1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

“Preharvest” Food Safety for O157 and Other Pathogenic Shiga Toxin-Producing Strains

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    114.85 Kb
  • HTML
    124.71 Kb
  • PDF
    248.15 Kb
  • Authors: Thomas E. Besser1, Carrie E. Schmidt2, Devendra H. Shah3, Smriti Shringi4
  • Editors: Vanessa Sperandio5, Carolyn J. Hovde6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164; 2: Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164; 3: Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164; 4: Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164; 5: University of Texas Southwestern Medical Center, Dallas, TX; 6: University of Idaho, Moscow, ID
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0021-2013
  • Received 22 November 2013 Accepted 18 December 2013 Published 19 September 2014
  • Thomas E. Besser, tbesser@vetmed.wsu.edu
image of “Preharvest” Food Safety for <span class="jp-italic">Escherichia coli</span> O157 and Other Pathogenic Shiga Toxin-Producing Strains
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    “Preharvest” Food Safety for O157 and Other Pathogenic Shiga Toxin-Producing Strains, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0021-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0021-2013-2.gif
  • Abstract:

    Preharvest food safety refers to the concept of reducing the rates of contamination of unprocessed foods with food-borne disease pathogens in order to reduce human exposure and disease. This article addresses the search for effective preharvest food safety practices for application to live cattle to reduce both contamination of foods of bovine origin and environmental contamination resulting from cattle. Although this research has resulted in several practices that significantly decrease contamination by O157, the effects are limited in magnitude and unlikely to affect the incidence of human disease without much wider application and considerably higher efficacy than is presently apparent. Infection of cattle with O157 is transient and seasonally variable, likely resulting from a complex web of exposures. It is likely that better identification of the true maintenance reservoir of this agent and related Shiga toxin-producing is required to develop more effective control measures for these important food- and waterborne disease agents.

  • Citation: Besser T, Schmidt C, Shah D, Shringi S. 2014. “Preharvest” Food Safety for O157 and Other Pathogenic Shiga Toxin-Producing Strains. Microbiol Spectrum 2(5):EHEC-0021-2013. doi:10.1128/microbiolspec.EHEC-0021-2013.

Key Concept Ranking

Type III Secretion System
0.44598576
0.44598576

References

1. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. 2000. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci USA 97:2999–3003. [PubMed][CrossRef]
2. Woerner DR, Ransom JR, Sofos JN, Dewell GA, Smith GC, Salman MD, Belk KE. 2006. Determining the prevalence of Escherichia coli O157 in cattle and beef from the feedlot to the cooler. J Food Prot 69:2824–2827. [PubMed]
3. Arthur TM, Keen JE, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, Shackelford SD, Wheeler TL, Nou X, Koohmaraie M. 2009. Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Appl Environ Microbiol 75:6515–6523. [PubMed][CrossRef]
4. Grauke LJ, Wynia SA, Sheng HQ, Yoon JW, Williams CJ, Hunt CW, Hovde CJ. 2003. Acid resistance of Escherichia coli O157:H7 from the gastrointestinal tract of cattle fed hay or grain. Vet Microbiol 95:211–225. [CrossRef]
