1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic in the Agri-Food Chain

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    150.39 Kb
  • PDF
    287.42 Kb
  • XML
    163.98 Kb
  • Authors: Geraldine Duffy1, Evonne McCabe2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; 2: Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; 3: University of Texas Southwestern Medical Center, Dallas, TX; 4: University of Idaho, Moscow, ID
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0023-2013
  • Received 06 December 2013 Accepted 23 January 2014 Published 26 September 2014
  • Geraldine Duffy, Geraldine.Duffy@Teagasc.ie
image of Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic <span class="jp-italic">Escherichia coli</span> in the Agri-Food Chain
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic in the Agri-Food Chain, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0023-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/EHEC-0023-2013-2.gif
  • Abstract:

    Verocytoxigenic (VTEC) comprises many diverse serogroups, but seven serogroups, O157, O26, O103, O145, O111, O21, and O45, have been most commonly linked to severe human infections, though illness has also been reported from a range of other VTEC serogroups. This poses challenges in assessing the risk to humans from the diverse range of VTEC strains that may be recovered from animals, the environment, or food. For routine assessment of risk posed by VTEC recovered from the agri-food chain, the concept of seropathotype can be used to rank the human risk potential from a particular VTEC serogroup on the basis of both serotype (top seven serogroups) and the presence of particular virulence genes ( in combination with , or plus ). But for other VTEC serogroups or virulence gene combinations, it is not currently possible to fully assess the risk posed. VTEC is shed in animal feces and can persist in the farm environment for extended periods ranging from several weeks to many months, posing an ongoing reservoir of contamination for grazing animals, water courses, and fresh produce and for people using farmland for recreational purposes. Appropriate handling and treatment of stored animal waste (slurries and manures) will reduce risk from VTEC in the farm environment. Foods of animal origin such as milk and dairy products and meat may be contaminated with VTEC during production and processing, and the pathogen may survive or grow during processing operations, highlighting the need for well-designed and validated Hazard Analysis Critical Control Point management systems. This article focuses on a veterinary public health approach to managing VTEC, highlighting the various routes in the agri-food chain for transmission of human pathogenic VTEC and general approaches to managing the risk.

  • Citation: Duffy G, McCabe E. 2014. Veterinary Public Health Approach to Managing Pathogenic Verocytotoxigenic in the Agri-Food Chain. Microbiol Spectrum 2(5):EHEC-0023-2013. doi:10.1128/microbiolspec.EHEC-0023-2013.

