1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Interplay between the Microbiota and Enterohemorrhagic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    448.42 Kb
  • HTML
    107.18 Kb
  • XML
    94.90 Kb
  • Authors: Reed Pifer1, Vanessa Sperandio2
  • Editors: Vanessa Sperandio3, Carolyn J. Hovde4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390; 2: Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390; 3: University of Texas Southwestern Medical Center, Dallas, TX; 4: University of Idaho, Moscow, ID
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0015-2013
  • Received 21 August 2013 Accepted 23 August 2013 Published 26 September 2014
  • Vanessa Sperandio, vanessa.sperandio@utsouthwestern.edu
image of The Interplay between the Microbiota and Enterohemorrhagic <span class="jp-italic">Escherichia coli</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Interplay between the Microbiota and Enterohemorrhagic , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0015-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0015-2013-2.gif
  • Abstract:

    The gastrointestinal tract of mammals is home to a plethora of microbial species that comprise the microbiota. The role of the microbiota in human health is at the forefront of science in recent years, because it is now appreciated that this intricate microbe-host association shapes the host's immune response and physiology. Many diseases are associated with changes in the microbiota, called dysbiosis. Dysbiosis is associated with obesity, metabolic syndromes, inflammatory bowel-disease, inflammatory bowel syndrome, cancer, diabetes, allergies, and autism. The microbiota is largely regarded as a barrier to enteric infections, such as with enterohemorrhagic (EHEC). However, the interactions between pathogens and the microbiota are largely unknown, as is how these interactions influence the outcome of enteric disease. The microbial composition of the gastrointestinal tract shapes the landscape in which EHEC survives within the host. This organism competes for nutrients derived from the host diet, liberates additional resources from dietary and host sources, and produces signaling molecules sensed by EHEC to direct gene expression. To successfully colonize the recto-anal junction of a ruminant, the EHEC reservoir, or the colon of a human, an accidental host, EHEC must alter its physiology to survive within the host digestive tract. In this article, we explore the classes of molecules produced or modified by the microbiota that appear to be instrumental in governing virulence gene expression of EHEC. We also explore how interaction with different microbiotas influences EHEC infectivity and host interaction.

  • Citation: Pifer R, Sperandio V. 2014. The Interplay between the Microbiota and Enterohemorrhagic . Microbiol Spectrum 2(5):EHEC-0015-2013. doi:10.1128/microbiolspec.EHEC-0015-2013.