5. Hovde CJ, Austin PR, Cloud KA, Williams CJ, Hunt CW. 1999. Effect of cattle diet on Escherichia coli O157:H7 acid resistance. Appl Environ Microbiol 65:3233–3235. [PubMed]
6. Jacob ME, Fox JT, Narayanan SK, Drouillard JS, Renter DG, Nagaraja TG. 2008. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle. J Anim Sci 86:1182–1190. [PubMed][CrossRef]
7. McAllister TA, Bach SJ, Stanford K, Callaway TR. 2006. Shedding of Escherichia coli O157:H7 by cattle fed diets containing monensin or tylosin. J Food Prot 69:2075–2083. [PubMed]
8. Swyers KL, Carlson BA, Nightingale KK, Belk KE, Archibeque SL. 2011. Naturally colonized beef cattle populations fed combinations of yeast culture and an ionophore in finishing diets containing dried distiller's grains with solubles had similar fecal shedding of Escherichia coli O157:H7. J Food Prot 74:912–918. [PubMed][CrossRef]
9. Edrington TS, Callaway TR, Bischoff KM, Genovese KJ, Elder RO, Anderson RC, Nisbet DJ. 2003. Effect of feeding the ionophores monensin and laidlomycin propionate and the antimicrobial bambermycin to sheep experimentally infected with E. coli O157:H7 and Salmonella typhimurium. J Anim Sci 81:553–560. [PubMed]
10. Reinstein S, Fox JT, Shi X, Alam MJ, Renter DG, Nagaraja TG. 2009. Prevalence of Escherichia coli O157:H7 in organically and naturally raised beef cattle. Appl Environ Microbiol 75:5421–5423. [PubMed][CrossRef]
11. LeJeune JT, Christie NP. 2004. Microbiological quality of ground beef from conventionally-reared cattle and “raised without antibiotics” label claims. J Food Prot 67:1433–1437. [PubMed]
12. Renter DG, Checkley SL, Campbell J, King R. 2004. Shiga toxin-producing Escherichia coli in the feces of Alberta feedlot cattle. Can J Vet Res 68:150–153. [PubMed]
13. Renter DG, Sargeant JM, Hungerford LL. 2004. Distribution of Escherichia coli O157:H7 within and among cattle operations in pasture-based agricultural areas. Am J Vet Res 65:1367–1376. [PubMed][CrossRef]
14. Renter DG, Sargeant JM, Oberst RD, Samadpour M. 2003. Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Appl Environ Microbiol 69:542–547. [PubMed][CrossRef]
15. Hancock DD, Besser TE, Kinsel ML, Tarr PI, Rice DH, Paros MG. 1994. The prevalence of Escherichia coli O157.H7 in dairy and beef cattle in Washington State. Epidemiol Infect 113:199–207. [PubMed][CrossRef]
16. Hutchison ML, Walters LD, Avery SM, Munro F, Moore A. 2005. Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures. Appl Environ Microbiol 71:1231–1236. [PubMed][CrossRef]
17. Herriott DE, Hancock DD, Ebel ED, Carpenter LV, Rice DH, Besser TE. 1998. Association of herd management factors with colonization of dairy cattle by Shiga toxin-positive Escherichia coli O157. J Food Prot 61:802–807. [PubMed]
18. Ravva SV, Sarreal CZ, Duffy B, Stanker LH. 2006. Survival of Escherichia coli O157:H7 in wastewater from dairy lagoons. J Appl Microbiol 101:891–902. [PubMed][CrossRef]
19. Kudva IT, Blanch K, Hovde CJ. 1998. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Appl Environ Microbiol 64:3166–3174. [PubMed]
20. Berry ED, Wells JE. 2010. Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. Adv Food Nutri Res 60:67–117. [PubMed][CrossRef]
21. Food Safety and Inspection Service. 2010. Pre-harvest Management Controls and Intervention options for Reducing Escherichia coli O157:H7 Shedding in Cattle. U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC http://www.fsis.usda.gov/shared/PDF/Reducing_Ecoli_Shedding_In_Cattle_0510.pdf?redirecthttp=true.