References

1. Fairbrother JM, Nadeau E. 2006. Escherichia coli: on-farm contamination of animals. Rev Sci Tech 25:555–569. [PubMed]
2. Adak GK, Long SM, O'Brien SJ. 2002. Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut 51:832–841. [PubMed][CrossRef]
3. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685. [PubMed][CrossRef]
4. Tarr PI, Gordon CA, Chandler WL. 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073–1086. [PubMed]
5. Centers for Disease Control and Prevention. 2012. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2011 (Final Report). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA.
6. European Food Safety Authority, European Centre for Disease Prevention and Control. 2013.The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2011. EFSA Journal 11(4):3129.
7. Kaper JB. 1998. Enterohemorrhagic Escherichia coli. Curr Opin Microbiol 1:103–108. [PubMed][CrossRef]
8. Law D. 2000. Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol 88:729–745. [PubMed][CrossRef]
9. Paton AW, Paton JC. 1999. Direct detection of Shiga toxigenic Escherichia coli strains belonging to serogroups O111, O157, and O113 by multiplex PCR. J Clin Microbiol 37:3362–3365. [PubMed]
10. Karch H, Denamur E, Dobrindt U, Finlay BB, Hengge R, Johannes L, Ron EZ, Tonjum T, Sansonetti PJ, Vicente M. 2012. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med 4:841–848. [PubMed][CrossRef]
11. Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A, Peters G, Karch H. 2011. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676. [PubMed][CrossRef]
12. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK. 2011. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717. [PubMed][CrossRef]
13. Beutin L, Martin A. 2012. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O104:H4 infection in Germany causes a paradigm shift with regard to human pathogenicity of STEC strains. J Food Prot 75:408–418. [PubMed][CrossRef]
14. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, Enberg J, Petersen AM, Olesen B, Gerner-Smidt P, Molbak K. 2004. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 10:842–847. [PubMed][CrossRef]
15. European Food Safety Authority, EFSA Panel on Biological Hazards (BIOHAZ). 2013. Scientific Opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment. EFSA Journal 11(4):3138.
16. Bettelheim KA. 2003. Non-O157 verotoxin-producing Escherichia coli: a problem, paradox, and paradigm. Exp Biol Med (Maywood) 228:333–344. [PubMed]
17. Beutin L, Geier D, Steinruck H, Zimmermann S, Scheutz F. 1993. Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. J Clin Microbiol 31:2483–2488. [PubMed]
18. Blanco M, Blanco JE, Mora A, Dahbi G, Alonso MP, Gonzalez EA, Bernardez MI, Blanco J. 2004. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J Clin Microbiol 42:645–651. [PubMed][CrossRef]
19. Sachdeva S, Ahmad G, Malhotra P, Mukherjee P, Chauhan VS. 2004. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kiloDalton fragments expressed in Escherichia coli. Infect Immun 72:5775–5782. [PubMed][CrossRef]
20. Scaife HR, Cowan D, Finney J, Kinghorn-Perry SF, Crook B. 2006. Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Vet Rec 159:175–178. [PubMed][CrossRef]
21. Caprioli A, Morabito S, Brugere H, Oswald E. 2005. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res 36:289–311. [PubMed][CrossRef]
22. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ, Pearce MC, McKendrick IJ, Smith DG, Gally DL. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect Immun 71:1505–1512. [PubMed][CrossRef]
23. Arthur TM, Brichta-Harhay DM, Bosilevac JM, Kalchayanand N, Shackelford SD, Wheeler TL, Koohmaraie M. 2010. Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. Meat Sci 86:32–37. [PubMed][CrossRef]
24. Hussein HS, Bollinger LM. 2005. Prevalence of Shiga toxin-producing Escherichia coli in beef. Meat Sci 71:676–689. [PubMed][CrossRef]
25. Hussein HS, Bollinger LM. 2005. Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J Food Prot 68:2224–2241. [PubMed]
26. Naylor SW, Roe AJ, Nart P, Spears K, Smith DG, Low JC, Gally DL. 2005. Escherichia coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151:2773–2781. [PubMed][CrossRef]
27. Rhoades JR, Duffy G, Koutsoumanis K. 2009. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Food Microbiol 26:357–376. [PubMed][CrossRef]
28. Laegreid WW, Elder RO, Keen JE. 1999. Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiol Infect 123:291–298. [PubMed][CrossRef]
29. Karmali MA, Gannon V, Sargeant JM. 2010. Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370. [PubMed][CrossRef]
30. Blanco J, Blanco M, Blanco JE, Mora A, Gonzalez EA, Bernardez MI, Alonso MP, Coira A, Rodriguez A, Rey J, Alonso JM, Usera MA. 2003. Verotoxin-producing Escherichia coli in Spain: prevalence, serotypes, and virulence genes of O157:H7 and non-O157 VTEC in ruminants, raw beef products, and humans. Exp Biol Med (Maywood) 228:345–351. [PubMed]
31. Monaghan A, Byrne B, Fanning S, Sweeney T, McDowell D, Bolton DJ. 2011. Serotypes and virulence profiles of non-O157 Shiga toxin-producing Escherichia coli isolates from bovine farms. Appl Environ Microbiol 77:8662–8668. [PubMed][CrossRef]
32. Naylor SW, Gally DL, Low JC. 2005. Enterohaemorrhagic E. coli in veterinary medicine. Int J Med Microbiol 295:419–441. [PubMed][CrossRef]
33. Hancock DD, Besser TE, Rice DH, Ebel ED, Herriott DE, Carpenter LV. 1998. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern USA. Prev Vet Med 35:11–19. [PubMed][CrossRef]
34. Ogden ID, MacRae M, Strachan NJ. 2004. Is the prevalence and shedding concentrations of E. coli O157 in beef cattle in Scotland seasonal? FEMS Microbiol Lett 233:297–300. [PubMed][CrossRef]
