachi H, Han GD, Miyauchi N, Hashimoto T, Suzuki K, Shimizu F. 2009. Therapeutic targets in the podocyte: findings in anti-slit diaphragm antibody-induced nephropathy. J Nephrol 22:450–456. [PubMed]
26. Das L, Brunner HI. 2009. Biomarkers for renal disease in childhood. Curr Rheumatol Rep 11:218–225. [PubMed][CrossRef]
27. Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P. 2006 Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: a novel marker of renal injury. Pediatr Nephrol 21:989–994. [PubMed][CrossRef]
28. Mohawk KL, O'Brien AD. 2011. Mouse models of Escherichia coli O157:H7 infection and Shiga toxin injection. J Biomed Biotechnol 2011:258185. [PubMed][CrossRef]
29. Karpman D, Connell H, Svensson M, Scheutz F, Alm P, Svanborg C. 1997. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J Infect Dis 175:611–620. [PubMed][CrossRef]
30. Wadolkowski EA, Sung LM, Burris JA, Samuel JE, O'Brien AD. 1990. Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin type II. Infect Immun 58:3959–3965. [PubMed]
31. Tzipori S, Chow CW, Powell HR. 1988. Cerebral infection with Escherichia coli O157:H7 in humans and gnotobiotic piglets. J Clin Pathol 41:1099–1103. [PubMed][CrossRef]
32. Dean-Nystrom EA, Pohlenz JF, Moon HW, O'Brien AD. 2000. Escherichia coli O157:H7 causes more-severe systemic disease in suckling piglets than in colostrum-deprived neonatal piglets. Infect Immun 68:2356–2358. [PubMed][CrossRef]
33. Matise I, Sirinarumitr T, Bosworth BT, Moon HW. 2000. Vascular ultrastructure and DNA fragmentation in swine infected with Shiga toxin-producing Escherichia coli. Vet Pathol 37:318–327. [PubMed][CrossRef]
34. Shringi S, Garcia A, Lahmers KK, Potter KA, Muthupalani S, Swennes AG, Hovde CJ, Call DR, Fox JG, Besser TE. 2012. Differential virulence of clinical and bovine-biased enterohemorrhagic Escherichia coli O157:H7 genotypes in piglet and Dutch belted rabbit models. Infect Immun 80:369–380. [PubMed][CrossRef]
35. Fujii J, Kita T, Yoshida S, Takeda T, Kobayashi H, Tanaka N, Ohsato K, Mizuguchi Y. 1994. Direct evidence of neuron impairment by oral infection with verotoxin-producing Escherichia coli O157:H- in mitomycin-treated mice. Infect Immun 62:3447–3453. [PubMed]
36. Kurioka T, Yunou Y, Kita E. 1998. Enhancement of susceptibility to Shiga toxin-producing Escherichia coli O157:H7 by protein calorie malnutrition in mice. Infect Immun 66:1726–1734. [PubMed]
37. Isogai E, Isogai H, Kimura K, Hayashi S, Kubota T, Fujii N, Takeshi K. 1998. Role of tumor necrosis factor alpha in gnotobiotic mice infected with an Escherichia coli O157:H7 strain. Infect Immun 66:197–202. [PubMed]
38. Taguchi H, Takahashi M, Yamaguchi H, Osaki T, Komatsu A, Fujioka Y, Kamiya S. 2002. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J Med Microbiol 51:336–343. [PubMed]
39. MacLeod DL, Gyles CL, Wilcock BP. 1991. Reproduction of edema disease of swine with purified Shiga-like toxin-II variant. Vet Pathol 28:66–73. [PubMed][CrossRef]
40. Gannon VP, Gyles CL, Wilcock BP. 1989. Effects of Escherichia coli Shiga-like toxins (verotoxins) in pigs. Can J Vet Re. 53:306–312. [PubMed]
41. Zoja C, Corna D, Farina C, Sacchi G, Lingwood C, Doyle MP, Padhye VV, Abbate M, Remuzzi G. 1992. Verotoxin glycolipid receptors determine the localization of microangiopathic process in rabbits given verotoxin-1. J Lab Clin Med 120:229–238. [PubMed]
42. Richardson SE, Rotman TA, Jay V, Smith CR, Becker LE, Petric M, Olivieri NF, Karmali MA. 1992. Experimental verocytotoxemia in rabbits. Infect Immun 60:4154–4167. [PubMed]