22. LeJeune JT, Wetzel AN. 2007. Preharvest control of Escherichia coli O157 in cattle. J Anim Sci 85:E73–E80. [PubMed][CrossRef]
23. Jacob ME, Callaway TR, Nagaraja TG. 2009. Dietary interactions and interventions affecting Escherichia coli O157 colonization and shedding in cattle. Foodborne Pathog Dis 6:785–792. [PubMed][CrossRef]
24. Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. 2009. Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Curr Issues Mol Biol 11:67–79. [PubMed]
25. Dean-Nystrom EA, Bosworth BT, Moon HW, O'Brien AD. 1998. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect Immun 66:4560–4563. [PubMed]
26. Cornick NA, Booher SL, Moon HW. 2002. Intimin facilitates colonization by Escherichia coli O157:H7 in adult ruminants. Infect Immun 70:2704–2707. [PubMed][CrossRef]
27. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. 2004. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150:3631–3645. [PubMed][CrossRef]
28. Naylor SW, Roe AJ, Nart P, Spears K, Smith DG, Low JC, Gally DL. 2005. Escherichia coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151:2773–2781. [PubMed][CrossRef]
29. Stevens MP, Roe AJ, Vlisidou I, van Diemen PM, La Ragione RM, Best A, Woodward MJ, Gally DL, Wallis TS. 2004. Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun 72:5402–5411. [PubMed][CrossRef]
30. Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ. 2006. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 74:4685–4693. [PubMed][CrossRef]
31. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. 1998. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30:911–921. [PubMed][CrossRef]
32. Caron E, Crepin VF, Simpson N, Knutton S, Garmendia J, Frankel G. 2006. Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol 9:40–45. [PubMed][CrossRef]
33. Neilands JB. 1995. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. [PubMed][CrossRef]
34. Varela NP, Dick P, Wilson J. 2013. Assessing the existing information on the efficacy of bovine vaccination against Escherichia coli O157:H7—a systematic review and meta-analysis. Zoonoses Public Health 60:253–268. [PubMed][CrossRef]
35. Vogstad AR, Moxley RA, Erickson GE, Klopfenstein TJ, Smith DR. 2013. Assessment of heterogeneity of efficacy of a three-dose regimen of a type III secreted protein vaccine for reducing STEC O157 in feces of feedlot cattle. Foodborne Pathog Dis 10:678–683. [PubMed][CrossRef]
36. Vogstad AR, Moxley RA, Erickson GE, Klopfenstein TJ, Smith DR. 2013. Stochastic simulation model comparing distributions of STEC O157 faecal shedding prevalence between cattle vaccinated with type Iii secreted protein vaccines and non-vaccinated cattle. Zoonoses Public Health 61:283–289. [PubMed][CrossRef]
37. Snedeker KG, Campbell M, Sargeant JM. 2012. A systematic review of vaccinations to reduce the shedding of Escherichia coli O157 in the faeces of domestic ruminants. Zoonoses Public Health 59:126–138. [PubMed][CrossRef]
38. Arthur TM, Bosilevac JM, Brichta-Harhay DM, Guerini MN, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2007. Transportation and lairage environment effects on prevalence, numbers, and diversity of Escherichia coli O157:H7 on hides and carcasses of beef cattle at processing. J Food Prot 70:280–286. [PubMed]
39. Jordan D, McEwen SA, Lammerding AM, McNab WB, Wilson JB. 1999. A simulation model for studying the role of pre-slaughter factors on the exposure of beef carcasses to human microbial hazards. Prev Vet Med 41:37–54. [PubMed][CrossRef]
40. Matthews L, Reeve R, Gally DL, Low JC, Woolhouse ME, McAteer SP, Locking ME, Chase-Topping ME, Haydon DT, Allison LJ, Hanson MF, Gunn GJ, Reid SW. 2013. Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proc Natl Acad Sci U S A 110:16265–16270. [PubMed][CrossRef]
41. Withee J, Williams M, Disney T, Schlosser W, Bauer N, Ebel E. 2009. Streamlined analysis for evaluating the use of preharvest interventions intended to prevent Escherichia coli O157:H7 illness in humans. Foodborne Pathog Dis 6:817–825. [PubMed][CrossRef]
42. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5:607–625. [PubMed][CrossRef]
43. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15. [PubMed][CrossRef]
44. Torres AG, Kanack KJ, Tutt CB, Popov V, Kaper JB. 2004. Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett 238:333–344. [PubMed]
45. Lloyd SJ, Ritchie JM, Torres AG. 2012. Fimbriation and curliation in Escherichia coli O157:H7: a paradigm of intestinal and environmental colonization. Gut Microbes 3:272–276. [PubMed][CrossRef]
46. Mahajan A, Currie CG, Mackie S, Tree J, McAteer S, McKendrick I, McNeilly TN, Roe A, La Ragione RM, Woodward MJ, Gally DL, Smith DG. 2009. An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium. Cell Microbiol 11:121–137. [PubMed][CrossRef]
47. Erdem AL, Avelino F, Xicohtencatl-Cortes J, Giron JA. 2007. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189:7426–7435. [PubMed][CrossRef]