35. Matthews L, McKendrick IJ, Ternent H, Gunn GJ, Synge B, Woolhouse ME. 2006. Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiol Infect 134:131–142. [PubMed][CrossRef]
36. Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JA, Chase-Topping M, Naylor SW, Shaw DJ, Reid SW, Gunn GJ, Woolhouse ME. 2006. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc Natl Acad Sci USA 103:547–552. [PubMed][CrossRef]
37. Duffy G, Cummins E, Nally P, OB S, Butler F. 2006. A review of quantitative microbial risk assessment in the management of Escherichia coli O157:H7 on beef. Meat Sci 74:76–88. [PubMed][CrossRef]
38. Thomas KM, McCann MS, Collery MM, Logan A, Whyte P, McDowell DA, Duffy G. 2012. Tracking verocytotoxigenic Escherichia coli O157, O26, O111, O103 and O145 in Irish cattle. Int J Food Microbiol 153:288–296. [PubMed][CrossRef]
39. Omisakin F, MacRae M, Ogden ID, Strachan NJ. 2003. Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Appl Environ Microbiol 69:2444–2447. [PubMed][CrossRef]
40. Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW, Currie C, Smith DG, Allison L, Gally DL. 2005. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl Environ Microbiol 71:93–97. [PubMed][CrossRef]
41. LeJeune JT, Besser TE, Hancock DD. 2001. Cattle water troughs as reservoirs of Escherichia coli O157. Appl Environ Microbiol 67:3053–3057. [PubMed][CrossRef]
42. LeJeune JT, Besser TE, Merrill NL, Rice DH, Hancock DD. 2001. Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J Dairy Sci 84:1856–1862. [PubMed][CrossRef]
43. Lejeune JT, Besser TE, Rice DH, Hancock DD. 2001. Methods for the isolation of water-borne Escherichia coli O157. Lett Appl Microbiol 32:316–320. [PubMed][CrossRef]
44. Sargeant JM, Sanderson MW, Smith RA, Griffin DD. 2003. Escherichia coli O157 in feedlot cattle feces and water in four major feeder-cattle states in the USA. Prev Vet Med 61:127–135. [PubMed][CrossRef]
45. Carroll AM, Gibson A, McNamara EB. 2005. Laboratory-based surveillance of human verocytotoxigenic Escherichia coli infection in the Republic of Ireland, 2002–2004. J Med Microbiol 54:1163–1169. [PubMed][CrossRef]
46. Mannix M, O'Connell N, McNamara E, Fitzgerald A, Prendiville T, Norris T, Greally T, Fitzgerald R, Whyte D, Barron D, Monaghan R, Whelan E, Carroll A, Curtin A, Collins C, Quinn J, O'Dea F, O'Riordan M, Buckley J, McCarthy J, Mc Keown P. 2005. Large E. coli O157 outbreak in Ireland, October-November 2005. Euro Surveill 10:E051222 051223.
47. Joris MA, Pierard D, De Zutter L. 2011. Occurrence and virulence patterns of E. coli O26, O103, O111 and O145 in slaughter cattle. Vet Microbiol 151:418–421. [PubMed][CrossRef]
48. Franz E, van Hoek AH, van der Wal FJ, de Boer A, Zwartkruis-Nahuis A, van der Zwaluw K, Aarts HJ, Heuvelink AE. 2012. Genetic features differentiating bovine, food, and human isolates of shiga toxin-producing Escherichia coli O157 in The Netherlands. J Clin Microbiol 50:772–780. [PubMed][CrossRef]
49. Blanco M, Blanco JE, Mora A, Rey J, Alonso JM, Hermoso M, Hermoso J, Alonso MP, Dahbi G, Gonzalez EA, Bernardez MI, Blanco J. 2003. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from healthy sheep in Spain. J Clin Microbiol 41:1351–1356. [PubMed][CrossRef]
50. Rey J, Blanco JE, Blanco M, Mora A, Dahbi G, Alonso JM, Hermoso M, Hermoso J, Alonso MP, Usera MA, Gonzalez EA, Bernardez MI, Blanco J. 2003. Serotypes, phage types and virulence genes of shiga-producing Escherichia coli isolated from sheep in Spain. Vet Microbiol 94:47–56. [PubMed][CrossRef]
51. Soderlund R, Hedenstrom I, Nilsson A, Eriksson E, Aspan A. 2012. Genetically similar strains of Escherichia coli O157:H7 isolated from sheep, cattle and human patients. BMC Vet Res 8:200. [PubMed][CrossRef]
52. Sekse C, Sunde M, Lindstedt BA, Hopp P, Bruheim T, Cudjoe KS, Kvitle B, Urdahl AM. 2011. Potentially human-pathogenic Escherichia coli O26 in Norwegian sheep flocks. Appl Environ Microbiol 77:4949–4958. [PubMed][CrossRef]
53. Sanchez S, Martinez R, Garcia A, Blanco J, Blanco JE, Blanco M, Dahbi G, Lopez C, Mora A, Rey J, Alonso JM. 2009. Longitudinal study of Shiga toxin-producing Escherichia coli shedding in sheep feces: persistence of specific clones in sheep flocks. Appl Environ Microbiol 75:1769–1773. [PubMed][CrossRef]
54. Franco A, Lovari S, Cordaro G, Di Matteo P, Sorbara L, Iurescia M, Donati V, Buccella C, Battisti A. 2009. Prevalence and concentration of verotoxigenic Escherichia coli O157:H7 in adult sheep at slaughter from Italy. Zoonoses Public Health 56:215–220. [PubMed][CrossRef]
55. Brandal LT, Sekse C, Lindstedt BA, Sunde M, Lobersli I, Urdahl AM, Kapperud G. 2012. Norwegian sheep are an important reservoir for human-pathogenic Escherichia coli O26:H11. Appl Environ Microbiol 78:4083–4091. [PubMed][CrossRef]
56. Evans J, Knight H, McKendrick IJ, Stevenson H, Varo Barbudo A, Gunn GJ, Low JC. 2011. Prevalence of Escherichia coli O157:H7 and serogroups O26, O103, O111 and O145 in sheep presented for slaughter in Scotland. J Med Microbiol 60:653–660. [PubMed][CrossRef]
57. Ogden ID, MacRae M, Strachan NJ. 2005. Concentration and prevalence of Escherichia coli O157 in sheep faeces at pasture in Scotland. J Appl Microbiol 98:646–651. [PubMed][CrossRef]
58. Sekse C, Sunde M, Hopp P, Bruheim T, Cudjoe KS, Kvitle B, Urdahl AM. 2013. Occurrence of potentially human-pathogenic Escherichia coli O103 in Norwegian sheep. Appl Environ Microbiol 79:7502–7509. [PubMed][CrossRef]
59. Schimmer B, Nygard K, Eriksen HM, Lassen J, Lindstedt BA, Brandal LT, Kapperud G, Aavitsland P. 2008. Outbreak of haemolytic uraemic syndrome in Norway caused by stx2-positive Escherichia coli O103:H25 traced to cured mutton sausages. BMC Infect Dis 8:41. [PubMed][CrossRef]
