1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Brian P. Blackwood1, Catherine J. Hunter2
  • Editors: W. Michael Scheld3, James M. Hughes4, Richard J. Whitley5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611; 2: Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611; 3: Department of Infectious Diseases, University of Virginia Health System, Charlottesville, VA; 4: Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA; 5: Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
  • Source: microbiolspec April 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.EI10-0002-2015
  • Received 24 August 2015 Accepted 28 September 2015 Published 22 April 2016
  • Brian P. Blackwood, brian_p_blackwood@rush.edu
image of <span class="jp-italic">Cronobacter</span> spp.
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/2/EI10-0002-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/2/EI10-0002-2015-2.gif
  • Abstract:

    The group of pathogens, associated with severe and potentially life-threatening diseases, until recently were classified as a single species, . The group was reclassified in 2007 into the genus as a member of the . This chapter outlines the history behind the epidemiology, analyzes how our understanding of these bacteria has evolved, and highlights the clinical significance the spp. have for neonatal and elderly patient populations and treatment of the associated infections.

  • Citation: Blackwood B, Hunter C. 2016. spp.. Microbiol Spectrum 4(2):EI10-0002-2015. doi:10.1128/microbiolspec.EI10-0002-2015.

Key Concept Ranking

Outer Membrane Protein A
0.42661864
0.42661864

References

1. Farmer JJ, III, Davis BR, Hickman-Brenner FW, McWhorter A, Huntley-Carter GP, Asbury MA, Riddle C, Wathen-Grady HG, Elias C, Fanning GR, Steigerwalt AG, O’Hara CM, Morris GK, Smith PB, Brenner DJ. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21:46–76. [PubMed]
2. Holy O, Forsythe S. 2014. Cronobacter spp. as emerging causes of healthcare-associated infection. J Hosp Infect 86:169–177. [PubMed][CrossRef]
3. Hunter CJ, Bean JF. 2013. Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J Perinatol 33:581–585. [PubMed][CrossRef]
4. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447. [PubMed][CrossRef]
5. Iversen C, Druggan P, Schumacher S, Lehner A, Feer C, Gschwend K, Joosten H, Stephan R. 2008. Development of a novel screening method for the isolation of “Cronobacter” spp. (Enterobacter sakazakii). Appl Environ Microbiol 74:2550–2553. [PubMed][CrossRef]
6. Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One 5:e9556. [PubMed][CrossRef]
7. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. 2013. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. [PubMed][CrossRef]
8. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Forsythe SJ. 2012. Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int J Syst Evol Microbiol 62:1277–1283. [PubMed][CrossRef]
9. Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricija L, Rico A, Brzoska P, Hamby SE, Masood N, Hariri S, Sonbol H, Chuzhanova N, McClelland M, Furtado MR, Forsythe SJ. 2012. Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One 7:e49455. [PubMed][CrossRef]
10. Gurtler JB, Kornacki JL, Beuchat LR. 2005. Enterobacter sakazakii: a coliform of increased concern to infant health. Int J Food Microbiol 104:1–34. [PubMed][CrossRef]
11. Hunter CJ, Petrosyan M, Ford HR, Prasadarao NV. 2008. Enterobacter sakazakii: an emerging pathogen in infants and neonates. Surg Infect (Larchmt) 9:533–539. [PubMed][CrossRef]
12. Urmenyi AM, Franklin AW. 1961. Neonatal death from pigmented coliform infection. Lancet i:313–315. [PubMed][CrossRef]
13. Iversen C, Lancashire L, Waddington M, Forsythe S, Ball G. 2006. Identification of Enterobacter sakazakii from closely related species: the use of artificial neural networks in the analysis of biochemical and 16S rDNA data. BMC Microbiol 6:28. [PubMed][CrossRef]
14. Iversen C, Waddington M, On SL, Forsythe S. 2004. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species. J Clin Microbiol 42:5368–5370. [PubMed][CrossRef]
15. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 7:64. [PubMed][CrossRef]
16. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S. 2009. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223. [PubMed][CrossRef]
17. Joseph S, Forsythe SJ. 2012. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front Microbiol 3:397. [PubMed][CrossRef]
18. Kuhnert P, Korczak BM, Stephan R, Joosten H, Iversen C. 2009. Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). Int J Food Microbiol 136:152–158. [PubMed][CrossRef]
19. Joseph S, Sonbol H, Hariri S, Desai P, McClelland M, Forsythe SJ. 2012. Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J Clin Microbiol 50:3031–3039. [PubMed][CrossRef]
20. Friedemann M. 2007. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 116:1–10. [PubMed][CrossRef]
21. Baumgartner A, Grand M, Liniger M, Iversen C. 2009. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int J Food Microbiol 136:189–192. [PubMed][CrossRef]
22. Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, van Schothorst M. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:39–40. [PubMed][CrossRef]
23. Kim K, Jang SS, Kim SK, Park JH, Heu S, Ryu S. 2008. Prevalence and genetic diversity of Enterobacter sakazakii in ingredients of infant foods. Int J Food Microbiol 122:196–203. [PubMed][CrossRef]
24. Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C, Park J, Osaili T, Shaker R, Jaradat Z, Hartantyo SH, Abdullah Sani N, Estuningsih S, Forsythe SJ. 2009. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int J Food Microbiol 136:185–188. [PubMed][CrossRef]
25. Hamilton JV, Lehane MJ, Braig HR. 2003. Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerg Infect Dis 9:1355–1356. [PubMed][CrossRef]
26. Pava-Ripoll M, Pearson RE, Miller AK, Ziobro GC. 2012. Prevalence and relative risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl Environ Microbiol 78:7891–7902. [PubMed][CrossRef]
27. Chenu JW, Cox JM. 2009. Cronobacter (‘Enterobacter sakazakii’): current status and future prospects. Lett Appl Microbiol 49:153–159. [PubMed][CrossRef]
28. Pan Z, Cui J, Lyu G, Du X, Qin L, Guo Y, Xu B, Li W, Cui Z, Zhao C. 2014. Isolation and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula. Foodborne Pathog Dis 11:456–461. [PubMed][CrossRef]
29. Clark NC, Hill BC, O’Hara CM, Steingrimsson O, Cooksey RC. 1990. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn Microbiol Infect Dis 13:467–472. [PubMed][CrossRef]
30. Muytjens HL, Roelofs-Willemse H, Jaspar GH. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J Clin Microbiol 26:743–746. [PubMed]
31. Alvarez-Ordonez A, Begley M, Hill C. 2012. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii. Appl Environ Microbiol 78:3975–3984. [PubMed][CrossRef]
32. Arku B, Fanning S, Jordan K. 2011. Heat adaptation and survival of Cronobacter spp. (formerly Enterobacter sakazakii). Foodborne Pathog Dis 8:975–981. [PubMed][CrossRef]
33. Walsh D, Molloy C, Iversen C, Carroll J, Cagney C, Fanning S, Duffy G. 2011. Survival characteristics of environmental and clinically derived strains of Cronobacter sakazakii in infant milk formula (IMF) and ingredients. J Appl Microbiol 110:697–703. [PubMed][CrossRef]
34. Al-Nabulsi AA, Osaili TM, Al-Holy MA, Shaker RR, Ayyash MM, Olaimat AN, Holley RA. 2009. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol 136:221–226. [PubMed][CrossRef]
35. Chen PC, Zahoor T, Oh SW, Kang DH. 2009. Effect of heat treatment on Cronobacter spp. in reconstituted, dried infant formula: preparation guidelines for manufacturers. Lett Appl Microbiol 49:730–737. [PubMed][CrossRef]
36. Edelson-Mammel SG, Buchanan RL. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J Food Prot 67:60–63. [PubMed]
37. World Health Organization, Food and Agriculture Organization of the United Nations. 2004. Enterobacter sakazakii and Other Microorganisms in Powdered Infant Formula: Meeting Report. World Health Organization, Geneva, Switzerland.
38. World Health Organization., Food and Agriculture Organization of the United Nations. 2006. Enterobacter sakazakii and Salmonella in Powdered Infant Formula: Meeting Report. World Health Organization, Geneva, Switzerland.
39. Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C, Fayet O, Prere MF, Forsythe SJ. 2007. Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 45:3979–3985. [PubMed][CrossRef]
