1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Vaccination of Cattle against O157:H7

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    110.95 Kb
  • PDF
    246.61 Kb
  • HTML
    116.54 Kb
  • Author: David R. Smith1
  • Editors: Vanessa Sperandio2, Carolyn J. Hovde3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100; 2: University of Texas Southwestern Medical Center, Dallas, TX; 3: University of Idaho, Moscow, ID
  • Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.EHEC-0006-2013
  • Received 01 May 2013 Accepted 28 August 2013 Published 14 November 2014
  • David R. Smith, dsmith@cvm.msstate.edu
image of Vaccination of Cattle against <span class="jp-italic">Escherichia coli</span> O157:H7
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Vaccination of Cattle against O157:H7, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/EHEC-0006-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/6/EHEC-0006-2013-2.gif
  • Abstract:

    Human infection with Shiga toxin-producing O157:H7 (STEC O157) is relatively rare, but the consequences can be serious, especially in the very young and the elderly. Efforts to control the flow of STEC O157 during beef processing have meaningfully reduced the incidence of human STEC O157 infection, particularly prior to 2005. Unfortunately, despite early progress, the incidence of STEC O157 infection has not changed meaningfully or statistically in recent years, suggesting that additional actions, for example, targeting the cattle reservoir, are necessary to further reduce STEC O157 illness. Ideally, preharvest interventions against STEC O157 should reduce the likelihood that cattle carry the organism, have practical application within the beef production system, and add sufficient value to the cattle to offset the cost of the intervention. A number of STEC O157 antigens are being investigated as potential vaccine targets. Some vaccine products have demonstrated efficacy to reduce the prevalence of cattle carrying STEC O157 by making the gut unfavorable to colonization. However, in conditions of natural exposure, efficacy afforded by vaccination depends on how the products are used to control environmental transmission within groups of cattle and throughout the production system. Although cattle vaccines against STEC O157 have gained either full or preliminary regulatory approval in Canada and the United States, widespread use by cattle feeders is unlikely until there is an economic signal to indicate that cattle vaccinated against STEC O157 are valued over other cattle.

  • Citation: Smith D. 2014. Vaccination of Cattle against O157:H7. Microbiol Spectrum 2(6):EHEC-0006-2013. doi:10.1128/microbiolspec.EHEC-0006-2013.

Key Concept Ranking

Shiga Toxin 2
0.50757575
0.50757575

References

1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15. [PubMed][CrossRef]
2. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685. [PubMed][CrossRef]
3. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18:512–520. [PubMed]
4. Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. 1983. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet ii:1299–1300. [PubMed][CrossRef]
5. Karmali MA, Steele BT, Petric M, Lim C. 1983. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet i:619–620. [PubMed][CrossRef]
6. Centers for Disease Control and Prevention. 2013. Incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 1996–2012. Morb Mortal Wkly Rep 62:283–287. [PubMed]
7. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201. [PubMed]
8. Sargeant JM, Smith DR. 2003. The epidemiology of Escherichia coli O157:H7, p 131–141. In Torrence ME, Isaacson RE (ed), Microbial Food Safety in Animal Agriculture: Current Topics. Iowa State University Press, Ames, IA. [CrossRef]
9. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11:603–609. [PubMed][CrossRef]
10. Sparling PH. 1998. Escherichia coli O157:H7 outbreaks in the United States, 1982–1996. J Am Vet Med Assoc 213:1733–1733. [PubMed]