60. Lenahan M, O'Brien S, Kinsella K, Sweeney T, Sheridan JJ. 2007. Prevalence and molecular characterization of Escherichia coli O157:H7 on Irish lamb carcasses, fleece and in faeces samples. J Appl Microbiol 103:2401–2409. [PubMed][CrossRef]
61. Thomas KM, McCann MS, Collery MM, Moschonas G, Whyte P, McDowell DA, Duffy G. 2013. Transfer of verocytotoxigenic Escherichia coli O157, O26, O111, O103 and O145 from fleece to carcass during sheep slaughter in an Irish export abattoir. Food Microbiol 34:38–45. [PubMed][CrossRef]
62. Feder I, Wallace FM, Gray JT, Fratamico P, Fedorka-Cray PJ, Pearce RA, Call JE, Perrine R, Luchansky JB. 2003. Isolation of Escherichia coli O157:H7 from intact colon fecal samples of swine. Emerg Infect Dis 9:380–383. [PubMed][CrossRef]
63. Chapman PA, Cerdan Malo AT, Ellin M, Ashton R, Harkin. 2001. Escherichia coli O157 in cattle and sheep at slaughter, on beef and lamb carcasses and in raw beef and lamb products in South Yorkshire, UK. Int J Food Microbiol 64:139–150. [PubMed][CrossRef]
64. Callaway TR, Anderson RC, Tellez G, Rosario C, Nava GM, Eslava C, Blanco MA, Quiroz MA, Olguin A, Herradora M, Edrington TS, Genovese KJ, Harvey RB, Nisbet DJ. 2004. Prevalence of Escherichia coli O157 in cattle and swine in central Mexico. J Food Prot 67:2274–2276. [PubMed]
65. Chapman PA, Siddons CA, Gerdan Malo AT, Harkin MA. 1997. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol Infect 119:245–250. [PubMed][CrossRef]
66. Eriksson E, Nerbrink E, Borch E, Aspan A, Gunnarsson A. 2003. Verocytotoxin-producing Escherichia coli O157:H7 in the Swedish pig population. Vet Rec 152:712–717. [PubMed][CrossRef]
67. Heuvelink AE, Zwartkruis-Nahuis JT, van den Biggelaar FL, van Leeuwen WJ, de Boer E. 1999. Isolation and characterization of verocytotoxin-producing Escherichia coli O157 from slaughter pigs and poultry. Int J Food Microbiol 52:67–75. [PubMed][CrossRef]
68. Lenahan M, O'Brien SB, Byrne C, Ryan M, Kennedy CA, McNamara EB, Fanning S, Sheridan JJ, Sweeney T. 2009. Molecular characterization of Irish E. coli O157:H7 isolates of human, bovine, ovine and porcine origin. J Appl Microbiol 107:1340–1349. [PubMed][CrossRef]
69. Jay MT, Cooley M, Carychao D, Wiscomb GW, Sweitzer RA, Crawford-Miksza L, Farrar JA, Lau DK, O'Connell J, Millington A, Asmundson RV, Atwill ER, Mandrell RE. 2007. Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast. Emerg Infect Dis 13:1908–1911. [PubMed][CrossRef]
70. Williams AP, Avery LM, Killham K, Jones DL. 2005. Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol 98:1075–1083. [PubMed][CrossRef]
71. Bolton DJ, Byrne CM, Sheridan JJ, McDowell DA, Blair IS. 1999. The survival characteristics of a non-toxigenic strain of Escherichia coli O157:H7. J Appl Microbiol 86:407–411. [PubMed][CrossRef]
72. Maule A. 2000. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. Symp Ser Soc Appl Microbiol 71S–78S. [PubMed][CrossRef]
73. McGee P, Bolton DJ, Sheridan JJ, Earley B, Leonard N. 2001. The survival of Escherichia coli O157:H7 in slurry from cattle fed different diets. Lett Appl Microbiol 32:152–155. [PubMed][CrossRef]
74. Semenov AV, van Overbeek L, Termorshuizen AJ, van Bruggen AH. 2011. Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria-Bertani broth, farm-yard manure and slurry. J Environ Manage 92:780–787. [PubMed][CrossRef]
75. Nicholson FA, Groves SJ, Chambers BJ. 2005. Pathogen survival during livestock manure storage and following land application. Bioresour Technol 96:135–143. [PubMed][CrossRef]
76. Hutchison ML, Walters LD, Moore A, Crookes KM, Avery SM. 2004. Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil. Appl Environ Microbiol 70:5111–5118. [PubMed][CrossRef]
77. Avery SM, Moore A, Hutchison ML. 2004. Fate of Escherichia coli originating from livestock faeces deposited directly onto pasture. Lett Appl Microbiol 38:355–359. [PubMed][CrossRef]
78. Fukushima H, Hoshina K, Gomyoda M. 1999. Long-term survival of shiga toxin-producing Escherichia coli O26, O111, and O157 in bovine feces. Appl Environ Microbiol 65:5177–5181. [PubMed]
79. Bolton DJ, Monaghan A, Byrne B, Fanning S, Sweeney T, McDowell DA. 2011. Incidence and survival of non-O157 verocytotoxigenic Escherichia coli in soil. J Appl Microbiol 111:484–490. [PubMed][CrossRef]
80. EC No 853/2004. 2004. Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004, laying down specific hygiene rules for food of animal origin. Official Journal of the European Union L 139 of 30 April 2004.
81. Lyons NA, Smith RP, Rushton J. 2013. Cost-effectiveness of farm interventions for reducing the prevalence of VTEC O157 on UK dairy farms. Epidemiol Infect 141:1905–1919. [PubMed][CrossRef]
82. Ellis-Iversen J, Smith RP, Van Winden S, Paiba GA, Watson E, Snow LC, Cook AJ. 2008. Farm practices to control E. coli O157 in young cattle—a randomised controlled trial. Vet Res 39:3. [PubMed][CrossRef]
83. Lung AJ, Lin CM, Kim JM, Marshall MR, Nordstedt R, Thompson NP, Wei CI. 2001. Destruction of Escherichia coli O157:H7 and Salmonella enteritidis in cow manure composting. J Food Prot 64:1309–1314. [PubMed]
84. Shepherd MW, Jr, Kim J, Jiang X, Doyle MP, Erickson MC. 2011. Evaluation of physical coverings used to control Escherichia coli O157:H7 at the compost heap surface. Appl Environ Microbiol 77:5044–5049. [PubMed][CrossRef]
85. Bujoczek G, Reiners RS, Olaszkiewicz JA. 2001. Abiotic factors affecting inactivation of pathogens in sludge. Water Sci Technol 44:79–84. [PubMed]
86. Locking M, Allison L, Rae L, Pollock K, Hanson M. 2006. VTEC infections and livestock-related exposures in Scotland, 2004. Euro Surveill 11:E060223 060224. [PubMed]
87. Money P, Kelly AF, Gould SW, Denholm-Price J, Threlfall EJ, Fielder MD. 2010. Cattle, weather and water: mapping Escherichia coli O157:H7 infections in humans in England and Scotland. Environ Microbiol 12:2633–2644. [PubMed]
