1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Jonathan E. Kolby1, Peter Daszak3
  • Editors: W. Michael Scheld4, James M. Hughes5, Richard J. Whitley6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: One Health Research Group, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; 2: EcoHealth Alliance, New York, NY 10001; 3: EcoHealth Alliance, New York, NY 10001; 4: Department of Infectious Diseases, University of Virginia Health System, Charlottesville, VA; 5: Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA; 6: Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
  • Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0004-2015
  • Received 01 September 2015 Accepted 19 January 2016 Published 13 May 2016
  • Jonathan E. Kolby, jonathan.kolby@my.jcu.edu.au
image of The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/EI10-0004-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/EI10-0004-2015-2.gif
  • Abstract:

    The spread of amphibian chytrid fungus, , is associated with the emerging infectious wildlife disease chytridiomycosis. This fungus poses an overwhelming threat to global amphibian biodiversity and is contributing toward population declines and extinctions worldwide. Extremely low host-species specificity potentially threatens thousands of the 7,000+ amphibian species with infection, and hosts in additional classes of organisms have now also been identified, including crayfish and nematode worms.

    Soon after the discovery of in 1999, it became apparent that this pathogen was already pandemic; dozens of countries and hundreds of amphibian species had already been exposed. The timeline of ’s global emergence still remains a mystery, as does its point of origin. The reason why seems to have only recently increased in virulence to catalyze this global disease event remains unknown, and despite 15 years of investigation, this wildlife pandemic continues primarily uncontrolled. Some disease treatments are effective on animals held in captivity, but there is currently no proven method to eradicate from an affected habitat, nor have we been able to protect new regions from exposure despite knowledge of an approaching “wave” of and ensuing disease.

    International spread of is largely facilitated by the commercial trade in live amphibians. Chytridiomycosis was recently listed as a globally notifiable disease by the World Organization for Animal Health, but few countries, if any, have formally adopted recommended measures to control its spread. Wildlife diseases continue to emerge as a consequence of globalization, and greater effort is urgently needed to protect global health.

  • Citation: Kolby J, Daszak P. 2016. The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases. Microbiol Spectrum 4(3):EI10-0004-2015. doi:10.1128/microbiolspec.EI10-0004-2015.