11. Swerdlow DL, Woodruff BA, Brady RC, Griffin PM, Tippen S, Donnell HD, Jr, Geldreich E, Payne BJ, Meyer A, Jr, Wells JG. 1992. A waterborne outbreak in Missouri of Escherichia coli O157:H7 associated with bloody diarrhea and death. Ann Intern Med 117:812–819. [PubMed][CrossRef]
12. Kondro W. 2000. E. coli outbreak deaths spark judicial inquiry in Canada. Lancet 355:2058. [PubMed][CrossRef]
13. Kondro W. 2000. Canada reacts to water contamination. Lancet 355:2228. [PubMed][CrossRef]
14. Centers for Disease Control and Prevention. 1999. Outbreak of Escherichia coli O157:H7 and Campylobacter among attendees of the Washington County Fair–New York, 1999. Morb Mortal Wkly Rep 48:803–805. [PubMed]
15. Feng P. 1995. Escherichia coli serotype O157:H7: novel vehicles of infection and emergence of phenotypic variants. Emerg Infect Dis 1:47–52. [PubMed][CrossRef]
16. Withee J, Williams M, Schlosser W, Bauer N, Ebel E. 2009. Streamlined analysis for evaluating the use of preharvest interventions intended to prevent Escherichia coli O157:H7 illness in humans. Foodborne Pathog Dis 6:817–825. [PubMed][CrossRef]
17. Kassenborg HD, Hedberg CW, Hoekstra M, Evans MC, Chin AE, Marcus R, Vugia DJ, Smith K, Ahuja SD, Slutsker L, Griffin PM. 2004. Farm visits and undercooked hamburgers as major risk factors for sporadic Escherichia coli O157:H7 infection: data from a case-control study in 5 FoodNet sites. Clin Infect Dis 38 Suppl 3:S271–S278. [PubMed][CrossRef]
18. Ryan CA, Tauxe RV, Hosek GW, Wells JG, Stoesz PA, McFadden HW, Jr, Smith PW, Wright GF, Blake PA. 1986. Escherichia coli O157:H7 diarrhea in a nursing home: clinical, epidemiological, and pathological findings. J Infect Dis 154:631–638. [PubMed][CrossRef]
19. Slutsker L, Ries AA, Maloney K, Wells JG, Greene KD, Griffin PM. 1998. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States. J Infect Dis 177:962–966. [PubMed][CrossRef]
20. Beutin L, Geier D, Steinruck H, Zimmermann S, Scheutz F. 1993. Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. J Clin Microbiol 31:2483–2488. [PubMed]
21. Karmali MA, Gannon V, Sargeant JM. 2010. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370. [PubMed][CrossRef]
22. Varma JK, Greene KD, Reller ME, DeLong SM, Trottier J, Nowicki SF, DiOrio M, Koch EM, Bannerman TL, York ST, Lambert-Fair MA, Wells JG, Mead PS. 2003. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA 290:2709–2712. [PubMed][CrossRef]
23. Alam MJ, Zurek L. 2004. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl Environ Microbiol 70:7578–7580. [PubMed][CrossRef]
24. Hancock DD, Besser TE, Rice DH, Ebel ED, Herriott DE, Carpenter LV. 1998. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern USA. Prev Vet Med 35:11–19. [PubMed][CrossRef]
25. Janisiewicz WJ, Conway WS, Brown MW, Sapers GM, Fratamico P, Buchanan RL. 1999. Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its potential for transmission by fruit flies. Appl Environ Microbiol 65:1–5. [PubMed]
26. Kobayashi M, Sasaki T, Saito N. 1999. Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. Am J Trop Med Hyg 61:625–629. [PubMed]
27. Moriya K, Fujibayashi T, Yoshihara T, Matsuda A, Sumi N, Umezaki N, Kurahashi H, Agui N, Wada A, Watanabe H. 1999. Verotoxin-producing Escherichia coli O157:H7 carried by the housefly in Japan. Med Vet Entomol 13:214–216. [PubMed][CrossRef]
28. Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, Farrar JA, Lau DK, O'Connell J, Millington A, Asmundson RV, Atwill ER, Mandrell RE. 2007. Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis 13:1908–1911. [PubMed][CrossRef]
29. Oregon Health Authority. 2012. Strawberries, deer and other investigations. CD Summary 61(13). https://public.health.oregon.gov/DiseasesConditions/CommunicableDisease/CDSummaryNewsletter/Documents/2012/ohd6113.pdf
30. Williams MS, Withee JL, Ebel ED, Bauer NE, Scholosser WD, Disney WT, Smith DR, Moxley RA. 2010. Determining relationships between the seasonal occurrence of Escherichia coli O157:H7 in live cattle, ground beef, and humans. Foodborne Pathog Dis 7:1–8. [PubMed][CrossRef]
31. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. 2000. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci USA 97:2999–3003. [PubMed][CrossRef]