40. Friedemann M. 2009. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis 28:1297–1304. [PubMed][CrossRef]
41. Giovannini M, Verduci E, Ghisleni D, Salvatici E, Riva E, Agostoni C. 2008. Enterobacter sakazakii: an emerging problem in paediatric nutrition. J Int Med Res 36:394–399. [PubMed][CrossRef]
42. Mullane NR, Whyte P, Wall PG, Quinn T, Fanning S. 2007. Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility. Int J Food Microbiol 116:73–81. [PubMed][CrossRef]
43. Stoll BJ, Hansen N, Fanaroff AA, Lemons JA. 2004. Enterobacter sakazakii is a rare cause of neonatal septicemia or meningitis in VLBW infants. J Pediatr 144:821–823. [PubMed]
44. Bowen AB, Braden CR. 2006. Invasive Enterobacter sakazakii disease in infants. Emerg Infect Dis 12:1185–1189. [PubMed][CrossRef]
45. Hunter CJ, Podd B, Ford HR, Camerini V. 2008. Evidence vs experience in neonatal practices in necrotizing enterocolitis. J Perinatol 28(Suppl 1):S9–S13. [PubMed][CrossRef]
46. Emami CN, Petrosyan M, Giuliani S, Williams M, Hunter C, Prasadarao NV, Ford HR. 2009. Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surg Infect (Larchmt) 10:407–417. [PubMed][CrossRef]
47. Grishin A, Papillon S, Bell B, Wang J, Ford HR. 2013. The role of the intestinal microbiota in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 22:69–75. [PubMed][CrossRef]
48. Peter CS, Feuerhahn M, Bohnhorst B, Schlaud M, Ziesing S, von der Hardt H, Poets CF. 1999. Necrotising enterocolitis: is there a relationship to specific pathogens? Eur J Pediatr 158:67–70. [PubMed][CrossRef]
49. Holman RC, Stoll BJ, Clarke MJ, Glass RI. 1997. The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Public Health 87:2026–2031. [PubMed][CrossRef]
50. Blakely ML, Lally KP, McDonald S, Brown RL, Barnhart DC, Ricketts RR, Thompson WR, Scherer LR, Klein MD, Letton RW, Chwals WJ, Touloukian RJ, Kurkchubasche AG, Skinner MA, Moss RL, Hilfiker ML, NEC Subcommittee of the NICHD Neonatal Research Network. 2005. Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 241:984–989; discussion, 989–994. [PubMed][CrossRef]
51. Salhab WA, Perlman JM, Silver L, Sue Broyles R. 2004. Necrotizing enterocolitis and neurodevelopmental outcome in extremely low birth weight infants <1000 g. J Perinatol 24:534–540. [PubMed][CrossRef]
52. Schulzke SM, Deshpande GC, Patole SK. 2007. Neurodevelopmental outcomes of very low-birth-weight infants with necrotizing enterocolitis: a systematic review of observational studies. Arch Pediatr Adolesc Med 161:583–590. [PubMed][CrossRef]
53. Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ, Simon NP, Wilson DC, Broyles S, Bauer CR, Delaney-Black V, Yolton KA, Fleisher BE, Papile LA, Kaplan MD. 2000. Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993-1994. Pediatrics 105:1216–1226. [PubMed][CrossRef]
54. Bar-Oz B, Preminger A, Peleg O, Block C, Arad I. 2001. Enterobacter sakazakii infection in the newborn. Acta Paediatr 90:356–358. [PubMed][CrossRef]
55. Burdette JH, Santos C. 2000. Enterobacter sakazakii brain abscess in the neonate: the importance of neuroradiologic imaging. Pediatr Radiol 30:33–34. [PubMed][CrossRef]
56. Gallagher PG, Ball WS. 1991. Cerebral infarctions due to CNS infection with Enterobacter sakazakii. Pediatr Radiol 21:135–136. [PubMed][CrossRef]
57. Lai KK. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore) 80:113–122. [PubMed][CrossRef]
58. Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A, Wymore K, Boothe E, Lathrop S, Palmer A, Bowen A. 2014. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg Infect Dis 20:1520–1523. [PubMed][CrossRef]
59. Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. 2010. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 7:339–350. [PubMed][CrossRef]
60. See KC, Than HA, Tang T. 2007. Enterobacter sakazakii bacteraemia with multiple splenic abscesses in a 75-year-old woman: a case report. Age Ageing 36:595–596. [PubMed][CrossRef]
61. Gosney MA, Martin MV, Wright AE, Gallagher M. 2006. Enterobacter sakazakii in the mouths of stroke patients and its association with aspiration pneumonia. Eur J Intern Med 17:185–188. [PubMed][CrossRef]
62. Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, Upperman JS, Ford HR, Prasadarao NV. 2008. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 198:586–593. [PubMed][CrossRef]
63. Richardson AN, Lambert S, Smith MA. 2009. Neonatal mice as models for Cronobacter sakazakii infection in infants. J Food Prot 72:2363–2367. [PubMed]
64. Stephan R, Lehner A, Tischler P, Rattei T. 2011. Complete genome sequence of Cronobacter turicensis LMG 23827, a food-borne pathogen causing deaths in neonates. J Bacteriol 193:309–310. [PubMed][CrossRef]
65. Yan QQ, Condell O, Power K, Butler F, Tall BD, Fanning S. 2012. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium. J Appl Microbiol 113:1–15. [PubMed][CrossRef]
66. Nair MK, Venkitanarayanan K, Silbart LK, Kim KS. 2009. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathog Dis 6:495–501. [PubMed][CrossRef]
67. Prasadarao NV. 2002. Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infect Immun 70:4556–4563. [PubMed][CrossRef]
68. Singamsetty VK, Wang Y, Shimada H, Prasadarao NV. 2008. Outer membrane protein A expression in Enterobacter sakazakii is required to induce microtubule condensation in human brain microvascular endothelial cells for invasion. Microb Pathog 45:181–191. [PubMed][CrossRef]
69. Pagotto FJ, Nazarowec-White M, Bidawid S, Farber JM. 2003. Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. J Food Prot 66:370–375. [PubMed]
70. Townsend S, Caubilla Barron J, Loc-Carrillo C, Forsythe S. 2007. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 24:67–74. [PubMed][CrossRef]
71. Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. 2011. Recruitment of dendritic cells is responsible for intestinal epithelial damage in the pathogenesis of necrotizing enterocolitis by Cronobacter sakazakii. J Immunol 186:7067–7079. [PubMed][CrossRef]
72. Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ, Hu L, Datta AR, McCardell BA, Tall BD. 2011. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect Immun 79:1578–1587. [PubMed][CrossRef]
73. Muytjens HL, Zanen HC, Sonderkamp HJ, Kollee LA, Wachsmuth IK, Farmer JJ, III. 1983. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J Clin Microbiol 18:115–120. [PubMed]
74. Block C, Peleg O, Minster N, Bar-Oz B, Simhon A, Arad I, Shapiro M. 2002. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Eur J Clin Microbiol Infect Dis 21:613–616. [PubMed][CrossRef]
75. Stock I, Wiedemann B. 2002. Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin Microbiol Infect 8:564–578. [PubMed][CrossRef]
76. Burgos JM, Ellington BA, Varela MF. 2005. Presence of multidrug-resistant enteric bacteria in dairy farm topsoil. J Dairy Sci 88:1391–1398. [PubMed][CrossRef]
microbiolspec.EI10-0002-2015.citations
cm/4/2
content/journal/microbiolspec/10.1128/microbiolspec.EI10-0002-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EI10-0002-2015
2016-04-22
2017-10-18

Abstract:

The group of pathogens, associated with severe and potentially life-threatening diseases, until recently were classified as a single species, . The group was reclassified in 2007 into the genus as a member of the . This chapter outlines the history behind the epidemiology, analyzes how our understanding of these bacteria has evolved, and highlights the clinical significance the spp. have for neonatal and elderly patient populations and treatment of the associated infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Image is taken at magnification of ×100 with z-stack under fluorescein isothiocyanate, 4′,6-diamidino-2-phenylindole (DAPI), and differential interference contrast channels. has been cloned with green fluorescent protein expression and is shown in green; the nucleus is stained with DAPI and shown in blue. can be seen to permeabilize the cell (Caco-2). Scale bar is 15 μm.

Source: microbiolspec April 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.EI10-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Rat pups fed formula contaminated with have findings resembling neonatal NEC. The rat pup bowel is dilated, and pneumatosis can be clearly seen in the bowel wall.

Source: microbiolspec April 2016 vol. 4 no. 2 doi:10.1128/microbiolspec.EI10-0002-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error