1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    240.32 Kb
  • PDF
    699.71 Kb
  • XML
    242.50 Kb
  • Authors: Mark P. Stevens1, Gad M. Frankel2
  • Editors: Vanessa Sperandio3, Carolyn J. Hovde4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom; 2: MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom; 3: University of Texas Southwestern Medical Center, Dallas, TX; 4: University of Idaho, Moscow, ID
  • Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
  • Received 03 May 2013 Accepted 24 July 2013 Published 15 August 2014
  • Mark P. Stevens, mark.stevens@roslin.ed.ac.uk
image of The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic <span class="jp-italic">Escherichia coli</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/4/EHEC-0007-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/4/EHEC-0007-2013-2.gif
  • Abstract:

    A subset of Shiga toxin-producing strains, termed enterohemorrhagic (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of O157:H7 and other Shiga toxin-producing strains.

  • Citation: Stevens M, Frankel G. 2014. The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic . Microbiol Spectrum 2(4):EHEC-0007-2013. doi:10.1128/microbiolspec.EHEC-0007-2013.

Key Concept Ranking

Bacterial Proteins
0.52093315
Type III Secretion System
0.45387325
0.52093315

References

1. Tzipori S, Wachsmuth IK, Chapman C, Birden R, Brittingham J, Jackson C, Hogg J. 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J Infect Dis 154:712–716. [PubMed][CrossRef]
2. Knutton S, Lloyd DR, McNeish AS. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55:69–77. [PubMed]
3. Knutton S, Baldwin T, Williams PH, McNeish AS. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57:1290–1298. [PubMed]
4. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 87:7839–7843. [PubMed][CrossRef]
5. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92:1664–1668. [PubMed][CrossRef]
6. Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92:7996–8000. [PubMed][CrossRef]
7. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, McNamara BP, Donnenberg MS, Kaper JB. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28:1–4. [PubMed][CrossRef]
8. Ebel F, Deibel C, Kresse AU, Guzman CA, Chakraborty T. 1996. Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infect Immun 64:4472–4479. [PubMed]
9. Jarvis KG, Kaper JB. 1996. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect Immun 64:4826–4829. [PubMed]
10. Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, Kaper JB, Blattner FR. 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 66:3810–3817. [PubMed]
11. Deng W, Li Y, Vallance BA, Finlay BB. 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun 69:6323–6335. [PubMed][CrossRef]
12. Tauschek M, Strugnell RA, Robins-Browne RM. 2002. Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol Microbiol 44:1533–1550. [PubMed][CrossRef]
13. Zhu C, Agin TS, Elliott SJ, Johnson LA, Thate TE, Kaper JB, Boedeker EC. 2001. Complete nucleotide sequence and analysis of the locus of enterocyte effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect Immun 69:2107–2115. [PubMed][CrossRef]
14. McDaniel TK, Kaper JB. 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23:399–407. [PubMed][CrossRef]
15. Pósfai G, Koob MD, Kirkpatrick HA, Blattner FR. 1997. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428. [PubMed]
16. Castillo A, Eguiarte LE, Souza V. 2005. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc Natl Acad Sci USA 102:1542–1547. [PubMed][CrossRef]
17. Müller D, Benz I, Liebchen A, Gallitz I, Karch H, Schmidt MA. 2009. Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect Immun 77:3501–3513. [PubMed][CrossRef]
18. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, Kodama T, Abe H, Nakayama K, Kurokawa K, Tobe T, Hattori M, Hayashi T. 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 106:17939–17944. [PubMed][CrossRef]
19. Schmidt MA. 2010. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol 12:1544–1552. [PubMed][CrossRef]
20. Buss C, Müller D, Rüter C, Heusipp G, Schmidt MA. 2009. Identification and characterization of Ibe, a novel type III effector protein of A/E pathogens targeting human IQGAP1. Cell Microbiol 11:661–677. [PubMed][CrossRef]
21. Konczy P, Ziebell K, Mascarenhas M, Choi A, Michaud C, Kropinski AM, Whittam TS, Wickham M, Finlay B, Karmali MA. 2008. Genomic O island 122, locus for enterocyte effacement, and the evolution of virulent verocytotoxin-producing Escherichia coli. J Bacteriol 190:5832–5840. [PubMed][CrossRef]
22. Deng W, Yu HB, de Hoog CL, Stoynov N, Li Y, Foster LJ, Finlay BB. 2012. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol Cell Proteomics 11:692–709. [PubMed][CrossRef]
23. Karmali MA, Mascarenhas M, Shen S, Ziebell K, Johnson S, Reid-Smith R, Isaac-Renton J, Clark C, Rahn K, Kaper JB. 2003. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41:4930–4940. [PubMed][CrossRef]
24. Jores J, Wagner S, Rumer L, Eichberg J, Laturnus C, Kirsch P, Schierack P, Tschäpe H, Wieler LH. 2005. Description of a 111-kb pathogenicity island (PAI) encoding various virulence features in the enterohemorrhagic E. coli (EHEC) strain RW1374 (O103:H2) and detection of a similar PAI in other EHEC strains of serotype O103:H2. Int J Med Microbiol 294:417–425. [PubMed][CrossRef]
25. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R, Matthews S, Marches O, Frankel G, Hayashi T, Pallen MJ. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103:14941–14946. [PubMed][CrossRef]
26. Brady MJ, Radhakrishnan P, Liu H, Magoun L, Murphy KC, Mukherjee J, Donohue-Rolfe A, Tzipori S, Leong JM. 2011. Enhanced actin pedestal formation by enterohemorrhagic Escherichia coli O157:H7 adapted to the mammalian host. Front Microbiol 2:226. [PubMed][CrossRef]
27. Hughes DT, Sperandio V. 2008. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120. [PubMed][CrossRef]
28. Xu X, McAteer SP, Tree JJ, Shaw DJ, Wolfson EB, Beatson SA, Roe AJ, Allison LJ, Chase-Topping ME, Mahajan A, Tozzoli R, Woolhouse ME, Morabito S, Gally DL. 2012. Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli. PLoS Pathog 8:e1002672. [PubMed][CrossRef]
29. Büttner D. 2012. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76:262–310. [PubMed][CrossRef]
30. Pallen MJ, Beatson SA, Bailey CM. 2005. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5:9. [PubMed][CrossRef]
31. Creasey EA, Delahay RM, Daniell SJ, Frankel G. 2003. Yeast two-hybrid system survey of interactions between LEE-encoded proteins of enteropathogenic Escherichia coli. Microbiology 149:2093–2106. [PubMed][CrossRef]
32. Ogino T, Ohno R, Sekiya K, Kuwae A, Matsuzawa T, Nonaka T, Fukuda H, Imajoh-Ohmi S, Abe A. 2006. Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 188:2801–2811. [PubMed][CrossRef]
33. Sekiya K, Ohishi M, Ogino M, Tamano K, Sasakawa C, Abe A. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA 98:11638–11643. [PubMed][CrossRef]
34. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vázquez A, Barba J, Ibarra JA, O'Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA 101:3597–3602. [PubMed][CrossRef]
35. Mills E, Baruch K, Charpentier X, Kobi S, Rosenshine I. 2008. Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe 3:104–113. [PubMed][CrossRef]
36. Berger CN, Crepin VF, Baruch K, Mousnier A, Rosenshine I, Frankel G. 2012. EspZ of enteropathogenic and enterohemorrhagic Escherichia coli regulates type III secretion system protein translocation. MBio 3:e00317-12. [PubMed][CrossRef]
37. Shames SR, Deng W, Guttman JA, de Hoog CL, Li Y, Hardwidge PR, Sham HP, Vallance BA, Foster LJ, Finlay BB. 2010. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 12:1322–1339. [PubMed][CrossRef]
38. Tatsuno I, Kimura H, Okutani A, Kanamaru K, Abe H, Nagai S, Makino K, Shinagawa H, Yoshida M, Sato K, Nakamoto J, Tobe T, Sasakawa C. 2000. Isolation and characterization of mini-Tn5Km2 insertion mutants of enterohemorrhagic Escherichia coli O157:H7 deficient in adherence to Caco-2 cells. Infect Immun 68:5943–-5952. [PubMed][CrossRef]
39. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. 2004. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:3631–3645. [PubMed][CrossRef]
40. van Diemen PM, Dziva F, Stevens MP, Wallis TS. 2005. Identification of enterohemorrhagic Escherichia coli O26:H– genes required for intestinal colonization in calves. Infect Immun 73:1735–1743. [PubMed][CrossRef]
41. Eckert SE, Dziva F, Chaudhuri RR, Langridge GC, Turner DJ, Pickard DJ, Maskell DJ, Thomson NR, Stevens MP. 2011. Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of Escherichia coli O157:H7 screened in cattle. J Bacteriol 193:1771–1776. [PubMed][CrossRef]
42. Ritchie JM, Waldor MK. 2005. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect Immun 73:1466–1474. [PubMed][CrossRef]
43. Gauthier A, Robertson ML, Lowden M, Ibarra JA, Puente JL, Finlay BB. 2005. Transcriptional inhibitor of virulence factors in enteropathogenic Escherichia coli. Antimicrob Agents Chemother 49:4101–4109. [PubMed][CrossRef]
44. Rasko DA, Moreira CG, Li de R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V. 2008. Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080. [PubMed][CrossRef]
45. Tree JJ, Wang D, McInally C, Mahajan A, Layton A, Houghton I, Elofsson M, Stevens MP, Gally DL, Roe AJ. 2009. Characterization of the effects of salicylidene acylhydrazide compounds on type III secretion in Escherichia coli O157:H7. Infect Immun 77:4209–4220. [PubMed][CrossRef]
46. Veenendaal AK, Sundin C, Blocker AJ. 2009. Small-molecule type III secretion system inhibitors block assembly of the Shigella type III secreton. J Bacteriol 191:563–570. [PubMed][CrossRef]
47. Wang D, Zetterström CE, Gabrielsen M, Beckham KS, Tree JJ, Macdonald SE, Byron O, Mitchell TJ, Gally DL, Herzyk P, Mahajan A, Uvell H, Burchmore R, Smith BO, Elofsson M, Roe AJ. 2011. Identification of bacterial target proteins for the salicylidene acylhydrazide class of virulence-blocking compounds. J Biol Chem 286:29922–29931. [PubMed][CrossRef]
48. Ebel F, Podzadel T, Rohde M, Kresse AU, Kramer S, Deibel C, Guzman CA, Chakraborty T. 1998. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol Microbiol 30:147–161. [PubMed][CrossRef]
49. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17:2166–2176. [PubMed][CrossRef]
50. Daniell SJ, Takahashi N, Wilson R, Friedberg D, Rosenshine I, Booy FP, Shaw RK, Knutton S, Frankel G, Aizawa S. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3:865–871. [PubMed][CrossRef]
51. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520. [PubMed][CrossRef]
52. Wolff C, Nisan I, Hanski E, Frankel G, Rosenshine I. 1998. Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli. Mol Microbiol 28:143–155. [PubMed][CrossRef]
53. Daniell SJ, Kocsis E, Morris E, Knutton S, Booy FP, Frankel G. 2003. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol 49:301–308. [PubMed][CrossRef]
54. Crepin VF, Shaw R, Abe CM, Knutton S, Frankel G. 2005. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J Bacteriol 187:2881–2889. [PubMed][CrossRef]
55. Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton K, Rosenshine I, Frankel G. 2003. CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149:3639–3647. [PubMed][CrossRef]
56. Wilson RK, Shaw RK, Daniell S, Knutton S, Frankel G. 2001. Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3:753–762. [PubMed][CrossRef]
57. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA. 2001. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679. [PubMed][CrossRef]
58. Kresse AU, Rohde M, Guzman CA. 1999. The EspD protein of enterohemorrhagic Escherichia coli is required for the formation of bacterial surface appendages and is incorporated in the cytoplasmic membranes of target cells. Infect Immun 67:4834–4842. [PubMed]
59. Wachter C, Beinke C, Mattes M, Schmidt MA. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol Microbiol 31:1695–1707. [PubMed][CrossRef]
60. Warawa J, Finlay BB, Kenny B. 1999. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect Immun 67:5538–5540. [PubMed]
61. Shaw RK, Daniell S, Ebel F, Frankel G, Knutton S. 2001. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 3:213–222. [PubMed][CrossRef]
62. Luo W, Donnenberg MS. 2011. Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J Bacteriol 193:2972–2980. [PubMed][CrossRef]
63. Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, Frankel G. 2003. CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71:2130–2141. [PubMed][CrossRef]
64. Hartland EL, Daniell SJ, Delahay RM, Neves BC, Wallis T, Shaw RK, Hale C, Knutton S, Frankel G. 2000. The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Mol Microbiol 35:1483–1492. [PubMed][CrossRef]
65. Cleary J. Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, Knutton S. 2004. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology 150:527–538. [PubMed][CrossRef]
66. Roe AJ, Yull H, Naylor SW, Woodward MJ, Smith DG, Gally DL. 2003. Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infect Immun 71:5900–5909. [PubMed][CrossRef]
67. Roe AJ, Naylor SW, Spears KJ, Yull HM, Dransfield TA, Oxford M, McKendrick IJ, Porter M, Woodward MJ, Smith DG, Gally DL. 2004. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7. Mol Microbiol 54:337–352. [PubMed][CrossRef]
68. Naylor SW, Roe AJ, Nart P, Spears K, Smith DG, Low JC, Gally DL. 2005. Escherichia coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151:2773–2781. [PubMed][CrossRef]
69. Nagano K, Taguchi K, Hara T, Yokoyama S, Kawada K, Mori H. 2003. Adhesion and colonization of enterohemorrhagic Escherichia coli O157:H7 in cecum of mice. Microbiol Immunol 47:125–132. [PubMed][CrossRef]
70. McNeilly TN, Mitchell MC, Rosser T, McAteer S, Low JC, Smith DG, Huntley JF, Mahajan A, Gally DL. 2010. Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. Vaccine 28:1422–1428. [PubMed][CrossRef]