32. Arthur TM, Bosilevac JM, Nou X, Shackelford SD, Wheeler TL, Kent MP, Jaroni D, Pauling B, Allen DM, Koohmaraie M. 2004. Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants. J Food Prot 67:658–665. [PubMed]
33. Brichta-Harhay DM, Guerini MN, Arthur TM, Bosilevac JM, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2008. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: an evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl Environ Microbiol 74:6289–6297. [PubMed][CrossRef]
34. Centers for Disease Prevention and Control. 2006. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 States, United States, 2005. Morbid Mortal Wkly Rep 55:392–395. [PubMed]
35. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DG, Gally DL. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71:1505–1512. [PubMed][CrossRef]
36. Grauke LJ, Kudva IT, Yoon JW, Hunt CW, Williams CJ, Hovde CJ. 2002. Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Appl Environ Microbiol 68:2269–2277. [PubMed][CrossRef]
37. Moxley RA, Smith DR. 2010. Attaching-effacing Escherichia coli infections in cattle. Vet Clin North Am Food Anim Pract 26:29–56. [PubMed][CrossRef]
38. Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. 2000. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47:377–381. [PubMed][CrossRef]
39. Baehler AA, Moxley RA. 2000. Escherichia coli O157:H7 induces attaching-effacing lesions in large intestinal mucosal explants from adult cattle. FEMS Microbiol Lett 185:239–242. [PubMed][CrossRef]
40. Moxley RA. 2004. Escherichia coli O157:H7: an update on intestinal colonization and virulence mechanisms. Anim Health Res Rev 5:15–33. [PubMed][CrossRef]
41. Rice DH, Sheng HQ, Wynia SA, Hovde CJ. 2003. Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157:H7-colonized cattle and those transiently shedding the same organism. J Clin Microbiol 41:4924–4929. [PubMed][CrossRef]
42. Naylor SW, Gally DL, Low JC. 2005. Enterohaemorrhagic E. coli in veterinary medicine. Int J Med Microbiol 295:419–441. [PubMed][CrossRef]
43. Besser TE, Hancock DD, Pritchett LC, McRae EM, Rice DH, Tarr PI. 1997. Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. J Infect Dis 175:726729. [PubMed][CrossRef]
44. Khaitsa ML, Smith DR, Stoner JA, Parkhurst AM, Hinkley S, Klopfenstein TJ, Moxley RA. 2003. Incidence, duration, and prevalence of Escherichia coli O157:H7 fecal shedding by feedlot cattle during the finishing period. J Food Prot 66:1972–1977. [PubMed]
45. Sanderson MW, Besser TE, Gay JM, Gay CC, Hancock DD. 1999. Fecal Escherichia coli O157:H7 shedding patterns of orally inoculated calves. Vet Microbiol 69:199–205. [PubMed][CrossRef]
46. Smith DR, Blackford MP, Younts SM, Moxley RA, Gray JT, Hungerford LL, Milton CT, Klopfenstein TJ. 2001. Ecological relationships between the prevalence of cattle shedding Escherichia coli O157:H7 and characteristics of the cattle or conditions of the feedlot pen. J Food Prot 64:1899–1903. [PubMed]
47. Smith DR, Moxley RA, Clowser SL, Folmer JD, Hinkley S, Erickson GE, Klopfenstein TJ. 2005. Use of rope devices to describe and explain the feedlot ecology of Escherichia coli O157:H7 by time and place. Foodborne Pathog Dis 2:50–60. [PubMed][CrossRef]
48. Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. The American Naturalist 122:732–744. [CrossRef]
49. Galvani AP, May RM. 2005. Epidemiology: dimensions of superspreading. Nature 438:293–295. [PubMed][CrossRef]
50. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. 2005. Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359. [PubMed][CrossRef]
51. Chase-Topping ME, McKendrick IJ, Pearce MC, MacDonald P, Matthews L, Halliday J, Allison L, Fenlon D, Low JC, Gunn G, Woolhouse MEJ. 2007. Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. J Clin Microbiol 45:1594–1603. [PubMed][CrossRef]
52. Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. 2008. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6:904–912. [PubMed][CrossRef]
53. Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JA, Chase-Topping M, Naylor SW, Shaw DJ, Reid SW, Gunn GJ, Woolhouse ME. 2006. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc Natl Acad Sci USA 103:547–552. [PubMed][CrossRef]