43. Takahashi K, Funata N, Ikuta F, Sato S. 2008. Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2. J Neuroinflammation 5:11. [PubMed][CrossRef]
44. Sugatani J, Igarashi T, Munakata M, Komiyama Y, Takahashi H, Komiyama N, Maeda T, Takeda T, Miwa M. 2000. Activation of coagulation in C57BL/6 mice given verotoxin 2 (VT2) and the effect of co-administration of LPS with VT2. Thromb Res 100:61–72. [PubMed][CrossRef]
45. Nishikawa K, Matsuoka K, Kita E, Okabe N, Mizuguchi M, Hino K, Miyazawa S, Yamasaki C, Aoki J, Takashima S, Yamakawa Y, Nishijima M, Terunuma D, Kuzuhara H, Natori Y. 2002. A therapeutic agent with oriented carbohydrates for treatment of infections by Shiga toxin-producing Escherichia coli O157:H7. Proc Natl Acad Sci USA 99:7669–7674. [PubMed][CrossRef]
46. Taylor CM, Williams JM, Lote CJ, Howie AJ, Thewles A, Wood JA, Milford DV, Raafat F, Chant I, Rose PE. 1999. A laboratory model of toxin-induced hemolytic uremic syndrome. Kidney Int 55:1367–1374. [PubMed][CrossRef]
47. Mizuguchi M, Tanaka S, Fujii I, Tanizawa H, Suzuki Y, Igarashi T, Yamanaka T, Takeda T, Miwa M. 1996. Neuronal and vascular pathology produced by verocytotoxin 2 in the rabbit central nervous system. Acta Neuropathol (Berl) 91:254–262. [PubMed][CrossRef]
48. Garcia A, Marini RP, Catalfamo JL, Knox KA, Schauer DB, Rogers AB, Fox JG. 2008. Intravenous Shiga toxin 2 promotes enteritis and renal injury characterized by polymorphonuclear leukocyte infiltration and thrombosis in Dutch Belted rabbits. Microbes Infect 10:650–656. [PubMed][CrossRef]
49. Goldstein J, Loidl CF, Creydt VP, Boccoli J, Ibarra C. 2007. Intracerebroventricular administration of Shiga toxin type 2 induces striatal neuronal death and glial alterations: an ultrastructural study. Brain Res 1161:106–115. [PubMed][CrossRef]
50. Lucero MS, Mirarchi F, Goldstein J, Silberstein C. 2012. Intraperitoneal administration of Shiga toxin 2 induced neuronal alterations and reduced the expression levels of aquaporin 1 and aquaporin 4 in rat brain. Microb Pathog 53:87–94. [PubMed][CrossRef]
51. Tironi-Farinati C, Geoghegan PA, Cangelosi A, Pinto A, Loidl CF, Goldstein J. 2013. A translational murine model of sub-lethal intoxication with Shiga toxin 2 reveals novel ultrastructural findings in the brain striatum. PLoS One 8:e55812. [PubMed][CrossRef]
52. Fujii J, Kinoshita Y, Kita T, Higure A, Takeda T, Tanaka N, Yoshida S. 1996. Magnetic resonance imaging and histopathological study of brain lesions in rabbits given intravenous verotoxin 2. Infect Immun 64:5053–5060. [PubMed]
53. Obata F, Tohyama K, Bonev AD, Kolling GL, Keepers TR, Gross LK, Nelson MT, Sato S, Obrig TG. 2008. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J Infect Dis 198:1398–1406. [PubMed][CrossRef]
54. Mizuguchi M, Sugatani J, Maeda T, Momoi T, Arima K, Takashima S, Takeda T, Miwa M. 2001. Cerebrovascular damage in young rabbits after intravenous administration of Shiga toxin 2. Acta Neuropathol (Berl) 102:306–312. [PubMed]
55. Kita E, Yunou Y, Kurioka T, Harada H, Yoshikawa S, Mikasa K, Higashi N. 2000. Pathogenic mechanism of mouse brain damage caused by oral infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 68:1207–1214. [PubMed][CrossRef]
56. Amran MY, Fujii J, Suzuki SO, Kolling GL, Villanueva SY, Kainuma M, Kobayashi H, Kameyama H, Yoshida S. 2013. Investigation of encephalopathy caused by Shiga toxin 2c-producing Escherichia coli infection in mice. PLoS One 8:e58959. [PubMed][CrossRef]