71. Potter AA, Klashinsky S, Li Y, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. 2004. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22:362–369. [PubMed][CrossRef]
72. Neves BC, Shaw RK, Frankel G, Knutton S. 2003. Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71:2262–2265. [PubMed][CrossRef]
73. Asper DJ, Sekirov I, Finlay BB, Rogan D, Potter AA. 2007. Cross reactivity of enterohemorrhagic Escherichia coli O157:H7-specific sera with non-O157 serotypes. Vaccine 25:8262–8269. [PubMed][CrossRef]
74. Taylor KA, O'Connell CB, Luther PW, Donnenberg MS. 1998. The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect Immun 66:5501–5507. [PubMed]
75. Hamada D, Hamaguchi M, Suzuki KN, Sakata I, Yanagihara I. 2010. Cytoskeleton-modulating effectors of enteropathogenic and enterohemorrhagic Escherichia coli: a case for EspB as an intrinsically less-ordered effector. FEBS J 277:2409–2415. [PubMed][CrossRef]
76. Iizumi Y, Sagara H, Kabe Y, Azuma M, Kume K, Ogawa M, Nagai T, Gillespie PG, Sasakawa C, Handa H. 2007. The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. Cell Host Microbe 2:383–392. [PubMed][CrossRef]
77. Hauf N, Chakraborty T. 2003. Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J Immunol 170:2074–2082. [PubMed][CrossRef]
78. Donnenberg MS, Tzipori S, McKee ML, O'Brien AD, Alroy J, Kaper JB. 1993. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J Clin Investig 92:1418–1424. [PubMed][CrossRef]
79. Yu J, Kaper JB. 1992. Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 6:411–417. [PubMed][CrossRef]
80. Cornick NA, Booher SL, Moon HW. 2002. Intimin facilitates colonization by Escherichia coli O157:H7 in adult ruminants. Infect Immun 70:2704–2707. [PubMed][CrossRef]
81. Dean-Nystrom EA, Bosworth BT, Moon HW, O'Brien AD. 1998. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560–4563. [PubMed]
82. Judge NA, Mason HS, O'Brien AD. 2004. Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infect Immun 72:168–175. [PubMed][CrossRef]
83. Ritchie JM, Thorpe CM, Rogers AB, Waldor MK. 2003. Critical roles for stx2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infect Immun 71:7129–7139. [PubMed][CrossRef]
84. Vlisidou I, Dziva F, La Ragione RM, Best A, Garmendia J, Hawes P, Monaghan P, Cawthraw SA, Frankel G, Woodward MJ, Stevens MP. 2006. Role of intimin-Tir interactions and the Tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun 74:758–764. [PubMed][CrossRef]
85. Higgins LM, Frankel G, Connerton I, Gonçalves NS, Dougan G, MacDonald TT. 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285:588–591. [PubMed][CrossRef]
86. Gonçalves NS, Hale C, Dougan G, Frankel G, MacDonald TT. 2003. Binding of intimin from enteropathogenic Escherichia coli to lymphocytes and its functional consequences. Infect Immun 71:2960–2965. [PubMed][CrossRef]
87. Khare S, Alali W, Zhang S, Hunter D, Pugh R, Fang FC, Libby SJ, Adams LG. 2010. Vaccination with attenuated Salmonella enterica Dublin expressing E. coli O157:H7 outer membrane protein intimin induces transient reduction of fecal shedding of E. coli O157:H7 in cattle. BMC Vet Res 6:35. [PubMed][CrossRef]
88. Oliveira AF, Cardoso SA, Almeida FB, de Oliveira LL, Pitondo-Silva A, Soares SG, Hanna ES. 2012. Oral immunization with attenuated Salmonella vaccine expressing Escherichia coli O157:H7 intimin gamma triggers both systemic and mucosal humoral immunity in mice. Microbiol Immunol 56:513–522. [PubMed][CrossRef]
89. Dean-Nystrom EA, Gansheroff LJ, Mills M, Moon HW, O'Brien AD. 2002. Vaccination of pregnant dams with intimin(O157) protects suckling piglets from Escherichia coli O157:H7 infection. Infect Immun 70:2414–2418. [PubMed][CrossRef]
90. Gansheroff LJ, Wachtel MR, O'Brien AD. 1999. Decreased adherence of enterohemorrhagic Escherichia coli to HEp-2 cells in the presence of antibodies that recognize the C-terminal region of intimin. Infect Immun 67:6409–6417. [PubMed]
91. Frankel G, Candy DC, Everest P, Dougan G. 1994. Characterization of the C-terminal domains of intimin-like proteins of enteropathogenic and enterohemorrhagic Escherichia coli, Citrobacter freundii, and Hafnia alvei. Infect Immun 62:1835–1842. [PubMed]
92. Deibel C, Dersch P, Ebel F. 2001. Intimin from Shiga toxin-producing Escherichia coli and its isolated C-terminal domain exhibit different binding properties for Tir and a eukaryotic surface receptor. Int J Med Microbiol 290:683–691. [PubMed][CrossRef]
93. McKee ML, O'Brien AD. 1996. Truncated enterohemorrhagic Escherichia coli (EHEC) O157:H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infect Immun 64:2225–2233. [PubMed]
94. Liu H, Magoun L, Leong JM. 1999. beta1-chain integrins are not essential for intimin-mediated host cell attachment and enteropathogenic Escherichia coli-induced actin condensation. Infect Immun 67:2045–2049. [PubMed]
95. Rosenshine I, Ruschkowski S, Stein M, Reinscheid DJ, Mills SD, Finlay BB. 1996. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15:2613–2624. [PubMed]
96. Rosenshine I, Donnenberg MS, Kaper JB, Finlay BB. 1992. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11:3551–3560. [PubMed]
97. Deibel C, Kramer S, Chakraborty T, Ebel F. 1998. EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol Microbiol 28:463–474. [PubMed][CrossRef]
98. DeVinney R, Stein M, Reinscheid D, Abe A, Ruschkowski S, Finlay BB. 1999. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67:2389–2398. [PubMed]
99. Batchelor M, Prasannan S, Daniell S, Reece S, Connerton I, Bloomberg G, Dougan G, Frankel G, Matthews S. 2000. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO J 19:2452–2464. [PubMed][CrossRef]
100. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, Matthews S. 1999. Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6:313–318. [PubMed][CrossRef]
101. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA, Finlay BB, Strynadka NC. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–1077. [PubMed][CrossRef]
102. Kenny B. 1999. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31:1229–1241. [PubMed][CrossRef]
103. de Grado M, Abe A, Gauthier A, Steele-Mortimer O, DeVinney R, Finlay BB. 1999. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell Microbiol 1:7–17. [PubMed][CrossRef]
104. Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S, Dougan G, Knutton S, Connerton I, Frankel G. 1999. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 32:151–158. [PubMed][CrossRef]
105. Yi Y, Ma Y, Gao F, Mao X, Peng H, Feng Y, Fan Z, Wang G, Guo G, Yan J, Zeng H, Zou Q, Gao GF. 2010. Crystal structure of EHEC intimin: insights into the complementarity between EPEC and EHEC. PLoS One 5:e15285. [PubMed][CrossRef]
106. Liu H, Radhakrishnan P, Magoun L, Prabu M, Campellone KG, Savage P, He F, Schiffer CA, Leong JM. 2002. Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket. Mol Microbiol 45:1557–1573. [PubMed][CrossRef]
107. Adu-Bobie J, Frankel G, Bain C, Gonçalves AG, Trabulsi LR, Douce G, Knutton S, Dougan G. 1998. Detection of intimins alpha, beta, gamma, and delta, four intimin derivatives expressed by attaching and effacing microbial pathogens. J Clin Microbiol 36:662–668. [PubMed]