54. Arthur TM, Brichta-Harhay DM, Bosilevac JM, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2010. Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. Meat Sci 86:32–37. [PubMed][CrossRef]
55. Cobbold RN, Hancock DD, Rice DH, Berg J, Stilborn R, Hovde CJ, Besser TE. 2007. Rectoanal junction colonization of feedlot cattle by Escherichia coli O157 : H7 and its association with supershedders and excretion dynamics. Appl Environ Microbiol 73:1563–1568. [PubMed][CrossRef]
56. Williams ML, Pearl DL, Bishop KE, Lejeune JT. 2013. Use of multiple-locus variable-number tandem repeat analysis to evaluate Escherichia coli O157 subtype distribution and transmission dynamics following natural exposure on a closed beef feedlot facility. Foodborne Pathog Dis 10:827–834. [PubMed][CrossRef]
57. Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. 2009. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr Issues Mol Biol 11:67–79. [PubMed]
58. Smith DR, Vogstad AR. 2012. Vaccination as a method of E. coli O157:H7 reduction in feedlot cattle, p 133–142. In Callaway TR, Edrington TS (ed), On Farm Strategies to Control Foodborne Pathogens. Nova Science Publishers Inc, Hauppauge, NY.
59. Berry ED, Wells JE. 2010. Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production envrionment. Adv Food Nutr Res 60:67–118. [CrossRef]
60. Smith DR, Klopfenstein T, Moxley RA, Milton CT, Hungerford LL, Gray JT. 2002. An evaluation of three methods to clean feedlot water tanks. The Bovine Practitioner 36:1–4.
61. Folmer J, Macken C, Moxley R, Smith D, Brashears M, Hinkley S, Erickson G, Klopfenstein T. 2003. Intervention strategies for reduction of E. coli O157:H7 in feedlot steers. Nebraska Beef Cattle Report MP 80-A:22–23.
62. LeJeune JT, Besser TE, Rice DH, Berg JL, Stilborn RP, Hancock DD. 2004. Longitudinal study of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: predominance and persistence of specific clonal types despite massive cattle population turnover. Appl Environ Microbiol 70:377–384. [PubMed][CrossRef]
63. Snedeker KG, Campbell M, Sargeant JM. 2012. A systematic review of vaccinations to reduce the shedding of Escherichia coli O157 in the faeces of domestic ruminants. Zoonoses Public Health 59:126–138. [PubMed][CrossRef]
64. Brashears MM, Galyean ML, Loneragan GH, Mann JE, Killinger-Mann K. 2003. Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. J Food Prot 66:748–754. [PubMed]
65. Peterson RE, Klopfenstein TJ, Erickson GE, Folmer J, Hinkley S, Moxley RA, Smith DR. 2007. Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 fecal shedding and finishing performance in beef feedlot cattle. J Food Prot 70:287–291. [PubMed]
66. Loneragan GH, Brashears MM. 2005. Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci 71:72–78. [PubMed][CrossRef]
67. Miller MF, Loneragan GH, Harris DD, Adams KD, Brooks JC, Brashears MM. 2008. Environmental dust exposure as a factor contributing to an increase in Escherichia coli O157:H7 and Salmonella populations on cattle hides in feedyards. J Food Prot 71:2078–2081. [PubMed]
68. Arthur TM, Bosilevac JM, Brichta-Harhay DM, Guerini MN, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2007. Transportation and lairage environment effects on prevalence, numbers, and diversity of Escherichia coli O157:H7 on hides and carcasses of beef cattle at processing. J Food Prot 70:280–286. [PubMed]
69. Arthur TM, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, King DA, Shackelford SD, Wheeler TL, Koohmaraie M. 2008. Source tracking of Escherichia coli O157:H7 and Salmonella contamination in the lairage environment at commercial U.S. beef processing plants and identification of an effective intervention. J Food Prot 71:1752–1760. [PubMed]
70. Asper DJ, Sekirov I, Finlay BB, Rogan D, Potter AA. 2007. Cross reactivity of enterohemorrhagic Escherichia coli O157:H7-specific sera with non-O157 serotypes. Vaccine 25:8262–8269. [PubMed][CrossRef]
71. Dohoo IR, Martin SW, Stryhn H. 2003. Measures of association, p 121–138. In Dohoo IR, Martin SW, Stryhn H (ed), Veterinary Epidemiologic Research. AVC, Inc, Charlottetown, PEI, Canada.