88. Health Protection Surveillance Centre (HPSC). 2005. Report of the HPSC Sub-Committee on Verotoxigenic E. coli. http://www.hpsc.ie/A-Z/Gastroenteric/VTEC/Guidance/ReportoftheHPSCSub-CommitteeonVerotoxigenicEcoli/.
89. O'Sullivan MB, Garvey P, O'Riordan M, Coughlan H, McKeown P, Brennan A, McNamara E. 2008. Increase in VTEC cases in the south of Ireland: link to private wells? Euro Surveill 13.
90. Tanaro JD, Galli L, Lound LH, Leotta GA, Piaggio MC, Carbonari CC, Irino K, Rivas M. 2012. Non-O157:H7 Shiga toxin-producing Escherichia coli in bovine rectums and surface water streams on a beef cattle farm in Argentina. Foodborne Pathog Dis 9:878–884. [PubMed][CrossRef]
91. Department of the Environment and Local Government, Environmental Protection Agency, Geological Survey of Ireland (DELG, EPA, GSI). 1999. Groundwater Protection Schemes Report. GSI, Dublin, Ireland.
92. Food Safety Authority of Ireland. 2010. Report of the Scientific Committee of the Food Safety Authority of Ireland. The Prevention of Verocytotoxigenic Escherichia coli (VTEC) Infection: A Shared Responsibility, 2nd Ed. FSAI, Dublin, Ireland.
93. Wang G, Doyle MP. 1998. Heat shock response enhances acid tolerance of Escherichia coli O157:H7. Lett Appl Microbiol 26:31–34. [PubMed][CrossRef]
94. McGee P, Bolton DJ, Sheridan JJ, Earley B, Kelly G, Leonard N. 2002. Survival of Escherichia coli O157:H7 in farm water: its role as a vector in the transmission of the organism within herds. J Appl Microbiol 93:706–713. [PubMed][CrossRef]
95. Rice EW, Johnson CH, Wild DK, Reasoner DJ. 1992. Survival of Escherichia coli O157:H7 in drinking water associated with a waterborne disease outbreak of hemorrhagic colitis. Lett Appl Microbiol 15:38–40. [CrossRef]
96. Fremaux B, Prigent-Combaret C, Delignette-Muller ML, Mallen B, Dothal M, Gleizal A, Vernozy-Rozand C. 2008. Persistence of Shiga toxin-producing Escherichia coli O26 in various manure-amended soil types. J Appl Microbiol 104:296–304. [PubMed]
97. Scott L, McGee P, Sheridan JJ, Earley B, Leonard N. 2006. A comparison of the survival in feces and water of Escherichia coli O157:H7 grown under laboratory conditions or obtained from cattle feces. J Food Prot 69:6–11. [PubMed]
98. Macdonald LE, Brett J, Kelton D, Majowicz SE, Snedeker K, Sargeant JM. 2011. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J Food Prot 74:1814–1832. [PubMed][CrossRef]
99. Jay-Russell MT. 2010. Raw (unpasteurized) milk: are health-conscious consumers making an unhealthy choice? Clin Infect Dis 51:1418–1419. [PubMed][CrossRef]
100. Denny J, Bhat M, Eckmann K. 2008. Outbreak of Escherichia coli O157:H7 associated with raw milk consumption in the Pacific Northwest. Foodborne Pathog Dis 5:321–328. [PubMed][CrossRef]
101. Guh A, Phan Q, Randall N, Purviance K, Milardo E, Kinney S, Mshar P, Kasacek W, Cartter M. 2010. Outbreak of Escherichia coli O157 associated with raw milk, Connecticut, 2008. Clin Infect Dis 51:1411–1417. [PubMed][CrossRef]
102. Gaulin C, Levac E, Ramsay D, Dion R, Ismail J, Gingras S, Lacroix C. 2012. Escherichia coli O157:H7 outbreak linked to raw milk cheese in Quebec, Canada: use of exact probability calculation and casecase study approaches to foodborne outbreak investigation. J Food Prot 75:812–818. [PubMed][CrossRef]
103. Honish L, Predy G, Hislop N, Chui L, Kowalewska-Grochowska K, Trottier L, Kreplin C, Zazulak I. 2005. An outbreak of E. coli O157:H7 hemorrhagic colitis associated with unpasteurized gouda cheese. Can J Public Health 96:182–184. [PubMed]
104. McCollum JT, Williams NJ, Beam SW, Cosgrove S, Ettestad PJ, Ghosh TS, Kimura AC, Nguyen L, Stroika SG, Vogt RL, Watkins AK, Weiss JR, Williams IT, Cronquist AB. 2012. Multistate outbreak of Escherichia coli O157:H7 infections associated with in-store sampling of an aged raw-milk Gouda cheese, 2010. J Food Prot 75:1759–1765. [PubMed][CrossRef]
105. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. 2005. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11:603–609. [PubMed][CrossRef]
106. Allerberger F, Friedrich AW, Grif K, Dierich MP, Dornbusch HJ, Mache CJ, Nachbaur E, Freilinger M, Rieck P, Wagner M, Caprioli A, Karch H, Zimmerhackl LB. 2003. Hemolytic-uremic syndrome associated with enterohemorrhagic Escherichia coli O26:H infection and consumption of unpasteurized cow's milk. Int J Infect Dis 7:42–45. [PubMed][CrossRef]
107. De Schrijver K, Buvens G, Posse B, Van den Branden D, Oosterlynck O, De Zutter L, Eilers K, Pierard D, Dierick K, Van Damme-Lombaerts R, Lauwers C, Jacobs R. 2008. Outbreak of verocytotoxin-producing E. coli O145 and O26 infections associated with the consumption of ice cream produced at a farm, Belgium, 2007. Euro Surveill 13.
108. Centers for Disease Control and Prevention. 2012. Outbreak of Shiga toxin-producing Escherichia coli O111 infections associated with a correctional facility dairy—Colorado, 2010. Morb Mortal Wkly Rep 61:149–152. [PubMed]
109. Murphy M, Carroll A, Whyte P, O'Mahony M, Anderson W, McNamara E, Fanning S. 2005. Prevalence and characterization of Escherichia coli O26 and O111 in retail minced beef in Ireland. Foodborne Pathog Dis 2:357–360. [PubMed][CrossRef]
110. Murphy M, Buckley JF, Whyte P, O'Mahony M, Anderson W, Wall PG, Fanning S. 2007. Surveillance of dairy production holdings supplying raw milk to the farmhouse cheese sector for Escherichia coli O157, O26 and O111. Zoonoses Public Health 54:358–365. [PubMed][CrossRef]
111. European Food Safety Authority, European Centre for Disease Prevention and Control. 2012. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2010. EFSA Journal 10(3):2597.