108. Oswald E, Schmidt H, Morabito S, Karch H, Marchés O, Caprioli A. 2000. Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infect Immun 68:64–71. [PubMed][CrossRef]
109. Zhang WL, Kohler B, Oswald E, Beutin L, Karch H, Morabito S, Caprioli A, Suerbaum S, Schmidt H. 2002. Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J Clin Microbiol 40:4486–4492. [PubMed][CrossRef]
110. Tzipori S, Gunzer F, Donnenberg MS, de Montigny L, Kaper JB, Donohue-Rolfe A. 1995. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect Immun 63:3621–3627. [PubMed]
111. Mallick EM, Brady MJ, Luperchio SA, Vanguri VK, Magoun L, Liu H, Sheppard BJ, Mukherjee J, Donohue-Rolfe A, Tzipori S, Leong JM, Schauer DB. 2012. Allele- and Tir-independent functions of intimin in diverse animal infection models. Front Microbiol 3:11. [PubMed][CrossRef]
112. Phillips AD, Navabpour S, Hicks S, Dougan G, Wallis T, Frankel G. 2000. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47:377–381. [PubMed][CrossRef]
113. Phillips AD, Frankel G. 2000. Intimin-mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J Infect Dis 181:1496–1500. [PubMed][CrossRef]
114. Fitzhenry RJ, Pickard DJ, Hartland EL, Reece S, Dougan G, Phillips AD, Frankel G. 2002. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. Gut 50:180–185. [PubMed][CrossRef]
115. Girard F, Batisson I, Frankel GM, Harel J, Fairbrother JM. 2005. Interaction of enteropathogenic and Shiga toxin-producing Escherichia coli and porcine intestinal mucosa: role of intimin and Tir in adherence. Infect Immun 73:6005–6016. [PubMed][CrossRef]
116. Mundy R, Schüller S, Girard F, Fairbrother JM, Phillips AD, Frankel G. 2007. Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism. Microbiology 153:959–967. [CrossRef]
117. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DG, Gally DL. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71:1505–1512. [PubMed][CrossRef]
118. Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74:4685–4693. [PubMed][CrossRef]
119. Kudva IT, Hovde CJ, John M. 2013. Adherence of non-O157 Shiga toxin-producing Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157. Foodborne Pathog Dis 10:375–381. [PubMed][CrossRef]
120. Kudva IT, Griffin RW, Krastins B, Sarracino DA, Calderwood SB, John M. 2012. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells. BMC Microbiol 12:103. [PubMed][CrossRef]
121. Sinclair JF, O'Brien AD. 2002. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277:2876–2885. [PubMed][CrossRef]
122. Sinclair JF, Dean-Nystrom EA, O'Brien AD. 2006. The established intimin receptor Tir and the putative eucaryotic intimin receptors nucleolin and beta1 integrin localize at or near the site of enterohemorrhagic Escherichia coli O157:H7 adherence to enterocytes in vivo. Infect Immun 74:1255–1265. [PubMed][CrossRef]
123. Sinclair JF, O'Brien AD. 2004. Intimin types alpha, beta, and gamma bind to nucleolin with equivalent affinity but lower avidity than to the translocated intimin receptor. J Biol Chem 279:33751–33758. [PubMed][CrossRef]
124. Frankel G, Lider O, Hershkoviz R, Mould AP, Kachalsky SG, Candy DCA, Cahalon L, Humphries MJ, Dougan G. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J Biol Chem 271:20359–20364. [PubMed][CrossRef]
125. Muza-Moons MM, Koutsouris A, Hecht G. 2003. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect Immun 71:7069–7078. [PubMed][CrossRef]
126. Campellone KG, Rankin S, Pawson T, Kirschner MW, Tipper DJ, Leong JM. 2004. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164:407–416. [PubMed][CrossRef]
127. Kenny B, Ellis S, Leard AD, Warawa J, Mellor H, Jepson MA. 2002. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol Microbiol 44:1095–1107. [PubMed][CrossRef]
128. Campellone KG, Giese A, Tipper DJ, Leong JM. 2002. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43:1227–1241. [PubMed][CrossRef]
129. Gruenheid S, DeVinney R, Bladt F, Goosney F, Gelkop S, Gish GD, Pawson T, Finlay BB. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3:856–859. [PubMed][CrossRef]
130. Rohatgi R, Nollau P, Ho H, Kirschner MW, Mayer BJ. 2001. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452. [PubMed][CrossRef]
131. Lommel S, Benesch S, Rottner K, Franz T, Wehland J, Kuhn R. 2001. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigellaflexneri are abolished in N-WASP-defective cells. EMBO Rep 2:850–857. [PubMed][CrossRef]
132. Garber JJ, Takeshima F, Antón IM, Oyoshi MK, Lyubimova A, Kapoor A, Shibata T, Chen F, Alt FW, Geha RS, Leong JM, Snapper SB. 2012. Enteropathogenic Escherichia coli and vaccinia virus do not require the family of WASP-interacting proteins for pathogen-induced actin assembly. Infect Immun 80:4071–4077. [PubMed][CrossRef]
133. Lommel S, Benesch S, Rohde M, Wehland J, Rottner K. 2004. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell Microbiol 6:243–254. [PubMed][CrossRef]
134. DeVinney R, Puente JL, Gauthier A, Goosney D, Finlay BB. 2001. Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol Microbiol 41:1445–1458. [PubMed][CrossRef]
135. Brady MJ, Campellone KG, Ghildiyal M, Leong JM. 2007. Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol 9:2242–2253. [PubMed][CrossRef]
136. Campellone KG, Brady MJ, Alamares JG, Rowe DC, Skehan BM, Tipper DJ, Leong JM. 2006. Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol 8:1488–1503. [PubMed][CrossRef]
137. Vingadassalom D, Kazlauskas A, Skehan B, Cheng HC, Magoun L, Robbins D, Rosen MK, Saksela K, Leong JM. 2009. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA 106:6754–6759. [PubMed][CrossRef]
138. Weiss SM, Ladwein M, Schmidt D, Ehinger J, Lommel S, Städing K, Beutling U, Disanza A, Frank R, Jänsch L, Scita G, Gunzer F, Rottner K, Stradal TE. 2009. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5:244–258. [PubMed][CrossRef]
139. Campellone KG, Leong JM. 2005. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol 56:416–432. [PubMed][CrossRef]
140. Campellone KG, Robbins D, Leong JM. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7:217–228. [PubMed][CrossRef]
141. Garmendia J, Phillips AD, Carlier MF, Chong Y, Schüller S, Marches O, Dahan S, Oswald E, Shaw RK, Knutton S, Frankel G. 2004. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6:1167–1183. [PubMed][CrossRef]
142. Cheng HC, Skehan BM, Campellone KG, Leong JM, Rosen MK. 2008. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature 454:1009–1013. [PubMed][CrossRef]
143. Sallee NA, Rivera GM, Dueber JE, Vasilescu D, Mullins RD, Mayer BJ, Lim WA. 2008. The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature 454:1005–1008. [PubMed][CrossRef]
144. Campellone KG, Cheng HC, Robbins D, Siripala AD, McGhie EJ, Hayward RD, Welch MD, Rosen MK, Koronakis V, Leong JM. 2008. Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspF(U) synergistically activate actin assembly. PLoS Pathog 4:e1000191. [PubMed][CrossRef]