72. Halloran ME. 1998. Concepts of infectious disease epidemiology, p 529–554. In Rothman KJ,Greenland S (ed), Modern Epidemiology, 2nd ed. Lippincott-Raven, Philadelphia, PA.
73. Beaudeau F, Fourichon C. 1998. Estimating relative risk of disease from outputs of logistic regression when the disease is not rare. Prev Vet Med 36:243–256. [CrossRef]
74. Allen KJ, Rogan D, Finlay BB, Potter AA, Asper DJ. 2011. Vaccination with type III secreted proteins leads to decreased shedding in calves after experimental infection with Escherichia coli O157. Can J Vet Res 75:98–105. [PubMed]
75. Garmendia J, Frankel G, Creprin VF. 2005. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73:2573–2585. [PubMed][CrossRef]
76. Goosney DL, Knoechel DG, Finlay BB. 1999. Enteropathogenic E. coli, Salmonella, and Shigella: masters of host cell cytoskeletal exploitation. Emerg Infect Dis 5:216–223. [PubMed][CrossRef]
77. Mahajan A, Currie CG, Mackie S, Tree J, McAteer S, McKendrick I, McNeilly TN, Roe A, La Ragione RM, Woodward MJ, Gally DL, Smith DGE. 2009. An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157:H7 with bovine intestinal epithelium. Cell Microbiol 11:121–137. [PubMed][CrossRef]
78. Erdem AL, Avelino F, Xicohtencatl-Cortes J, Giron JA. 2007. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189:7426–7435. [PubMed][CrossRef]
79. Bretschneider G, Berberov EM, Moxley RA. 2007. Reduced intestinal colonization of adult beef cattle by Escherichia coli O157:H7 tir deletion and nalidixix-acid-resistant mutants lacking flagellar expression. Vet Microbiol 125:381–386. [PubMed][CrossRef]
80. van Diemen PM, Dziva F, bu-Median A, Wallis TS, van den BH, Dougan G, Chanter N, Frankel G, Stevens MP. 2007. Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H–. Vet Immunol Immunopathol 116:47–58. [PubMed][CrossRef]
81. Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O'Brien AD. 2002. Vaccination of pregnant dams with intimin (O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infect Immun 70:2414–2418. [PubMed][CrossRef]
82. Dziva F, Vlisidou I, Creprin VF, Wallis TS, Frankel G, Stevens MP. 2007. Vaccination of calves with EspA, a key colonisation factor of Escherichia coli O157:H7, induces antigen-specific humoral responses but does not confer protection against intestinal colonisation. Vet Microbiol 123:254–261. [PubMed][CrossRef]
83. McNeilly TN, Naylor SW, Mahajan A, Mitchell MC, McAteer S, Deane D, Smith DGE, Low JC, Gally DL, Huntley JF. 2008. Escherichia coli O157:H7 colonization in cattle following systemic and mucosal immunization with purified H7 flagellin. Infect Immun 76:2594–2602. [PubMed][CrossRef]
84. McNeilly TN, Mitchell MC, Rosser T, McAteer S, Low JC, Smith DGE, Huntley JF, Mahajan A, Gally DL. 2010. Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. Vaccine 28:1422–1428. [PubMed][CrossRef]
85. Yekta MA, Goddeeris BM, Vanrompay D, Cox E. 2011. Immunization of sheep with a combination of intimin [gamma]; EspA and EspB decreases Escherichia coli O157:H7 shedding. Vet Immunol Immunopathol 140:42–46. [PubMed][CrossRef]
86. Vilte DA, Larzabal M, Garbaccio S, Gammella M, Rabinovitz BC, Elizondo AM, Cantet RJC, Delgado F, Meikle V, Cataldi A, Mercado EC. 2011. Reduced faecal shedding of Escherichia coli O157:H7 in cattle following systemic vaccination with gamma-intimin C280 and EspB proteins. Vaccine 29:3962–3968. [PubMed][CrossRef]
87. Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. 2004. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22:362–369. [PubMed][CrossRef]