Key Concept Ranking

Type III Secretion System
0.41764078
0.41764078

References

1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. [PubMed][CrossRef]
2. Hooper LV, Gordon JI. 2001. Commensal host-bacterial relationships in the gut. Science 292:1115–1118. [CrossRef]
3. Grenham S, Clarke G, Cryan JF, Dinan TG. 2011. Brain-gut-microbe communication in health and disease. Front Physiol 2:94. [PubMed][CrossRef]
4. Gordon JI, Klaenhammer TR. 2011. A rendezvous with our microbes. Proc Natl Acad Sci USA 108 Suppl 1:4513–4515. [PubMed][CrossRef]
5. Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. 2011. The mind-body-microbial continuum. Dialogues Clin Neurosci 13:55–62. [PubMed]
6. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108 Suppl 1:4554–4561. [PubMed][CrossRef]
7. Romick-Rosendale LE, Goodpaster AM, Hanwright PJ, Patel NB, Wheeler ET, Chona DL, Kennedy MA. 2009. NMR-based metabonomics analysis of mouse urine and fecal extracts following oral treatment with the broad-spectrum antibiotic enrofloxacin (Baytril). Magn Reson Chem 47 Suppl 1:S36–S46. [PubMed][CrossRef]
8. Yap IK, Li JV, Saric J, Martin FP, Davies H, Wang Y,Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E. 2008. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res 7:3718–3728. [PubMed][CrossRef]
9. Martin FP, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK. 2008. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:157. [PubMed]
10. Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S. 2004. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122. [PubMed][CrossRef]
11. Hoverstad T, Carlstedt-Duke B, Lingaas E, Midtvedt T, Norin KE, Saxerholt H, Steinbakk M. 1986. Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol 21:621–626. [PubMed][CrossRef]
12. Millard AL, Mertes PM, Ittelet D, Villard F, Jeannesson P, Bernard J. 2002. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin Exp Immunol 130:245–255. [PubMed][CrossRef]
13. Hossain Z, Konishi M, Hosokawa M, Takahashi K. 2006. Effect of polyunsaturated fatty acid-enriched phosphatidylcholine and phosphatidylserine on butyrate-induced growth inhibition, differentiation and apoptosis in Caco-2 cells. Cell Biochem Funct 24:159–165. [PubMed][CrossRef]
14. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. 2008. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119. [PubMed][CrossRef]
15. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, Kotani J. 2008. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res 28:321–328. [PubMed][CrossRef]
16. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, Tysk C, Schmitt-Kopplin P. 2009. Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS One 4:e6386. [PubMed][CrossRef]
17. Fischbach MA, Sonnenburg JL. 2011. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10:336–347. [PubMed][CrossRef]
18. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:204. [PubMed][CrossRef]
19. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD. 2007. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5:2177–2189. [PubMed][CrossRef]
20. Dunlop SP, Jenkins D, Neal KR, Spiller RC. 2003. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125:1651–1659. [PubMed][CrossRef]
21. Sperandio V, Mellies JL, Nguyen W, Shin S, Kaper JB. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci USA 96:15196–15201. [PubMed][CrossRef]
22. Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. [PubMed]
23. Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322. [PubMed]
24. Nealson KH, Hastings JW. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518. [PubMed]
25. Engebrecht J, Nealson K, Silverman M. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781. [CrossRef]
26. Engebrecht J, Silverman M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci USA 81:4154–4158. [CrossRef]
27. Parsek MR, Greenberg EP. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793. [CrossRef]
28. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. [PubMed][CrossRef]
29. de Kievit TR. Iglewski BH. 2000. Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849. [CrossRef]
30. Wang XD, de Boer PA, Rothfield LI. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. Embo J 10:3363–3372. [PubMed]
31. Swift S, Lynch MJ, Fish L, Kirke DF, Tomas JM, Stewart GS, Williams P. 1999. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67:5192–5199. [PubMed]
32. Michael B, Smith JN, Swift S, Heffron F, Ahmer BM. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183:5733–5742. [PubMed][CrossRef]
33. Surett MG, Bassler BL. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 95:7046–7050. [CrossRef]
34. Schauder S, Shokat K, Surette MG, Bassler BL. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. MolMicrobiol 41:463–476. [PubMed][CrossRef]
35. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. 2003. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956. [PubMed][CrossRef]
36. Walters M, Sircili MP, Sperandio V. 2006. AI-3 synthesis is not dependent on luxS in Escherichiacoli. JBacteriol 188:5668–5681. [PubMed][CrossRef]
37. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl AcadSci USA 92:1664–1668. [CrossRef]
38. Jarvis KG, Giron JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92:7996–8000. [PubMed][CrossRef]
39. Sperandio V, Torres AG, Giron JA, Kaper JB. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197. [PubMed][CrossRef]
40. Swearingen MC, Sabag-Daigle A, Ahmer BM. 2013. Are these acyl-homoserine lactones within mammalian intestines? J Bacteriol 195:173–179. [PubMed][CrossRef]
41. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425. [PubMed][CrossRef]
42. Furness JB. 2000. Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96. [CrossRef]
43. Purves D, Fitzpatrick D, Williams SM, McNamara JO, Augustine GJ, Katz LC, LaMantia A. 2001. Neuroscience, 2nd ed. Sinauer Associates, Inc., Sunderland, MA.
44. Horger S, Schultheiss G, Diener M. 1998. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am J Physiol 275:G1367–G1376. [PubMed]
45. Fredollino PL, Kalani MY, Vaidihi N, Floriano WB, Hall SE, Trabanino RJ, Kam VW, Goddard WA. 2004. Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci USA 101:2736–2741. [PubMed][CrossRef]
46. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425. [PubMed][CrossRef]
47. Walters M, Sircili MP, Sperandio V. 2006. AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188:5668–5681. [PubMed][CrossRef]
48. Reading NC, Rasko DA, Torres AG, Sperandio V. 2009. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci USA 106:5889–5894. [PubMed][CrossRef]
49. Reading NC, Torres AG, Kendall MM, Hughes DT, Yamamoto K, Sperandio V. 2007. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189:2468–2476. [PubMed][CrossRef]