112. Schvartzman MS, Maffre A, Tenenhaus-Aziza F, Sanaa M, Butler F, Jordan K. 2011. Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk. Int J Food Microbiol 145 Suppl 1:S31–S38. [PubMed][CrossRef]
113. Peng S, Hoffmann W, Bockelmann W, Hummerjohann J, Stephan R, Hammer P. 2013. Fate of Shiga toxin-producing and generic Escherichia coli during production and ripening of semihard raw milk cheese. J Dairy Sci 96:815–823. [PubMed][CrossRef]
114. Miszczycha SD, Perrin F, Ganet S, Jamet E, Tenenhaus-Aziza F, Montel MC, Thevenot-Sergentet D. 2013. Behavior of different Shiga toxin-producing Escherichia coli serotypes in various experimentally contaminated raw-milk cheeses. Appl Environ Microbiol 79:150–158. [PubMed][CrossRef]
115. Dineen SS, Takeuchi K, Soudah JE, Boor KJ. 1998. Persistence of Escherichia coli O157:H7 in dairy fermentation systems. J Food Prot 61:1602–1608. [PubMed]
116. McIngvale SC, Chen XQ, McKillip JL, Drake MA. 2000. Survival of Escherichia coli O157:H7 in buttermilk as affected by contamination point and storage temperature. J Food Prot 63:441–444. [PubMed]
117. Currie A, MacDonald J, Ellis A, Siushansian J, Chui L, Charlebois M, Peermohamed M, Everett D, Fehr M, Ng LK. 2007. Outbreak of Escherichia coli 0157:H7 infections associated with consumption of beef donair. J Food Prot 70:1483–1488. [PubMed]
118. Ethelberg S, Lisby M, Vestergaard LS, Enemark HL, Olsen KE, Stensvold CR, Nielsen HV, Porsbo LJ, Plesner AM, Molbak K. 2009. A foodborne outbreak of Cryptosporidium hominis infection. Epidemiol Infect 137:348–356. [PubMed][CrossRef]
119. King LA, Mailles A, Mariani-Kurkdjian P, Vernozy-Rozand C, Montet MP, Grimont F, Pihier N, Devalk H, Perret F, Bingen E, Espie E, Vaillant V. 2009. Community-wide outbreak of Escherichia coli O157:H7 associated with consumption of frozen beef burgers. Epidemiol Infect 137:889–896. [PubMed][CrossRef]
120. Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. 2000. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci USA 97:2999–3003. [PubMed][CrossRef]
121. Arthur TM, Bosilevac JM, Nou X, Shackelford SD, Wheeler TL, Kent MP, Jaroni D, Pauling B, Allen DM, Koohmaraie M. 2004. Escherichia coli O157 prevalence and enumeration of aerobic bacteria, Enterobacteriaceae, and Escherichia coli O157 at various steps in commercial beef processing plants. J Food Prot 67:658–665. [PubMed]
122. McGee P, Scott L, Sheridan JJ, Earley B, Leonard N. 2004. Horizontal transmission of Escherichia coli O157:H7 during cattle housing. J Food Prot 67:2651–2656. [PubMed]
123. Arthur TM, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, King DA, Shackelford SD, Wheeler TL, Koohmaraie M. 2008. Source tracking of Escherichia coli O157:H7 and Salmonella contamination in the lairage environment at commercial U.S. beef processing plants and identification of an effective intervention. J Food Prot 71:1752–1760. [PubMed]
124. Arthur TM, Bosilevac JM, Nou X, Shackelford SD, Wheeler TL, Koohmaraie M. 2007. Comparison of the molecular genotypes of Escherichia coli O157:H7 from the hides of beef cattle in different regions of North America. J Food Prot 70:1622–1626. [PubMed]
125. Dewell GA, Simpson CA, Dewell RD, Hyatt DR, Belk KE, Scanga JA, Morley PS, Grandin T, Smith GC, Dargatz DA, Wagner BA, Salman MD. 2008. Impact of transportation and lairage on hide contamination with Escherichia coli O157 in finished beef cattle. J Food Prot 71:1114–1118. [PubMed]
126. Jacob ME, Renter DG, Nagaraja TG. 2010. Animal- and truckload-level associations between Escherichia coli O157:H7 in feces and on hides at harvest and contamination of preevisceration beef carcasses. J Food Prot 73:1030–1037. [PubMed]
127. European Food Safety Authority, EFSA Panel on Biological Hazards. 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals). EFSA Journal 11(6):3266.
128. Schmidt JW, Arthur TM, Bosilevac JM, Kalchayanand N, Wheeler TL. 2012. Detection of Escherichia coli O157:H7 and Salmonella enterica in air and droplets at three U.S. commercial beef processing plants. J Food Prot 75:2213–2218. [PubMed][CrossRef]
129. Koohmaraie M, Arthur TM, Bosilevac JM, Guerini M, Shackelford SD, Wheeler TL. 2005. Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Sci 71:79–91. [PubMed][CrossRef]
130. Kalchayanand N, Arthur TM, Bosilevac JM, Schmidt JW, Wang R, Shackelford SD, Wheeler TL. 2012. Evaluation of commonly used antimicrobial interventions for fresh beef inoculated with Shiga toxin-producing Escherichia coli serotypes O26, O45, O103, O111, O121, O145, and O157:H7. J Food Prot 75:1207–1212. [PubMed][CrossRef]
131. Jacob R, Porto-Fett AC, Call JE, Luchansky JB. 2009. Fate of surface-inoculated Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium on kippered beef during extended storage at refrigeration and abusive temperatures. J Food Prot 72:403–407. [PubMed]
132. Adler JM, Geornaras I, Belk KE, Smith GC, Sofos JN. 2012. Thermal inactivation of Escherichia coli O157:H7 inoculated at different depths of non-intact blade-tenderized beef steaks. J Food Sci 77:M108–M114. [PubMed][CrossRef]
133. Kudra LL, Sebranek JG, Dickson JS, Mendonca AF, Larson EM, Jackson-Davis AL, Lu Z. 2011. Effects of vacuum or modified atmosphere packaging in combination with irradiation for control of Escherichia coli O157:H7 in ground beef patties. J Food Prot 74:2018–2023. [PubMed][CrossRef]
134. Vold L, Holck A, Wasteson Y, Nissen H. 2000. High levels of background flora inhibits growth of Escherichia coli O157:H7 in ground beef. Int J Food Microbiol 56:219–225. [PubMed][CrossRef]
135. Luchansky JB, Porto-Fett AC, Shoyer BA, Phillips J, Eblen D, Evans P, Bauer N. 2013. Thermal inactivation of a single strain each of serotype O26:H11, O45:H2, O103:H2, O104:H4, O111:H(-), O121:H19, O145:NM, and O157:H7 cells of Shiga toxin-producing Escherichia coli in wafers of ground beef. J Food Prot 76:1434–1437. [PubMed][CrossRef]