57. Tironi-Farinati C, Loidl CF, Boccoli J, Parma Y, Fernandez-Miyakawa ME, Goldstein J. 2010. Intracerebroventricular Shiga toxin 2 increases the expression of its receptor globotriaosylceramide and causes dendritic abnormalities. J Neuroimmunol 222:48–61. [PubMed][CrossRef]
58. Meuth SG, Gobel K, Kanyshkova T, Ehling P, Ritter MA, Schwindt W, Bielaszewska M, Lebiedz P, Coulon P, Herrmann AM, Storck W, Kohmann D, Muthing J, Pavenstadt H, Kuhlmann T, Karch H, Peters G, Budde T, Wiendl H, Pape HC. 2013. Thalamic involvement in patients with neurologic impairment due to Shiga toxin 2. Ann Neurol 73:419–429. [PubMed][CrossRef]
59. Boccoli J, Loidl CF, Lopez-Costa JJ, Creydt VP, Ibarra C, Goldstein J. 2008. Intracerebroventricular administration of Shiga toxin type 2 altered the expression levels of neuronal nitric oxide synthase and glial fibrillary acidic protein in rat brains. Brain Res 1230:320–333. [PubMed][CrossRef]
60. Winter KR, Stoffregen WC, Dean-Nystrom EA. 2004. Shiga toxin binding to isolated porcine tissues and peripheral blood leukocytes. Infect Immun 72:6680–6684. [PubMed][CrossRef]
61. Obata F, Obrig T. 2010 Distribution of Gb(3) immunoreactivity in the mouse central nervous system. Toxins (Basel) 2:1997–2006. [PubMed][CrossRef]
62. Ren J, Utsunomiya I, Taguchi K, Ariga T, Tai T, Ihara Y, Miyatake T. 1999. Localization of verotoxin receptors in nervous system. Brain Res 825:183–188. [PubMed][CrossRef]
63. Utsunomiya I, Ren J, Taguchi K, Ariga T, Tai T, Ihara Y, Miyatake T. 2001. Immunohistochemical detection of verotoxin receptors in nervous system. Brain Res Brain Res Protoc 8:99–103. [PubMed][CrossRef]
64. Okuda T, Tokuda N, Numata S, Ito M, Ohta M, Kawamura K, Wiels J, Urano T, Tajima O, Furukawa K. 2006. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281:10230–10235. [PubMed][CrossRef]
65. Fujii J, Kinoshita Y, Yamada Y, Yutsudo T, Kita T, Takeda T, Yoshida S. 1998. Neurotoxicity of intrathecal Shiga toxin 2 and protection by intrathecal injection of anti-Shiga toxin 2 antiserum in rabbits. Microb Pathog 25:139–146. [PubMed][CrossRef]
66. Taylor CM, Williams JM, Lote CJ, Howie AJ, Thewles A, Wood JA, Milford DV, Raafat F, Chant I, Rose PE. 1999. A laboratory model of toxin-induced hemolytic uremic syndrome. Kidney Int 55:1367–1374. [PubMed][CrossRef]
67. Siegler RL, Pysher TJ, Lou R, Tesh VL, Taylor FB, Jr. 2001. Response to Shiga toxin-1, with and without lipopolysaccharide, in a primate model of hemolytic uremic syndrome. Am J Nephrol 21:420–425. [PubMed][CrossRef]
68. Yamada Y, Fujii J, Murasato Y, Nakamura T, Hayashida Y, Kinoshita Y, Yutsudo T, Matsumoto T, Yoshida S. 1999. Brainstem mechanisms of autonomic dysfunction in encephalopathy-associated Shiga toxin 2 intoxication. Ann Neurol 45:716–723. [PubMed][CrossRef]
69. Fujii J, Kinoshita Y, Yutsudo T, Taniguchi H, Obrig T, Yoshida SI. 2001. Toxicity of Shiga toxin 1 in the central nervous system of rabbits. Infect Immun 69:6545–6548. [PubMed][CrossRef]
70. Fujii J, Kinoshita Y, Matsukawa A, Villanueva SY, Yutsudo T, Yoshida S. 2009. Successful steroid pulse therapy for brain lesion caused by Shiga toxin 2 in rabbits. Microb Pathog 46:179–184. [PubMed][CrossRef]
71. Tzipori S, Gunzer F, Donnenberg MS, de Montigny L, Kaper JB, Donohue-Rolfe A. 1995. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect Immun 63:3621–3627. [PubMed]
microbiolspec.EHEC-0005-2013.citations
cm/2/3
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0005-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0005-2013
2014-06-20
2017-10-23