50. Rasko DA, Moreira CG, Li de R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V. 2008. Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080. [PubMed][CrossRef]
51. Clarke MB, Sperandio V. 2005. Transcriptional autoregulation by quorum sensing E. coli regulators B and C (QseBC) in enterohemorrhagic E. coli (EHEC). Mol Microbiol 58:441–455. [PubMed][CrossRef]
52. Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V. 2009. The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Pathog 5:e1000553. [PubMed][CrossRef]
53. Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A. 2005. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448–1456. [PubMed][CrossRef]
54. Clarke MB, Sperandio V. 2005. Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol 57:1734–1749. [PubMed][CrossRef]
55. Mellies JL, Elliott SJ, Sperandio V, Donnenberg MS, Kaper JB. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33:296–306. [PubMed][CrossRef]
56. Njoroge JW, Nguyen Y, Curtis MM, Moreira CG, Sperandio V. 2012. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. MBio 3:e00280–00212. [PubMed][CrossRef]
57. Luttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Gorke B. 2009. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol 72:978–994. [PubMed][CrossRef]
58. Herrmann A, Davies JR, Lindell G, Martensson S, Packer NH, Swallow DM, Carlstedt I. 1999. Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J BiolChem 274:15828–15836. [PubMed][CrossRef]
59. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9:e1001221. [PubMed][CrossRef]
60. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci USA 101:7427–7432. [PubMed][CrossRef]
61. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE, Allen JH, Stevenson SJ. Laux DC, Cohen PS. 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 72:1666–1676. [PubMed][CrossRef]
62. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V. 2012. Fucose sensing regulates bacterial intestinal colonization. Nature 492:113–117. [PubMed][CrossRef]
63. Kendall MM, Gruber CC, Parker CT, Sperandio V. 2012. Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. MBio 3:e00050-12. [PubMed][CrossRef]
64. Bertin L, Grilli S, Spagni A, Fava F. 2013. Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresour Technol 128:779–783. [PubMed][CrossRef]
65. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T. 2008. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152. [PubMed][CrossRef]
66. Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Nunez G. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329. [PubMed][CrossRef]
67. Hoverstad T, Midtvedt T. 1986. Short-chain fatty acids in germfree mice and rats. J Nutr 116:1772–1776. [PubMed]
68. Topping DL, Clifton PM. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. PhysiolRev 81:1031–1064. [PubMed]
69. Nakanishi N, Tashiro K, Kuhara S, Hayashi T, Sugimoto N, Tobe T. 2009. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155:521–530. [PubMed][CrossRef]
70. Tobe T, Nakanishi N, Sugimoto N. 2011. Activation of motility by sensing short-chain fatty acids via two steps in a flagellar gene regulatory cascade in enterohemorrhagic Escherichia coli. Infect Immun 79:1016–1024. [PubMed][CrossRef]
71. Zumbrun SD, Melton-Celsa AR, Smith MA, Gilbreath JJ, Merrell DS, O'Brien AD. 2013. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proc Natl Acad Sci USA 110:E2126–E2133. [PubMed][CrossRef]
72. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547. [PubMed][CrossRef]
73. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB. 2011. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79:1536–1545. [PubMed][CrossRef]
74. Willing BP, Vacharaksa A, Croxen M, Thanachayanont T, Finlay BB. 2011. Altering host resistance to infections through microbial transplantation. PLoS One 6:e26988. [PubMed][CrossRef]
75. de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP, Martin C. 2009. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect Immun 77:783–790. [PubMed][CrossRef]
76. Brown CA, Harmon BG, Zhao T, Doyle MP. 1997. Experimental Escherichia coli O157:H7 carriage in calves. Appl Environ Microbiol 63:27–32. [PubMed]
77. Cray WC, Jr, Moon HW. 1995. Experimental infection of calves and adult cattle with Escherichia coli O157:H7. Appl Environ Microbiol 61:1586–1590. [PubMed]
78. Dean-Nystrom EA, Bosworth BT, Cray WC, Jr, Moon HW. 1997. Pathogenicity of I O157:H7 in the intestines of neonatal calves. Infect Immun 65:1842–1848. [PubMed]
79. Woodward MJ, Gavier-Widen D, McLaren IM, Wray C, Sozmen M, Pearson GR. 1999. Infection of gnotobiotic calves with Escherichia coli O157:H7 strain A84. Vet Rec 144:466–470. [PubMed][CrossRef]
80. Wray C, McLaren IM, Randall LP, Pearson GR. 2000. Natural and experimental infection of normal cattle with Escherichia coli O157. Vet Rec 147:65–68. [PubMed][CrossRef]
81. Nguyen Y, Sperandio V. 2012. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2:90. [PubMed][CrossRef]
82. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. [PubMed][CrossRef]
83. Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74:4685–4693. [PubMed][CrossRef]
84. Price SB, Wright JC, DeGraves FJ, Castanie-Cornet MP, Foster JW. 2004. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70:4792–4799. [PubMed][CrossRef]
85. Hughes DT, Terekhova DA, Liou L, Hovde CJ, Sahl JW, Patankar AV, Gonzalez JE, Edrington TS, Rasko DA, Sperandio V. 2010. Chemical sensing in mammalian host-bacterial commensal associations. Proc Natl Acad Sci USA 107:9831–9836. [PubMed][CrossRef]
86. Sheng H, Nguyen Y, Hovde CJ, Sperandio V. 2013. SdiA aids enterohemorrhagic Escherichi coli carriage by cattle fed a forage or grain diet. Infect Immun 81:3472–3478. [PubMed][CrossRef]
87. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Jr, Greenberg EP. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl AcadSci USA 96:4360–4365. [CrossRef]
88. Kanamaru K, Kanamaru K, Tatsuno I, Tobe T, Sasakawa C. 2000. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 38:805–816. [PubMed][CrossRef]
89. Yao Y, Martinez-Yamout MA, Dickerson TJ, ABrogan AP, Wright PE, Dyson HJ. 2006. Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273. [PubMed][CrossRef]
90. Edrington TS, Farrow RL, Sperandio V, Hughes DT, Lawrence TE, Callaway TR, Anderson RC, anNisbet DJ. 2009. Acyl-homoserine-lactone autoinducer in the gastrointestinal [corrected] tract of feedlot cattle and correlation to season, E. coli O157:H7 prevalence, and diet. Curr Microbiol 58:227–232. [PubMed][CrossRef]
91. Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. 2002. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 48:374–378. [PubMed][CrossRef]
microbiolspec.EHEC-0015-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0015-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0015-2013
2014-09-26
2017-03-23