145. Garmendia J, Carlier MF, Egile C, Didry D, Frankel G. 2006. Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell Microbiol 8:1444–1455. [PubMed][CrossRef]
146. Vingadassalom D, Campellone KG, Brady MJ, Skehan B, Battle SE, Robbins D, Kapoor A, Hecht G, Snapper SB, Leong JM. 2010. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLoS Pathog 6:e1001056. [PubMed][CrossRef]
147. Bai L, Schüller S, Whale A, Mousnier A, Marches O, Wang L, Ooka T, Heuschkel R, Torrente F, Kaper JB, Gomes TA, Xu J, Phillips AD, Frankel G. 2008. Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2. Infect Immun 76:361–368. [PubMed][CrossRef]
148. Schüller S, Chong Y, Lewin J, Kenny B, Frankel G, Phillips AD. 2007. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell Microbiol 9:1352–1364. [PubMed][CrossRef]
149. Crepin VF, Girard F, Schüller S, Phillips AD, Mousnier A, Frankel G. 2010. Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol Microbiol 75:308–323. [PubMed][CrossRef]
150. Ritchie JM, Brady MJ, Riley KN, Ho TD, Campellone KG, Herman IM, Donohue-Rolfe A, Tzipori S, Waldor MK, Leong JM. 2008. EspFU, a type III-translocated effector of actin assembly, fosters epithelial association and late-stage intestinal colonization by E. coli O157:H7. Cell Microbiol 10:836–847. [PubMed][CrossRef]
151. Ogura Y, Ooka T, Whale A, Garmendia J, Beutin L, Tennant S, Krause G, Morabito S, Chinen I, Tobe T, Abe H, Tozzoli R, Caprioli A, Rivas M, Robins-Browne R, Hayashi T, Frankel G. 2007. TccP2 of O157:H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun 75:604–612. [PubMed][CrossRef]
152. Whale AD, Hernandes RT, Ooka T, Beutin L, Schüller S, Garmendia J, Crowther L, Vieira MA, Ogura Y, Krause G, Phillips AD, Gomes TA, Hayashi T, Frankel G. 2007. TccP2-mediated subversion of actin dynamics by EPEC 2—a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology 153:1743–1755. [PubMed][CrossRef]
153. Sanger JM, Chang R, Ashton F, Kaper JB, Sanger JW. 1996. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil Cytoskeleton 34:279–287. [PubMed][CrossRef]
154. Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. [PubMed][CrossRef]
155. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22. [PubMed][CrossRef]
156. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NC, Puente JL, Finlay BB. 2005. Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun 73:2135–2146. [PubMed][CrossRef]
157. Wang D, Roe AJ, McAteer S, Shipston MJ, Gally DL. 2008. Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69:1499–1512. [PubMed][CrossRef]
158. Charpentier X, Oswald E. 2004. Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186:5486–5495. [PubMed][CrossRef]
159. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, Nakayama K, Hayashi T. 2009. The defective prophage pool of Escherichia coli O157:prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5:e1000408. [PubMed][CrossRef]
160. Marchès O, Ledger TN, Boury M, Ohara M, Tu X, Goffaux F, Mainil J, Rosenshine I, Sugai M, De Rycke J, Oswald E. 2003. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 50:1553–1567. [PubMed][CrossRef]
161. Taieb F, Nougayrède JP, Oswald E. 2011. Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins (Basel) 3:356–368. [PubMed][CrossRef]
162. Holmes A, Mühlen S, Roe AJ, Dean P. 2010. The EspF effector, a bacterial pathogen's Swiss army knife. Infect Immun 78:4445–4453. [PubMed][CrossRef]
163. Marchés O, Wiles S, Dziva F, La Ragione RM, Schüller S, Best A, Phillips AD, Hartland EL, Woodward MJ, Stevens MP, Frankel G. 2005. Characterization of two non-locus of enterocyte effacement-encoded type III-translocated effectors, NleC and NleD, in attaching and effacing pathogens. Infect Immun 73:8411–8417. [PubMed][CrossRef]
164. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. 2011. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438. [PubMed][CrossRef]
165. Nadler C, Baruch K, Kobi S, Mills E, Haviv G, Farago M, Alkalay I, Bartfeld S, Meyer TF, Ben-Neriah Y, Rosenshine I. 2010. The type III secretion effector NleE inhibits NF-kappaB activation. PLoS Pathog 6:e1000743. [PubMed][CrossRef]
166. Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G, Wagstaff KM, Dunstone MA, Sloan J, Whisstock JC, Kaper JB, Robins-Browne RM, Jans DA, Frankel G, Phillips AD, Coulson BS, Hartland EL. 2010. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog 6:e1000898. [CrossRef]
167. Gao X, Wang X, Pham TH, Feuerbacher LA, Lubos ML, Huang M, Olsen R, Mushegian A, Slawson C, Hardwidge PR. 2013. NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-κB activation. Cell Host Microbe 13:87–99. [PubMed][CrossRef]
168. Ruchaud-Sparagano MH, Mühlen S, Dean P, Kenny B. 2011. The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors. PLoS Pathog 7:e1002414. [PubMed][CrossRef]
169. Yan D, Wang X, Luo L, Cao X, Ge B. 2012. Inhibition of TLR signaling by a bacterial protein containing immunoreceptor tyrosine-based inhibitory motifs. Nat Immunol 13:1063–1071. [PubMed][CrossRef]
170. Baruch K, Gur-Arie L, Nadler C, Koby S, Yerushalmi G, Ben-Neriah Y, Yogev O, Shaulian E, Guttman C, Zarivach R, Rosenshine I. 2011. Metalloprotease type III effectors that specifically cleave JNK and NF-κB. EMBO J 30:221–231. [PubMed][CrossRef]
171. Mühlen S, Ruchaud-Sparagano MH, Kenny B. 2011. Proteasome-independent degradation of canonical NFkappaB complex components by the NleC protein of pathogenic Escherichia coli. J Biol Chem 286:5100–5107. [PubMed][CrossRef]
172. Pearson JS, Riedmaier P, Marchès O, Frankel G, Hartland EL. 2011. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation. Mol Microbiol 80:219–230. [PubMed][CrossRef]
173. Yen H, Ooka T, Iguchi A, Hayashi T, Sugimoto N, Tobe T. 2010. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog 6:e1001231. [PubMed][CrossRef]
174. Vossenkämper A, Marchès O, Fairclough PD, Warnes G, Stagg AJ, Lindsay JO, Evans PC, Luong le A, Croft NM, Naik S, Frankel G, MacDonald TT. 2010. Inhibition of NF-κB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J Immunol 185:4118–4127. [PubMed][CrossRef]
175. Zhang L, Ding X, Cui J, Xu H, Chen J, Gong YN, Hu L, Zhou Y, Ge J, Lu Q, Liu L, Chen S, Shao F. 2011. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481:204–208. [PubMed][CrossRef]
176. Gao X, Wan F, Mateo K, Callegari E, Wang D, Deng W, Puente J, Li F, Chaussee MS, Finlay BB, Lenardo MJ, Hardwidge PR. 2009. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function. PLoS Pathog 5:e1000708. [PubMed][CrossRef]
177. Wan F, Weaver A, Gao X, Bern M, Hardwidge PR, Lenardo MJ. 2011. IKKβ phosphorylation regulates RPS3 nuclear translocation and NF-κB function during infection with Escherichia coli strain O157:H7. Nat Immunol 12:335–343. [PubMed][CrossRef]
178. Royan SV, Jones RM, Koutsouris A, Roxas JL, Falzari K, Weflen AW, Kim A, Bellmeyer A, Turner JR, Neish AS, Rhee KJ, Viswanathan VK, Hecht GA. 2010. Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-κB activation. Mol Microbiol 78:1232–1245. [PubMed][CrossRef]