48. McNeilly TN, Naylor SW, Mahajan A, Mitchell MC, McAteer S, Deane D, Smith DG, Low JC, Gally DL, Huntley JF. 2008. Escherichia coli O157:H7 colonization in cattle following systemic and mu cosal immunization with purified H7 flagellin. Infect Immun 76:2594–2602. [PubMed][CrossRef]
49. Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Koohmaraie M. 2003. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot 66:1978–1986. [PubMed]
50. Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. 2002. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473. [PubMed][CrossRef]
51. Armstrong GL, Hollingsworth J, Morris JG, Jr. 1996. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev 18:29–51. [PubMed][CrossRef]
52. Sargeant JM, Amezcua MR, Rajic A, Waddell L. 2007. Pre-harvest interventions to reduce the shedding of E. coli O157 in the faeces of weaned domestic ruminants: a systematic review. Zoonoses Public Health 54:260–277. [PubMed][CrossRef]
53. Lim JY, Li J, Sheng H, Besser TE, Potter K, Hovde CJ. 2007. Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle. Appl Environ Microbiol 73:1380–1382. [PubMed][CrossRef]
54. Jacob ME, Renter DG, Nagaraja TG. 2010. Animal- and truckload-level associations between Escherichia coli O157:H7 in feces and on hides at harvest and contamination of preevisceration beef carcasses. J Food Prot 73:1030–1037. [PubMed]
55. Hancock DD, Besser TE, Rice DH, Herriott DE, Tarr PI. 1997. A longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiol Infect 118:193–195. [PubMed][CrossRef]
56. Hancock DD, Rice DH, Thomas LA, Dargatz DA, Besser TE. 1997. Epidemiology of Escherichia coli O157:H7 in feedlot cattle. J. Food Protect 60:462–465.
57. LeJeune JT, Besser TE, Rice DH, Berg JL, Stilborn RP, Hancock DD. 2004. Longitudinal study of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: predominance and persistence of specific clonal types despite massive cattle population turnover. Appl Environ Microbiol 70:377–384. [PubMed][CrossRef]
58. Hovde CJ, Sheng H, Baker K, Deobald C, Davis MA, Minnich SA, Besser TE. 2012. Experimental evaluation of the basis of seasonal vbariation in bovine shedding of STEC O157, abstr P206. 8th International Symposium on Shiga Toxin-Producing Escherichia coli Infections, Amsterdam, The Netherlands.
59. Davis MA, Cloud-Hansen KA, Carpenter J, Hovde CJ. 2005. Escherichia coli O157:H7 in environments of culture-positive cattle. Appl Environ Microbiol 71:6816–6822. [PubMed][CrossRef]
60. Van Donkersgoed J, Berg J, Potter A, Hancock D, Besser T, Rice D, LeJeune J, Klashinsky S. 2001. Environmental sources and transmission of Escherichia coli O157 in feedlot cattle. Can Vet J 42:714–720. [PubMed]
61. LeJeune JT, Besser TE, Hancock DD. 2001. Cattle water troughs as reservoirs of Escherichia coli O157. Appl Environ Microbiol 67:3053–3057. [PubMed][CrossRef]
62. Gautam R, Bani-Yaghoub M, Neill WH, Dopfer D, Kaspar C, Ivanek R. 2011. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd. Prev Vet Med 102:10–21. [PubMed][CrossRef]
63. LeJeune JT, Besser TE, Merrill NL, Rice DH, Hancock DD. 2001. Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J Dairy Sci 84:1856–1862. [PubMed][CrossRef]
64. Steinberg KM, Levin BR. 2007. Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc Biol Sci 274:1921–1929. [PubMed][CrossRef]
65. Lainhart W, Stolfa G, Koudelka GB. 2009. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol 191:5116–5122. [PubMed][CrossRef]
66. Ravva SV, Sarreal CZ, Mandrell RE. 2010. Identification of protozoa in dairy lagoon wastewater that consume Escherichia coli O157:H7 preferentially. PLoS One 5:e15671. [PubMed][CrossRef]
67. Steinert M, Birkness K, White E, Fields B, Quinn F. 1998. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol 64:2256–2261. [PubMed]
68. Kilvington S, Price J. 1990. Survival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. J Appl Bacteriol 68:519–525. [PubMed][CrossRef]
69. Pushkareva VI, Ermolaeva SA. 2010. Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. BMC Microbiol 10:26. [PubMed][CrossRef]
70. El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M, Moore E, Rasley A. 2009. Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 75:7488–7500. [PubMed][CrossRef]
71. Kenney SJ, Anderson GL, Williams PL, Millner PD, Beuchat LR. 2005. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes. Int J Food Microbiol 101:227–236. [PubMed][CrossRef]
72. Gibbs DS, Anderson GL, Beuchat LR, Carta LK, Williams PL. 2005. Potential role of Diploscapter sp. strain LKC25, a bacterivorous nematode from soil, as a vector of food-borne pathogenic bacteria to preharvest fruits and vegetables. Appl Environ Microbiol 71:2433–2437. [PubMed][CrossRef]
73. Smith T. 1908. The housefly as an agent in the dissemination of infectious disease. Am J Public Hygiene 18:312–324. [PubMed]