88. Vilte DA, Larzabal M, Mayr UB, Garbaccio S, Gammella M, Rabinovitz BC, Delgado F, Meikle V, Cantet RJ, Lubitz P, Lubitz W, Cataldi A, Mercado EC. 2012. A systemic vaccine based on Escherichia coli O157:H7 bacterial ghosts (BGs) reduces the excretion of E. coli O157:H7 in calves. Vet Immunol Immunopathol 146:169–176. [PubMed][CrossRef]
89. Rabinovitz BC, Gerhardt E, Tironi Farinati C, Abdala A, Galarza R, Vilte DA, Ibarra C, Cataldi A, Mercado EC. 2012. Vaccination of pregnant cows with EspA, EspB, gamma-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J Dairy Sci 95:3318–3326. [PubMed][CrossRef]
90. Thornton AB, Thomson DU, Loneragan GH, Fox JT, Burkhardt DT, Emery DA, Nagaraja TG. 2009. Effects of a siderophore receptor and porin proteins-based vaccination on fecal shedding of Escherichia coli O157:H7 in experimentally inoculated cattle. J Food Prot 72:866–869. [PubMed]
91. Thomson DU, Loneragan GH, Thornton AB, Lechtenberg KF, Emery DA, Burkhardt DT, Nagaraja TG. 2009. Use of a siderophore receptor and porin proteins-based vaccine to control the burden of Escherichia coli O157:H7 in feedlot cattle. Foodborne Pathog Dis 6:871–877. [PubMed][CrossRef]
92. Woerner DR, Ransom JR, Sofos JN, Scanga JA, Smith GC, Belk KE. 2006. Preharvest processes for microbial control in cattle. Food Prot Trends 26:393–400.
93. Standley T, Paterson J, Skinner K, Rainey B, Roberts A, Geary T, Smith G, White R. 2008. The use of an experimental vaccine in gestating beef cows to reduce the shedding of Escherichia coli O157:H7 in the newborn calf. The Professional Animal Scientist 24:4.
94. Wileman BW, Thomson DU, Olson KC, Jaeger JR, Pacheco LA, Bolte J, Burkhardt DT, Emery DA, Straub D. 2011. Escherichia coli O157:H7 shedding in vaccinated beef calves born to cows vaccinated prepartum with Escherichia coli O157:H7 SRP vaccine. J Food Prot 74:1599–1604. [PubMed][CrossRef]
95. Varela NP, Dick P, Wilson J. 2012. Assessing the existing information on the efficacy of bovine vaccination against Escherichia coli O157:H7—a systematic review and meta-analysis. Zoonoses Public Health 60:253–268. [PubMed][CrossRef]
96. Vogstad AR, Moxley RA, Erickson GE, Klopfenstein TJ, Smith DR. 2014. Stochastic simulation model comparing distributions of STEC O157 faecal shedding prevalence between cattle vaccinated with type III secreted protein vaccines and non-vaccinated cattle. Zoonoses Public Health 61:283–289. [PubMed][CrossRef]
97. Fox JT, Thomson DU, Drouillard JS, Thornton AB, Burkhardt DT, Emery DA, Nagaraja TG. 2009. Efficacy of Escherichia coli O157:H7 siderophore receptor/porin proteins-based vaccine in feedlot cattle naturally shedding E. coli O157. Foodborne Pathog Dis 6:893–899. [PubMed][CrossRef]
98. Cull CA, Paddock ZD, Nagaraja TG, Bello NM, Babcock AH, Renter DG. 2012. Efficacy of a vaccine and a direct-fed microbial against fecal shedding of Escherichia coli O157:H7 in a randomized pen-level field trial of commercial feedlot cattle. Vaccine 30:6210–6215. [PubMed][CrossRef]
99. Van Donkersgoed J, Hancock D, Rogan D, Potter AA. 2005. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. Can Vet J 46:724–728. [PubMed]
100. Moxley RA, Smith DR, Luebbe M, Erickson GE, Klopfenstein TJ, Rogan D. 2009. Escherichia coli O157:H7 vaccine dose-effect in feedlot cattle. Foodborne Pathog Dis 6:879–884. [PubMed][CrossRef]
101. Peterson RE, Klopfenstein TJ, Moxley RA, Erickson GE, Hinkley S, Rogan D, Smith DR. 2007. Efficacy of dose regimen and observation of herd immunity from a vaccine against Escherichia coli O157:H7 for feedlot cattle. J Food Prot 70:2561–2567. [PubMed]
102. Rich AR, Jepson AN, Luebbe M, Klopfenstein TJ, Smith DR, Moxley RA. 2010. Vaccination to reduce the prevalence of Escherichia coli O157:H7 in feedlot cattle fed wet distillers grains plus solubles. Nebraska Beef Cattle Report MP93:94–95.