179. Pham TH, Gao X, Tsai K, Olsen R, Wan F, Hardwidge PR. 2012. Functional differences and interactions between the Escherichia coli type III secretion system effectors NleH1 and NleH2. Infect Immun 80:2133–2140. [PubMed][CrossRef]
180. Marchès O, Covarelli V, Dahan S, Cougoule C, Bhatta P, Frankel G, Caron E. 2008. EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell Microbiol 10:1104–1115. [PubMed][CrossRef]
181. Dong N, Liu L, Shao F. 2010. A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 29:1363–1376. [PubMed][CrossRef]
182. Martinez-Argudo I, Sands C, Jepson MA. 2007. Translocation of enteropathogenic Escherichia coli across an in vitro M cell model is regulated by its type III secretion system. Cell Microbiol 9:1538–1546. [PubMed][CrossRef]
183. Quitard S, Dean P, Maresca M, Kenny B. 2006. The enteropathogenic Escherichia coli EspF effector molecule inhibits PI-3 kinase-mediated uptake independently of mitochondrial targeting. Cell Microbiol 8:972–981. [PubMed][CrossRef]
184. Tahoun A, Siszler G, Spears K, McAteer S, Tree J, Paxton E, Gillespie TL, Martinez-Argudo I, Jepson MA, Shaw DJ, Koegl M, Haas J, Gally DL, Mahajan A. 2011. Comparative analysis of EspF variants in inhibition of Escherichia coli phagocytosis by macrophages and inhibition of E. coli translocation through human- and bovine-derived M cells. Infect Immun 79:4716–2479. [PubMed][CrossRef]
185. Celli J, Olivier M, Finlay BB. 2001. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J 20:1245–1258. [PubMed][CrossRef]
186. Alto NM, Weflen AW, Rardin MJ, Yarar D, Lazar CS, Tonikian R, Koller A, Taylor SS, Boone C, Sidhu SS, Schmid SL, Hecht GA, Dixon JE. 2007. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol 178:1265–1278. [PubMed][CrossRef]
187. Marchès O, Batchelor M, Shaw RK, Patel A, Cummings N, Nagai T, Sasakawa C, Carlsson SR, Lundmark R, Cougoule C, Caron E, Knutton S, Connerton I, Frankel G. 2006. EspF of enteropathogenic Escherichia coli binds sorting nexin 9. J Bacteriol 188:3110–3115. [PubMed][CrossRef]
188. Peralta-Ramírez J, Hernandez JM, Manning-Cela R, Luna-Muñoz J, Garcia-Tovar C, Nougayréde JP, Oswald E, Navarro-Garcia F. 2008. EspF interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun 76:3854–3868. [PubMed][CrossRef]
189. Weflen AW, Alto NM, Viswanathan VK, Hecht G. 2010. E. coli secreted protein F promotes EPEC invasion of intestinal epithelial cells via an SNX9-dependent mechanism. Cell Microbiol 12:919–929. [PubMed][CrossRef]
190. Berger CN, Crepin VF, Jepson MA, Arbeloa A, Frankel G. 2009. The mechanisms used by enteropathogenic Escherichia coli to control filopodia dynamics. Cell Microbiol 11:309–322. [PubMed][CrossRef]
191. Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM. 2009. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16:853–860. [PubMed][CrossRef]
192. Arbeloa A, Bulgin RR, MacKenzie G, Shaw RK, Pallen MJ, Crepin VF, Berger CN, Frankel G. 2008. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell Microbiol 10:1429–1441. [PubMed][CrossRef]
193. Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G. 2010. EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol 12:654–664. [PubMed][CrossRef]
194. Bulgin R, Arbeloa A, Goulding D, Dougan G, Crepin VF, Raymond B, Frankel G. 2009. The T3SS effector EspT defines a new category of invasive enteropathogenic E. coli (EPEC) which form intracellular actin pedestals. PLoS Pathog 5:e1000683. [PubMed][CrossRef]
195. Keestra AM, Winter MG, Auburger JJ, Frässle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JF, Tsolis RM, Eigenheer RA, Bäumler AJ. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–237. [PubMed][CrossRef]
196. Wong AR, Clements A, Raymond B, Crepin VF, Frankel G. 2012. The interplay between the Escherichia coli Rho guanine nucleotide exchange factor effectors and the mammalian RhoGEF inhibitor EspH. MBio 3:e00250-11. [PubMed][CrossRef]
197. Tu X, Nisan I, Yona C, Hanski E, Rosenshine I. 2003. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol Microbiol 47:595–606. [PubMed][CrossRef]
198. Wong AR, Raymond B, Collins JW, Crepin VF, Frankel G. 2012. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP). Cell Microbiol 14:1051–1070. [PubMed][CrossRef]
199. Arbeloa A, Oates CV, Marchès O, Hartland EL, Frankel G. 2011. Enteropathogenic and enterohemorrhagic Escherichia coli type III secretion effector EspV induces radical morphological changes in eukaryotic cells. Infect Immun 79:1067–1076. [PubMed][CrossRef]
200. Hardwidge PR, Deng W, Vallance BA, Rodriguez-Escudero I, Cid VJ, Molina M, Finlay BB. 2005. Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Infect Immun 73:2586–2594. [PubMed][CrossRef]
201. Matsuzawa T, Kuwae A, Abe A. 2005. Enteropathogenic Escherichia coli type III effectors EspG and EspG2 alter epithelial paracellular permeability. Infect Immun 73:6283–6289. [PubMed][CrossRef]
202. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A. 2004. Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23:3570–3582. [PubMed][CrossRef]
203. Tomson FL, Viswanathan VK, Kanack KJ, Kanteti RP, Straub KV, Menet M, Kaper JB, Hecht G. 2005. Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol Microbiol 56:447–464. [PubMed][CrossRef]
204. Shaw RK, Smollett K, Cleary J, Garmendia J, Straatman-Iwanowska A, Frankel G, Knutton S. 2005. Enteropathogenic Escherichia coli type III effectors EspG and EspG2 disrupt the microtubule network of intestinal epithelial cells. Infect Immun 73:4385–4390. [PubMed][CrossRef]
205. Clements A, Smollett K, Lee SF, Hartland EL, Lowe M, Frankel G. 2011. EspG of enteropathogenic and enterohemorrhagic E. coli binds the Golgi matrix protein GM130 and disrupts the Golgi structure and function. Cell Microbiol 13:1429–1439. [PubMed][CrossRef]
206. Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. 2012. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150:1029–1041. [PubMed][CrossRef]
207. Germane KL, Spiller BW. 2011. Structural and functional studies indicate that the EPEC effector, EspG, directly binds p21-activated kinase. Biochemistry 50:917–919. [PubMed][CrossRef]
208. Selyunin AS, Sutton SE, Weigele BA, Reddick LE, Orchard RC, Bresson SM, Tomchick DR, Alto NM. 2011. The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature 469:107–111. [PubMed][CrossRef]
209. Batchelor M, Guignot J, Patel A, Cummings N, Cleary J, Knutton S, Holden DW, Connerton I, Frankel G. 2004. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep 5:104–110. [PubMed][CrossRef]
210. Patel A, Cummings N, Batchelor M, Hill PJ, Dubois T, Mellits KH, Frankel G,Connerton I. 2006. Host protein interactions with enteropathogenic Escherichia coli (EPEC): 14-3-3tau binds Tir and has a role in EPEC-induced actin polymerization. Cell Microbiol 8:55–71. [PubMed][CrossRef]
211. Ruetz TJ, Lin AE, Guttman JA. 2012. Enterohaemorrhagic Escherichia coli requires the spectrin cytoskeleton for efficient attachment and pedestal formation on host cells. Microb Pathog 52:149–156. [PubMed][CrossRef]