74. West LS. 1951. The Housefly, Its Natural History, Medical Importance, and Control. Comstock Pub Co, Ithaca, NY.
75. DeBartolo A. 1986. Buzz off! the housefly has made a pest of himself for 25 million years. Chicago Tribune. http://articles.chicagotribune.com/1986-06-05/features/8602090713_1_maggots-labor-day-picnic-flies
76. Alam MJ, Zurek L. 2004. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl Environ Microbiol 70:7578–7580. [PubMed]
77. Wada A. 1997. [Molecular analysis of enterohemorrhagic Escherichia coli O157:H7 isolates in Japan 1996 using pulsed-field gel electrophoresis]. Nippon Rinsho 55:665–670. (In Japanese.) [PubMed]
78. Kobayashi M, Sasaki T, Saito N, Tamura K, Suzuki K, Watanabe H, Agui N. 1999. Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. Am J Trop Med Hyg 61:625–629. [PubMed]
79. LeJeune JT, Homan J, Linz G, Pearl DL. 2008. Role of the European starling in the transmission of E. coli O157 on dairy farms, p 31–34. In Timm RM, Madon MB (ed), Proceedings of the 23rd Vertebrate Pest Conference, University of California, Davis, CA.
80. Stavric S, Buchanan B, Gleeson TM. 1993. Intestinal colonization of young chicks with Escherichia coli O157:H7 and other verotoxin-producing serotypes. J Appl Bacteriol 74:557–563. [PubMed]
81. Best A, Clifford D, Crudgington B, Cooley WA, Nunez A, Carter B, Weyer U, Woodward MJ, La Ragione RM. 2009. Intermittent Escherichia coli O157:H7 colonisation at the terminal rectum mucosa of conventionally-reared lambs. Vet Res 40:9. [PubMed][CrossRef]
82. Keene WE, Sazie E, Kok J, Rice DH, Hancock DD, Balan VK, Zhao T, Doyle MP. 1997. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 277:1229–1231. [PubMed][CrossRef]
83. Rabatsky-Ehr T, Dingman D, Marcus R, Howard R, Kinney A, Mshar P. 2002. Deer meat as the source for a sporadic case of Escherichia coli O157:H7 infection, Connecticut. Emerg Infect Dis 8:525–527. [PubMed][CrossRef]
84. Chapman PA, Siddons CA, Gerdan Malo AT, Harkin MA. 1997. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol Infect 119:245–250. [PubMed][CrossRef]
85. Booher SL, Cornick NA, Moon HW. 2002. Persistence of Escherichia coli O157:H7 in experimentally infected swine. Vet Microbiol 89:69–81. [CrossRef]
86. Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, Farrar JA, Lau DK, O'Connell J, Millington A, Asmundson RV, Atwill ER, Mandrell RE. 2007. Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis 13:1908–1911. [PubMed][CrossRef]
87. Levine P, Rose B, Green S, Ransom G, Hill W. 2001. Pathogen testing of ready-to-eat meat and poultry products collected at federally inspected establishments in the United States, 1990 to 1999. J Food Prot 64:1188–1193. [PubMed]
88. Tutenel AV, Pierard D, Van Hoof J, Cornelis M, De Zutter L. 2003. Isolation and molecular characterization of Escherichia coli O157 isolated from cattle, pigs and chickens at slaughter. Int J Food Microbiol 84:63–69. [PubMed][CrossRef]
89. Whittam TS, Wolfe ML, Wachsmuth IK, Orskov F, Orskov I, Wilson RA. 1993. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629. [PubMed]
90. Feng P, Lampel KA, Karch H, Whittam TS. 1998. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis 177:1750–1753. [PubMed][CrossRef]
91. Kim J, Nietfeldt J, Benson AK. 1999. Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. Proc Natl Acad Sci USA 96:13288–13293. [PubMed][CrossRef]