Abstract:

Shiga toxin (Stx) is the primary cause of severe host responses including renal and central nervous system disease in Shiga toxin-producing (STEC) infections. The interaction of Stx with different eukaryotic cell types is described. Host responses to Stx and bacterial lipopolysaccharide are compared as related to the features of the STEC-associated hemolytic-uremic syndrome (HUS). Data derived from animal models of HUS and central nervous system disease in vivo and eukaryotic cells in vitro are evaluated in relation to HUS disease of humans.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/3/EHEC-0005-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0005-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Schema: Shiga toxin interaction with eukaryotic cells. doi:10.1128/microbiolspec.EHEC-0005-2013.f1

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Proposed pathways of Stx and LPS actions in mice. Data derived from a Stx/LPS murine model of HUS indicate that LPS is the primary elicitor of fibrin deposition in kidneys. This pathway requires chemokines and platelets but is not responsible for renal failure. Stx is responsible for renal failure in this murine model in a process that involves nonendothelial renal cell types. doi:10.1128/microbiolspec.EHEC-0005-2013.f2

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Anti-inflammatory actions of adenosine in HUS. Data derived from an Stx/LPS murine model of HUS suggest adenosine A2a receptor agonist, i.e., adenosine, effectively blocks the actions of LPS (enhanced by Stx2) at the level of different renal cell types to prevent platelet activation and coagulation. doi:10.1128/microbiolspec.EHEC-0005-2013.f3

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Neutrophil-endothelial cell interactions in HUS. In the Stx2/LPS murine model of HUS, analysis of renal gene activation and neutrophil infiltration into kidneys demonstrates a concomitant increase in PMNs and VCAM-1 expression, suggesting a mechanism of PMN-endothelial association. ♦, Neutrophils in the glomeruli; ▪, VCAM-1 in the glomeruli. doi:10.1128/microbiolspec.EHEC-0005-2013.f4

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Renal gene activation in the Stx/LPS murine model. Shown are the nine most upregulated genes in the temporal response of mice to either LPS or Stx2. Gene microarrays were employed to analyze kidney gene activation over a 72-h response of C57BL/6 mice to 300 µg/kg of LPS or 100 ng/kg of Stx2. doi:10.1128/microbiolspec.EHEC-0005-2013.f5

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Metabolic and catabolic pathway enzymes for Gb synthesis. A part of Gb synthesis pathway is shown. From lactosylceramide (LacCer) to Gb, alpha 1, 4-galactosyltransferase (EC 2.4.1.228) adds a galactose to LacCer to produce Gb. Likewise, UDP-GalNAc: beta 1,3-galactosaminyltransferase (EC 2.4.1.79) works on Gb to make Gb. In the catabolic pathway, beta-hexosaminidase (EC 3.2.1.52) degrades Gb to Gb, and alpha-galactosidase (EC 3.2.1.22) makes LacCer from Gb. doi:10.1128/microbiolspec.EHEC-0005-2013.f6

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

STEC oral administration model with CNS descriptions

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Generic image for table

Click to view

TABLE 2

Observed CNS symptoms in animal models

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013
Generic image for table

Click to view

TABLE 3

Shiga toxin and/or LPS administration model with CNS descriptions

Source: microbiolspec June 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.EHEC-0005-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error