Abstract:

The gastrointestinal tract of mammals is home to a plethora of microbial species that comprise the microbiota. The role of the microbiota in human health is at the forefront of science in recent years, because it is now appreciated that this intricate microbe-host association shapes the host's immune response and physiology. Many diseases are associated with changes in the microbiota, called dysbiosis. Dysbiosis is associated with obesity, metabolic syndromes, inflammatory bowel-disease, inflammatory bowel syndrome, cancer, diabetes, allergies, and autism. The microbiota is largely regarded as a barrier to enteric infections, such as with enterohemorrhagic (EHEC). However, the interactions between pathogens and the microbiota are largely unknown, as is how these interactions influence the outcome of enteric disease. The microbial composition of the gastrointestinal tract shapes the landscape in which EHEC survives within the host. This organism competes for nutrients derived from the host diet, liberates additional resources from dietary and host sources, and produces signaling molecules sensed by EHEC to direct gene expression. To successfully colonize the recto-anal junction of a ruminant, the EHEC reservoir, or the colon of a human, an accidental host, EHEC must alter its physiology to survive within the host digestive tract. In this article, we explore the classes of molecules produced or modified by the microbiota that appear to be instrumental in governing virulence gene expression of EHEC. We also explore how interaction with different microbiotas influences EHEC infectivity and host interaction.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/EHEC-0015-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0015-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Structure of known quorum-sensing ligands. -hexanoyl-l-homoserine lactone (C6-HSL) (A) and -(3-Oxo-octanoyl)-l-homoserine lactone (3-oxo-C8-HSL) (B) stabilize SdiA, which can suppress T3S. (2,4)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (AI-2) (C) appears to have a surprisingly modest effect on virulence. QseC responds to host-derived epinephrine (D) and is antagonized by synthetic LED209 (E), perhaps yielding clues to the identity of AI-3. Indole (F) is a tryptophan-derived metabolite that influences motility and type III secretion. Mucin degradation releases fucose (G), which activates the FusKR two-component system to downregulate T3S. SCFAs, including acetate (H) and butyrate (I), induce motility of EHEC, while only butyrate induces T3S via Lrp activity. doi:10.1128/microbiolspec.EHEC-0015-2013.f1

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

The QseC signaling cascade. QseC senses AI-3 epinephrine and norepinephrine and phosphorylates QseB, QseF, and KdpE. QseE senses epinephrine and phosphorylates QseF. QseB activates flagella expression. QseF indirectly promotes Shiga toxin and EspFu expression. KdpE together with Cra activate LEE gene expression. Both QseBC and QseEF repress expression. FusK senses fucose and phosphorylates FusR that represses the LEE. doi:10.1128/microbiolspec.EHEC-0015-2013.f2

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

EHEC gastrointestinal colonization. doi:10.1128/microbiolspec.EHEC-0015-2013.f3

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

EHEC cattle colonization. Within the rumen EHEC senses AHLs through SdiA to decrease LEE expression and increase expression. Within the RAJ, in the absence of AHLs, LEE expression is promoted. doi:10.1128/microbiolspec.EHEC-0015-2013.f4

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0015-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error