103. Smith DR, Moxley RA, Peterson RE, Klopfenstein TJ, Erickson GE, Bretschneider G, Berberov EM, Clowser S. 2009. A two-dose regimen of a vaccine against type III secreted proteins reduced Escherichia coli O157:H7 colonization of the terminal rectum in beef cattle in commercial feedlots. Foodborne Pathog Dis 6:155–161. [PubMed][CrossRef]
104. Peterson RE, Klopfenstein TJ, Moxley RA, Erickson GE, Hinkley S, Bretschneider G, Berberov EM, Rogan D, Smith DR. 2007. Effect of a vaccine product containing type III secreted proteins on the probability of Escherichia coli O157:H7 fecal shedding and mucosal colonization in feedlot cattle. J Food Prot 70:2568–2577. [PubMed]
105. Smith DR, Moxley RA, Peterson RE, Klopfenstein T, Erickson GE, Clowser SL. 2008. A two-dose regimen of a vaccine against Escherichia coli O157:H7 type III secreted proteins reduced environmental transmission of the agent in a large-scale commercial beef feedlot clinical trial. Foodborne Pathog Dis 5:589–598. [PubMed][CrossRef]
106. Smith DR, Moxley RA, Klopfenstein TJ, Erickson GE. 2009. A randomized longitudinal trial to test the effect of regional vaccination within a cattle feedyard on Escherichia coli O157:H7 rectal colonization, fecal shedding, and hide contamination. Foodborne Pathog Dis 6:885–892. [PubMed][CrossRef]
107. Peterson RE, Klopfenstein TJ, Moxley RA, Erickson GE, Hinkley S, Rogan D, Smith DR. 2007. Efficacy of dose regimen and observation of herd immunity from a vaccine against Escherichia coli O157:H7 for feedlot cattle. J Food Prot 70:2561–2567. [PubMed]
108. O'Connor AM, Sargeant JM, Gardner IA, Dickson JS, Torrence ME, Dewey CE, Dohoo IR, Evans RB, Gray JT, Greiner M, Keefe G, Lefebvre SL, Morley PS, Ramirez A, Sischo W, Smith DR, Snedeker K, Sofos J, Ward MP, Wills R. 2010. The REFLECT statement: methods and processes of creating reporting guidelines for randomized controlled trials for livestock and food safety by modifying the CONSORT statement. Zoonoses Public Health 57:95–104. [PubMed][CrossRef]
109. Vogstad AR, Moxley RA, Erickson GE, Klopfenstein TJ, Smith DR. 2013. Assessment of heterogeneity of efficacy of a three-dose regimen of a type III secreted protein vaccine for reducing STEC O157 in feces of feedlot cattle. Foodborne Pathog Dis 10:678–683. [PubMed][CrossRef]
110. Martin SW, Meek AH, Willeberg P. 1987. Descriptive epidemiology, p 79–120. In Martin SW, Meek AH, Willeberg P, Veterinary Epidemiology: Principles and Methods, 1st ed. Iowa State University Press, Ames. IA. [PubMed]
111. Fine PEM. 1993. Herd immunity: history, theory, practice. Epidemiol Rev 15:265–302. [PubMed]
112. Smith DR, Gray JT, Moxley RA, Younts-Dahl SM, Blackford MP, Hinkley S, Hungerford LL, Milton CT, Klopfenstein TJ. 2004. A diagnostic strategy to determine the Shiga toxin-producing Escherichia coli O157 status of pens of feedlot cattle. Epidemiol Infect 132:297–302. [PubMed][CrossRef]
113. Irwin KE, Smith DR, Gray JT, Klopfenstein TJ. 2002. Behavior of cattle towards devices to detect food-safety pathogens in feedlot pens. Bovine Pract 36:5–9.