136. Flores RA, Tamplin ML. 2002. Distribution patterns of Escherichia coli O157:H7 in ground beef produced by a laboratory-scale grinder. J Food Prot 65:1894–1902. [PubMed]
137. Flores RA. 2004. Distribution of Escherichia coli O157:H7 in beef processed in a table-top bowl cutter. J Food Prot 67:246–251. [PubMed]
138. Riordan DC, Duffy G, Sheridan J, Eblen BS, Whiting RC, Blair IS, McDowell DA. 1998. Survival of Escherichia coli O157:H7 during the manufacture of pepperoni. J Food Prot 61:146–151. [PubMed]
139. Riordan DC, Duffy G, Sheridan JJ, Whiting RC, Blair IS, McDowell DA. 2000. Effects of acid adaptation, product pH, and heating on survival of Escherichia coli O157:H7 in pepperoni. Appl Environ Microbiol 66:1726–1729. [PubMed][CrossRef]
140. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:119–129. [PubMed][CrossRef]
141. Vasan A, Leong WM, Ingham SC, Ingham BH. 2013. Thermal tolerance characteristics of non-O157 Shiga toxigenic strains of Escherichia coli (STEC) in a beef broth model system are similar to those of O157:H7 STEC. J Food Prot 76:1120–1128. [PubMed][CrossRef]
142. Launders N, Byrne L, Adams N, Glen K, Jenkins C, Tubin-Delic D, Locking M, Williams C, Morgan D. 2013. Outbreak of Shiga toxin-producing E. coli O157 associated with consumption of watercress, United Kingdom, August to September 2013. Euro Surveill 18.
143. Soborg B, Lassen SG, Muller L, Jensen T, Ethelberg S, Molbak K, Scheutz F. 2013. A verocytotoxin-producing E. coli outbreak with a surprisingly high risk of haemolytic uraemic syndrome, Denmark, September-October 2012. Euro Surveill 18.
144. Slayton RB, Turabelidze G, Bennett SD, Schwensohn CA, Yaffee AQ, Khan F, Butler C, Trees E, Ayers TL, Davis ML, Laufer AS, Gladbach S, Williams I, Gieraltowski LB. 2013. Outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 associated with romaine lettuce consumption, 2011. PLoS One 8:e55300. [PubMed][CrossRef]
145. Taylor EV, Nguyen TA, Machesky KD, Koch E, Sotir MJ, Bohm SR, Folster JP, Bokanyi R, Kupper A, Bidol SA, Emanuel A, Arends KD, Johnson SA, Dunn J, Stroika S, Patel MK, Williams I. 2013. Multistate outbreak of Escherichia coli O145 infections associated with romaine lettuce consumption, 2010. J Food Prot 76:939–944. [PubMed][CrossRef]
146. Greenland K, de Jager C, Heuvelink A, van der Zwaluw K, Heck M, Notermans D, van Pelt W, Friesema I. 2009. Nationwide outbreak of STEC O157 infection in the Netherlands, December 2008-January 2009: continuous risk of consuming raw beef products. Euro Surveill 14. pii: 19129. [PubMed]
147. Neil KP, Biggerstaff G, MacDonald JK, Trees E, Medus C, Musser KA, Stroika SG, Zink D, Sotir MJ. 2012. A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009. Clin Infect Dis 54:511–518. [PubMed][CrossRef]
148. Centers for Disease Control and Prevention. 2010. Two multistate outbreaks of Shiga toxin–producing Escherichia coli infections linked to beef from a single slaughter facility—United States, 2008. Morb Mortal Wkly Rep 59:557–560. [PubMed]
149. Friesema I, Sigmundsdottir G, van der Zwaluw K, Heuvelink A, Schimmer B, de Jager C, Rump B, Briem H, Hardardottir H, Atladottir A, Gudmundsdottir E, van Pelt W. 2008. An international outbreak of Shiga toxin-producing Escherichia coli O157 infection due to lettuce, September-October 2007. Euro Surveill 13. pii: 19065.
150. Ethelberg S, Smith B, Torpdahl M, Lisby M, Boel J, Jensen T, Nielsen EM, Molbak K. 2009. Outbreak of non-O157 Shiga toxin-producing Escherichia coli infection from consumption of beef sausage. Clin Infect Dis 48:e78–e81. [PubMed][CrossRef]
151. Wendel AM, Johnson DH, Sharapov U, Grant J, Archer JR, Monson T, Koschmann C, Davis JP. 2009. Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August-September 2006: the Wisconsin investigation. Clin Infect Dis 48:1079–1086. [PubMed][CrossRef]
152. Ramoneda M, Foncuberta M, Simon M, Sabate S, Ferrer MD, Herrera S, Landa B, Muste N, Marti R, Trabado V, Carbonell O, Vila M, Espelt M, Ramirez B, Duran J. 2013. Prevalence of verotoxigenic Escherichia coli O157 (VTEC O157) and compliance with microbiological safety standards in bovine carcasses from an industrial beef slaughter plant. Lett Appl Microbiol 56:408–413. [PubMed][CrossRef]
153. Dargatz DA, Bai J, Lubbers BV, Kopral CA, An B, Anderson GA. 2013. Prevalence of Escherichia coli O-types and Shiga toxin genes in fecal samples from feedlot cattle. Foodborne Pathog Dis 10:392–396. [PubMed][CrossRef]
154. Narvaez-Bravo C, Miller MF, Jackson T, Jackson S, Rodas-Gonzalez A, Pond K, Echeverry A, Brashears MM. 2013. Salmonella and Escherichia coli O157:H7 prevalence in cattle and on carcasses in a vertically integrated feedlot and harvest plant in Mexico. J Food Prot 76:786–795. [PubMed][CrossRef]
155. Breum SO, Boel J. 2010. Prevalence of Escherichia coli O157 and verocytotoxin producing E. coli (VTEC) on Danish beef carcasses. Int J Food Microbiol 141:90–96. [PubMed][CrossRef]
156. Masana MO, Leotta GA, Del Castillo LL, D'Astek BA, Palladino PM, Galli L, Vilacoba E, Carbonari C, Rodriguez HR, Rivas M. 2010. Prevalence, characterization, and genotypic analysis of Escherichia coli O157:H7/NM from selected beef exporting abattoirs of Argentina. J Food Prot 73:649–656. [PubMed]
157. Boqvist S, Aspan A, Eriksson E. 2009. Prevalence of verotoxigenic Escherichia coli O157:H7 in fecal and ear samples from slaughtered cattle in Sweden. J Food Prot 72:1709–1712. [PubMed]
microbiolspec.EHEC-0023-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0023-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0023-2013
2014-09-26
2017-10-23