212. Crane JK, McNamara BP, Donnenberg MS. 2001. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol 3:197–211. [PubMed][CrossRef]
213. Nagai T, Abe A, Sasakawa C. 2005. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 280:2998–3011. [PubMed][CrossRef]
214. Nougayrède JP, Donnenberg MS. 2004. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol 6:1097–1111. [PubMed][CrossRef]
215. Nougayrède JP, Foster GH, Donnenberg MS. 2007. Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell Microbiol 9:680–693. [PubMed][CrossRef]
216. Zhao S, Zhou Y, Wang C, Yang Y, Wu X, Wei Y, Zhu L, Zhao W, Zhang Q, Wan C. 2013. The N-terminal domain of EspF induces host cell apoptosis after infection with enterohaemorrhagic Escherichia coli O157:H7. PLoS One 8:e55164. [PubMed][CrossRef]
217. Kenny B, Jepson M. 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 3:417–426.
218. Samba-Louaka A, Nougayrède JP, Watrin C, Oswald E, Taieb F. 2009. The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun 77:5471–5477. [PubMed][CrossRef]
219. Heczko U, Carthy CM, O'Brien BA, Finlay BB. 2001. Decreased apoptosis in the ileum and ileal Peyer's patches: a feature after infection with rabbit enteropathogenic Escherichia coli O103. Infect Immun 69:4580–4589. [PubMed][CrossRef]
220. Hemrajani C, Berger CN, Robinson KS, Marchès O, Mousnier A, Frankel G. 2010. NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infection. Proc Natl Acad Sci USA 107:3129–3134. [PubMed][CrossRef]
221. Robinson KS, Mousnier A, Hemrajani C, Fairweather N, Berger CN, Frankel G. 2010. The enteropathogenic Escherichia coli effector NleH inhibits apoptosis induced by Clostridium difficile toxin B. Microbiology 156:1815–1823. [PubMed][CrossRef]
222. Martinez E, Schroeder GN, Berger CN, Lee SF, Robinson KS, Badea L, Simpson N, Hall RA, Hartland EL, Crepin VF, Frankel G. 2010. Binding to Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH. Cell Microbiol 12:1718–1731. [PubMed][CrossRef]
223. Blasche S, Mörtl M, Steuber H, Siszler G, Nisa S, Schwarz F, Lavrik I, Gronewold TM, Maskos K, Donnenberg MS, Ullmann D, Uetz P, Kögl M. 2013. The E. coli effector protein NleF is a caspase inhibitor. PLoS One 8:e58937. [PubMed][CrossRef]
224. Viswanathan VK, Hodges K, Hecht G. 2009. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol 7:110–119. [PubMed][CrossRef]
225. Dean P, Kenny B. 2004. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54:665–675. [PubMed][CrossRef]
226. Thanabalasuriar A, Koutsouris A, Weflen A, Mimee M, Hecht G, Gruenheid S. 2010. The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol 12:31–41. [PubMed][CrossRef]
227. Simovitch M, Sason H, Cohen S, Zahavi EE, Melamed-Book N, Weiss A, Aroeti B, Rosenshine I. 2010. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol 12:489–505. [PubMed][CrossRef]
228. Hodges K, Alto NM, Ramaswamy K, Dudeja PK, Hecht G. 2008. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell Microbiol 10:1735–1745. [PubMed][CrossRef]
229. Dean P, Maresca M, Schüller S, Phillips AD, Kenny B. 2006. Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci USA 103:1876–1881. [PubMed][CrossRef]
230. Klapproth JM, Scaletsky IC, McNamara BP, Lai LC, Malstrom C, James SP, Donnenberg MS. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68:2148–2155. [PubMed][CrossRef]
231. Nicholls L, Grant TH, Robins-Browne RM. 2000. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol 35:275–288. [PubMed][CrossRef]
232. Deacon V, Dziva F, van Diemen PM, Frankel G, Stevens MP. 2010. Efa-1/LifA mediates intestinal colonization of calves by enterohaemorrhagic Escherichia coli O26:H- in a manner independent of glycosyltransferase and cysteine protease motifs or effects on type III secretion. Microbiology 156:2527–2536. [PubMed][CrossRef]
233. Stevens MP, van Diemen PM, Frankel G, Phillips AD, Wallis TS. 2002. Efa1 influences colonization of the bovine intestine by Shiga toxin-producing Escherichia coli serotypes O5 and O111. Infect Immun 70:5158–5166. [PubMed][CrossRef]
234. Badea L, Doughty S, Nicholls L, Sloan J, Robins-Browne RM, Hartland EL. 2003. Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microb Pathog 34:205–215. [PubMed][CrossRef]
235. Vidal JE, Navarro-García F. 2008. EspC translocation into epithelial cells by enteropathogenic Escherichia coli requires a concerted participation of Type V and III secretion systems. Cell Microbiol 10:1975–1986. [PubMed][CrossRef]
236. Klapproth JM, Sasaki M, Sherman M, Babbin B, Donnenberg MS, Fernandes PJ, Scaletsky IC, Kalman D, Nusrat A, Williams IR. 2005. Citrobacter rodentium lifA/efa1 is essential for colonic colonization and crypt cell hyperplasia in vivo. Infect Immun 73:1441–1451. [PubMed][CrossRef]
237. Stevens MP, Roe AJ, Vlisidou I, van Diemen PM, La Ragione RM, Best A, Woodward MJ, Gally DL, Wallis TS. 2004. Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun 72:5402–5411. [PubMed][CrossRef]
238. Tatsuno I, Horie M, Abe H, Miki T, Makino K, Shinagawa H, Taguchi H, Kamiya S, Hayashi T, Sasakawa C. 2001. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect Immun 69:6660–6669. [PubMed][CrossRef]
239. Abu-Median AB, van Diemen PM, Dziva F, Vlisidou I, Wallis TS, Stevens MP. 2006. Functional analysis of lymphostatin homologues in enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 258:43–49. [PubMed][CrossRef]
240. Stevens MP, Marchès O, Campbell J, Huter V, Frankel G, Phillips AD, Oswald E, Wallis TS. 2002. Intimin, Tir, and Shiga toxin 1 do not influence enteropathogenic responses to Shiga toxin-producing Escherichia coli in bovine ligated intestinal loops. Infect Immun 70:945–952. [PubMed][CrossRef]
241. Neves BC, Shaw RK, Frankel G, Knutton S. 2003. Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 71:2262–2265. [PubMed][CrossRef]
242. Davis TK, van der Kar NCAJ, Tarr PI. Shiga toxin/verocytotoxin-producing Escherichia coli infections: practical clinical perspectives. In Sperandio V, Hovde C (ed), Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli. ASM Press, Washington, DC, in press
243. Obata F, Obrig T. Role of Shiga/verotoxins in pathogenesis. In Sperandio V, Hovde C (ed), Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli. ASM Press, Washington, DC, in press.
244. Ritchie JM. Animal models of EHEC infection. In Sperandio V, Hovde C (ed), Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli. ASM Press, Washington, DC, in press.
245. Mellies JL, Lorenzen E. Enterohemorrhagic Escherichia coli virulence gene regulation. In Sperandio V, Hovde C (ed), Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli. ASM Press, Washington, DC, in press.
246. Smith DR. Vaccination of cattle against Escherchia coli O157:H7. In Sperandio V, Hovde C (ed), Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli. ASM Press, Washington, DC, in press.
microbiolspec.EHEC-0007-2013.citations
cm/2/4
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0007-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0007-2013
2014-08-15
2017-06-26