92. Kim J, Nietfeldt J, Ju J, Wise J, Fegan N, Desmarchelier P, Benson AK. 2001. Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, beta-glucuronidase-negative enterohemorrhagic Escherichia coli O157. J Bacteriol 183:6885–6897. [PubMed][CrossRef]
93. Ohnishi M, Terajima J, Kurokawa K, Nakayama K, Murata T, Tamura K, Ogura Y, Watanabe H, Hayashi T. 2002. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci USA 99:17043–17048. [PubMed][CrossRef]
94. Kudva IT, Evans PS, Perna NT, Barrett TJ, DeCastro GJ, Ausubel FM, Blattner FR, Calderwood SB. 2002. Polymorphic amplified typing sequences provide a novel approach to Escherichia coli O157:H7 strain typing. J Clin Microbiol 40:1152–1159. [PubMed][CrossRef]
95. Shaikh N, Tarr PI. 2003. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol 185:3596–3605. [CrossRef]
96. Yang Z, Kovar J, Kim J, Nietfeldt J, Smith DR, Moxley RA, Olson ME, Fey PD, Benson AK. 2004. Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol 70:6846–6854. [PubMed][CrossRef]
97. Wick LM, Qi W, Lacher DW, Whittam TS. 2005. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol 187:1783–1791. [PubMed][CrossRef]
98. Zhang Y, Laing C, Steele M, Ziebell K, Johnson R, Benson AK, Taboada E, Gannon VP. 2007. Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8:121. [PubMed][CrossRef]
99. Kotewicz ML, Mammel MK, LeClerc JE, Cebula TA. 2008. Optical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak. Microbiology 154:3518–3528. [PubMed][CrossRef]
100. Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mladonicky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D, Whittam TS. 2008. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA 105:4868–4873. [PubMed][CrossRef]
101. Bono JL, Smith TP, Keen JE, Harhay GP, McDaneld TG, Mandrell RE, Jung WK, Besser TE, Gerner-Smidt P, Bielaszewska M, Karch H, Clawson ML. 2012. Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans. Mol Biol Evol 29:2047–2062. [PubMed][CrossRef]
102. Karama M, Gyles CL. 2010. Methods for genotyping verotoxin-producing Escherichia coli. Zoonoses Public Health 57:447–462. [PubMed][CrossRef]
103. Chapman PA, Siddons CA. 1994. A comparison of strains of Escherichia coli O157 from humans and cattle in Sheffield, United Kingdom. J Infect Dis 170:251–253. [PubMed][CrossRef]
104. Besser TE, Shaikh N, Holt NJ, Tarr PI, Konkel ME, Malik-Kale P, Walsh CW, Whittam TS, Bono JL. 2007. Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl Environ Microbiol 73:671–679. [PubMed][CrossRef]
105. Lejeune JT, Abedon ST, Takemura K, Christie NP, Sreevatsan S. 2004. Human Escherichia coli O157:H7 genetic marker in isolates of bovine origin. Emerg Infect Dis 10:1482–1485. [PubMed][CrossRef]
106. Bono JL, Keen JE, Clawson ML, Durso LM, Heaton MP, Laegreid WW. 2007. Association of Escherichia coli O157:H7 tir polymorphisms with human infection. BMC Infect Dis 7:98. [PubMed][CrossRef]
107. Clawson ML, Keen JE, Smith TP, Durso LM, McDaneld TG, Mandrell RE, Davis MA, Bono JL. 2009. Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol 10:R56. [PubMed][CrossRef]
108. Whitworth J, Zhang Y, Bono J, Pleydell E, French N, Besser T. 2010. Diverse genetic markers concordantly identify bovine origin Escherichia coli O157 genotypes underrepresented in human disease. Appl Environ Microbiol 76:361–365. [PubMed][CrossRef]
109. Laing CR, Buchanan C, Taboada EN, Zhang Y, Karmali MA, Thomas JE, Gannon VP. 2009. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genomics 10:287. [PubMed][CrossRef]