Abstract:

Verocytoxigenic (VTEC) comprises many diverse serogroups, but seven serogroups, O157, O26, O103, O145, O111, O21, and O45, have been most commonly linked to severe human infections, though illness has also been reported from a range of other VTEC serogroups. This poses challenges in assessing the risk to humans from the diverse range of VTEC strains that may be recovered from animals, the environment, or food. For routine assessment of risk posed by VTEC recovered from the agri-food chain, the concept of seropathotype can be used to rank the human risk potential from a particular VTEC serogroup on the basis of both serotype (top seven serogroups) and the presence of particular virulence genes ( in combination with , or plus ). But for other VTEC serogroups or virulence gene combinations, it is not currently possible to fully assess the risk posed. VTEC is shed in animal feces and can persist in the farm environment for extended periods ranging from several weeks to many months, posing an ongoing reservoir of contamination for grazing animals, water courses, and fresh produce and for people using farmland for recreational purposes. Appropriate handling and treatment of stored animal waste (slurries and manures) will reduce risk from VTEC in the farm environment. Foods of animal origin such as milk and dairy products and meat may be contaminated with VTEC during production and processing, and the pathogen may survive or grow during processing operations, highlighting the need for well-designed and validated Hazard Analysis Critical Control Point management systems. This article focuses on a veterinary public health approach to managing VTEC, highlighting the various routes in the agri-food chain for transmission of human pathogenic VTEC and general approaches to managing the risk.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/EHEC-0023-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.EHEC-0023-2013&mimeType=html&fmt=ahah

Tables

Generic image for table

Click to view

TABLE 1

Selected VTEC outbreaks (2006–2013) highlighting different vehicles of infection and serogroups

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0023-2013
Generic image for table

Click to view

TABLE 2

Selected VTEC prevalence studies (2007–2013) showing pathogenic VTEC prevalence in ruminant animals (cattle and sheep)

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.EHEC-0023-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error