Abstract:

A subset of Shiga toxin-producing strains, termed enterohemorrhagic (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of O157:H7 and other Shiga toxin-producing strains.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/4/EHEC-0007-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0007-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1a

Click to view

FIGURE 1a

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference 233 ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference 84 ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference 240 ; scale bar = 5 µm. doi:10.1128/microbiolspec.EHEC-0007-2013.f1

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1b

Click to view

FIGURE 1b

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference 233 ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference 84 ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference 240 ; scale bar = 5 µm. doi:10.1128/microbiolspec.EHEC-0007-2013.f1

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1c

Click to view

FIGURE 1c

Transmission electron micrograph (TEM) showing A/E lesions induced by EHEC O111:H– strain E45035N in the spiral colon of a neonatal calf (note raised electron-dense pedestals and microvillus effacement relative to proximal uninfected enterocyte). From reference 233 ; scale bar = 1 µm. TEM of A/E lesions induced by EHEC O157:H7 strain 85-170 12 h after inoculation of a bovine ligated ileal loop (note intimate adherence but relative absence of elongated pedestals). From reference 84 ; scale bar = 5 µm. Fluorescence micrograph showing nucleation of F-actin under EHEC O103:H3 strain PMK5 adhering to a HeLa cell (green, F-actin detected with Oregon green-phalloidin; red, bacteria stained with rabbit anti-O103 typing serum detected with anti-rabbit immunoglobulin-Alexa). From reference 240 ; scale bar = 5 µm. doi:10.1128/microbiolspec.EHEC-0007-2013.f1

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Genetic organization of LEE of O157:H7. Open reading frames are represented by thick arrows, and putative polycistronic operons are designated by thin arrows. Clear arrows represent open reading frames of unknown function and are designated or , depending on the direction of transcription relative to . doi:10.1128/microbiolspec.EHEC-0007-2013.f2

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Schematic representation of the Type III secretion apparatus showing the predicted spatial organization of LEE-encoded proteins. Adapted from reference 30 . doi:10.1128/microbiolspec.EHEC-0007-2013.f3

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Scanning electron micrograph showing EspA filaments (arrow) of EHEC O26:H11 strain H19 attaching to the surface of an erythrocyte. From reference 241 . Transmission electron micrograph of an EspA filament of wild-type EPEC O127:H6 strain E2348/69 showing Tir issuing from the tip. EspA filaments were immunolabeled with anti-EspA conjugated to 5-nm diameter gold particles, and Tir was detected with anti-Tir conjugated to 10-nm diameter gold particles. The specificity of Tir staining was confirmed using the same gold-labeled antibodies but an isogenic mutant. Panels B and C from reference 54 . doi:10.1128/microbiolspec.EHEC-0007-2013.f4

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Diagram summarizing the activities of a subset of EHEC Type III secreted proteins on the cytoskeleton. Note (a), the Tir:Nck pathway dependent on phosphorylation of the residue equivalent to tyrosine 474 of EPEC O127:H6 Tir operates in some non-O157 EHEC but not prototype O157:H7 strains. Effectors are represented by circles. Adapted from reference 164 . doi:10.1128/microbiolspec.EHEC-0007-2013.f5

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Diagram summarizing the activities of a subset of EHEC Type III secreted proteins on signaling pathways leading to inflammation and apoptosis. Effectors are represented by circles. Adapted from reference 164 . doi:10.1128/microbiolspec.EHEC-0007-2013.f6

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Type III secreted effector proteins of EHEC O157:H7 and their activities, where known or inferred from homologs in other A/E pathogens

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.EHEC-0007-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error