114. Arthur TM, Nou X, Bosilevac JM, Wheeler T, Koohmaraie M. 2011. Survival of Escherichia coli O157:H7 on cattle hides. Appl Environ Microbiol 77:3002–3008. [PubMed][CrossRef]
115. Koohmaraie M, Arthur TM, Bosilevac JM, Guerini M, Shackelford SD, Wheeler TL. 2005. Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Sci 71:79–91. [PubMed][CrossRef]
116. Reicks AL, Brashears MM, Adams KD, Brooks JC, Blanton JR, Miller MF. 2007. Impact of transportation of feedlot cattle to the harvest facility on the prevalence of Escherichia coli O157:H7, Salmonella, and total aerobic microorganisms on hides. J Food Prot 70:17–21. [PubMed]
117. Lanzas C, Lu Z, Grohn YT. 2011. Mathematical modeling of the transmission and control of foodborne pathogens and antimicrobial resistance at preharvest. Foodborne Pathog Dis 8:1–10. [PubMed][CrossRef]
118. Arthur TM, Keen J, Bosworth BT, Brichta-Harhay DM, Kalchayanand N, Shackelford SD, Wheeler TL, Nou X, Koohmaraie M. 2009. Longitudinal study of Escherichia coli O157-H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Appl Environ Microbiol 7:6515–6523. [PubMed][CrossRef]
119. Signorini ML, Tarabla HD. 2010. Interventions to reduce verocytotoxigenic Escherichia coli in ground beef in Argentina: a simulation study. Prev Vet Med 94:36–42. [PubMed][CrossRef]
120. Hurd HS, Malladi S. 2012. An outcomes model to evaluate risks and benefits of Escherichia coli vaccination in beef cattle. Foodborne Pathog Dis 9:952–961. [PubMed][CrossRef]
121. Wood JC, McKendrick IJ, Gettinby G. 2006. A simulation model for the study of the within-animal infection dynamics of E. coli O157. Prev Vet Med 74:180–193. [PubMed][CrossRef]
122. Vogstad AR. 2012. Modeling the efficacy and effectiveness of Escherichia coli O157:H7 pre-harvest interventions. MS thesis. University of Nebraska-Lincoln, Lincoln, NE.
123. Cross P, Rigby D, Edwards-Jones G. 2012. Eliciting expert opinion on the effectiveness and practicality of interventions in the farm and rural environment to reduce human exposure to Escherichia coli O157. Epidemiol Infect 140:643–654. [PubMed][CrossRef]
microbiolspec.EHEC-0006-2013.citations
cm/2/6
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0006-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0006-2013
2014-11-14
2017-07-26

Abstract:

Human infection with Shiga toxin-producing O157:H7 (STEC O157) is relatively rare, but the consequences can be serious, especially in the very young and the elderly. Efforts to control the flow of STEC O157 during beef processing have meaningfully reduced the incidence of human STEC O157 infection, particularly prior to 2005. Unfortunately, despite early progress, the incidence of STEC O157 infection has not changed meaningfully or statistically in recent years, suggesting that additional actions, for example, targeting the cattle reservoir, are necessary to further reduce STEC O157 illness. Ideally, preharvest interventions against STEC O157 should reduce the likelihood that cattle carry the organism, have practical application within the beef production system, and add sufficient value to the cattle to offset the cost of the intervention. A number of STEC O157 antigens are being investigated as potential vaccine targets. Some vaccine products have demonstrated efficacy to reduce the prevalence of cattle carrying STEC O157 by making the gut unfavorable to colonization. However, in conditions of natural exposure, efficacy afforded by vaccination depends on how the products are used to control environmental transmission within groups of cattle and throughout the production system. Although cattle vaccines against STEC O157 have gained either full or preliminary regulatory approval in Canada and the United States, widespread use by cattle feeders is unlikely until there is an economic signal to indicate that cattle vaccinated against STEC O157 are valued over other cattle.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/6/EHEC-0006-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0006-2013&mimeType=html&fmt=ahah

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error