110. Whitworth JH, Fegan N, Keller J, Gobius KS, Bono JL, Call DR, Hancock DD, Besser TE. 2008. International comparison of clinical, bovine, and environmental Escherichia coli O157 isolates on the basis of Shiga toxin-encoding bacteriophage insertion site genotypes. Appl Environ Microbiol 74:7447–7450. [PubMed][CrossRef]
111. Leotta GA, Miliwebsky ES, Chinen I, Espinosa EM, Azzopardi K, Tennant SM, Robins-Browne RM, Rivas M. 2008. Characterisation of Shiga toxin-producing Escherichia coli O157 strains isolated from humans in Argentina, Australia and New Zealand. BMC Microbiol 8:46. [PubMed][CrossRef]
112. Mellor GE, Sim EM, Barlow RS, D'Astek BA, Galli L, Chinen I, Rivas M, Gobius KS. 2012. Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 78:4724–4731. [PubMed][CrossRef]
113. Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Jennison AV, Doyle CJ, Chandry PS, Gobius KS, Fegan N. 2013. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol 79:5050–5058. [PubMed][CrossRef]
114. Franz E, van Hoek AH, van der Wal FJ, de Boer A, Zwartkruis-Nahuis A, van der Zwaluw K, Aarts HJ, Heuvelink AE. 2012. Genetic features differentiating bovine, food, and human isolates of shiga toxin-producing Escherichia coli O157 in The Netherlands. J Clin Microbiol 50:772–780. [PubMed][CrossRef]
115. Lee K, French NP, Hara-Kudo Y, Iyoda S, Kobayashi H, Sugita-Konishi Y, Tsubone H, Kumagai S. 2011. Multivariate analyses revealed distinctive features differentiating human and cattle isolates of Shiga toxin-producing Escherichia coli O157 in Japan. J Clin Microbiol 49:1495–1500. [PubMed][CrossRef]
116. Vanaja SK, Springman AC, Besser TE, Whittam TS, Manning SD. 2010. Differential expression of virulence and stress fitness genes between Escherichia coli O157:H7 strains with clinical or bovine-biased genotypes. Appl Environ Microbiol 76:60–68. [PubMed][CrossRef]
117. Lee K, French NP, Jones G, Hara-Kudo Y, Iyoda S, Kobayashi H, Sugita-Konishi Y, Tsubone H, Kumagai S. 2012. Variation in stress resistance patterns among stx genotypes and genetic lineages of shiga toxin-producing Escherichia coli O157. Appl Environ Microbiol 78:3361–3368. [PubMed][CrossRef]
microbiolspec.EHEC-0021-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0021-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0021-2013
2014-09-19
2017-11-22

Abstract:

Preharvest food safety refers to the concept of reducing the rates of contamination of unprocessed foods with food-borne disease pathogens in order to reduce human exposure and disease. This article addresses the search for effective preharvest food safety practices for application to live cattle to reduce both contamination of foods of bovine origin and environmental contamination resulting from cattle. Although this research has resulted in several practices that significantly decrease contamination by O157, the effects are limited in magnitude and unlikely to affect the incidence of human disease without much wider application and considerably higher efficacy than is presently apparent. Infection of cattle with O157 is transient and seasonally variable, likely resulting from a complex web of exposures. It is likely that better identification of the true maintenance reservoir of this agent and related Shiga toxin-producing is required to develop more effective control measures for these important food- and waterborne disease agents.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/EHEC-0021-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0021-2013&mimeType=html&fmt=ahah

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error