References

1. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. [PubMed][CrossRef]
2. Laurance WF, McDonald KR, Speare R. 1996. Epidemic disease and the catastrophic decline of Australian rainforest frogs. Conserv Biol 10:406–413. [CrossRef]
3. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036. [PubMed][CrossRef]
4. Longcore JE, Pessier AP, Nichols DK. 1999. Batrachochytrium dendrobatidis gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91:219–227. [CrossRef]
5. Berger L, Marantelli G, Skerratt LF, Speare R. 2005. Virulence of the amphibian chytrid fungus Batrachochytium dendrobatidis varies with the strain. Dis Aquat Organ 68:47–50. [PubMed][CrossRef]
6. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC, Bd Mapping Group. 2013. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802. doi:10.1371/journal.pone.0056802. [PubMed][CrossRef]
7. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R. 2009. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585. [PubMed][CrossRef]
8. Scheele BC, Hunter DA, Skerratt LF, Brannelly LA, Driscoll DA. 2015. Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol Conserv 182:36–43. [CrossRef]
9. Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR, Lauer A, Muths E, Puschendorf R, Schmidt BR, Sheafor B, Voyles J. 2011. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8:8. [PubMed][CrossRef]
10. Kraus F. 2009. Alien reptiles and amphibians: a scientific compendium and analysis. Springer Science and Business Media B.V., Dordrecht, The Netherlands. [CrossRef]
11. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Heros M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Coiling A. 2007. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73:175–192. [PubMed][CrossRef]
12. Kriger KM, Ashton KJ, Hines HB, Hero JM. 2007. On the biological relevance of a single Batrachochytrium dendrobatidis zoospore: a reply to Smith. Dis Aquat Organ 73:257–260. [PubMed][CrossRef]
13. Skerratt LF, Mende D, McDonald KR, Garland S, Livingstone J, Berger L, Speare R. Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians. J Herpetol 45:444–450. [CrossRef]
14. Kirshtein JD, Anderson CW, Wood JS, Longcore JE, Voytek MA. 2007. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Dis Aquat Organ 77:11–15. [PubMed][CrossRef]
15. Walker SF, Salas MB, Jenkins D, Garner TW, Cunningham AA, Hyatt AD, Bosch J, Fisher MC. 2007. Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Dis Aquat Organ 77:105–112. [PubMed][CrossRef]
16. Chestnut T, Anderson C, Popa R, Blaustein AR, Voytek M, Olson DH, Kirshtein J. 2014. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS One 9:e106790. doi:10.1371/journal.pone.0106790. [PubMed][CrossRef]
17. Schloegel LM, Hero JM, Berger L, Speare R, McDonald K, Daszak P. 2006. The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species? J Herpetol 3:35–40. [CrossRef]
18. Skerratt L, Berger L, Speare R, Cashins S, McDonald KR, Phillot AD, Hines HB, Kenyon N. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. J Herpetol 4:125–134. [CrossRef]
19. Retallick RW, McCallum H, Speare R. 2004. Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol 2:e351. doi:10.1371/journal.pbio.0020351. [PubMed][CrossRef]
20. Richards-Hrdlicka KL. 2013. Preserved specimens of the extinct golden toad of Monteverde (Cranopsis periglenes) tested negative for the amphibian chytrid fungus (Batrachochytrium dendrobatidis). J Herpetol 47:456–458. [CrossRef]
21. La Marca E, Lips KR, Lotters S, Puschendorf R, Ibanez R, Rueda-Almonacid JV, Schulte R, Marty C, Castro F, Manzanilla-Puppo J, Garcia-Perez JE, Bolanos F, Chaves G, Pounds JA, Toral E, Young BE. 2005. Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: atelopus). Biotropica 37:190–201. [CrossRef]
22. Lips KR, Diffendorfer J, Mendelson JR III, Sears MW. 2008. Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:e72. doi:10.1371/journal.pbio.0060072. [PubMed][CrossRef]
23. IUCN SSC Amphibian Specialist Group. 2015. Nectophrynoides asperginis. The IUCN Red List of Threatened Species. Version 2015.2. www.iucnredlist.org.
24. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. 2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci USA 107:9689–9694. [PubMed][CrossRef]
25. Odum RA, Corn PS. 2005. Bufo baxteri, Porter, 1968, Wyoming toad, p 390–392. In Lannoo MJ (ed), Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, CA.
26. Kolby JE, McCranie JR. 2009. Discovery of a surviving population of the montane streamside frog Craugastor milesi (Schmidt). Herpetol Rev 40:282–283.
27. Daskin JH, Alford RA, Puschendorf R. 2011. Short-term exposure towarm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis. PLoS One 6:e26215. doi:10.1371/journal.pone.0026215. [PubMed]
28. Manzanilla J, La Marca E, Heyer R, Fernández-Badillo E. 2004. Atelopus cruciger. The IUCN Red List of Threatened Species. Version 20152. www.iucnredlist.org.
29. Biton R, Geffen E, Vences M, Cohen O, Bailon S, Rabinovich R, Malka Y, Oron T, Boistel R, Brumfeld V, Gafny S. 2013. The rediscovered Hula painted frog is a living fossil. Nat Commun 4:1959. [PubMed][CrossRef]
30. Owens B. 2012. Long-fingered African frog rediscovered after 62 years. Available at: http://blogs.nature.com/news/2012/03/long-fingered-african-frog-rediscovered-after-62-years.html.
31. Wickramasinghe LJM, Vidanapathirana DR, Airyarathne S, Rajeev G, Chanaka A, Pastorini J, Chathuranga G, Wickramasinghe N. 2013. Lost and found: one of the world’s most elusive amphibians, Pseudophilautus stellatus (Kelaart 1853) rediscovered. Zootaxa 3620:112–128. [PubMed][CrossRef]
32. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP. 2006. Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170. [PubMed][CrossRef]
33. Catenazzi A, Lehr E, Rodriguez LO, Vredenburg VT. 2011. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, southeastern Peru. Conserv Biol 25:382–391. [PubMed]
34. Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D, Eastman JM, Richards-Hrdlicka K, Joneson S, Jenkinson TS, Longcore JE, Parra Olea G, Toledo LF, Arellano ML, Medina EM, Restrepo S, Flechas SV, Berger L, Briggs CJ, Stajich JE. 2013. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA 110:9385–9390. [PubMed][CrossRef]
35. Rowley JJ, Alford RA. 2007. Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. Dis Aquat Organ 77:1–9. [PubMed][CrossRef]
36. Weldon C, Crottini A, Bollen A, Rabemananjara FCE, Copsey J, Garcia G, Andreone F. 2013. Pre-emptive national monitoring plan for detecting the amphibian chytrid fungus in Madagascar. EcoHealth 10:234–240. [PubMed][CrossRef]
37. James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, Fisher MC, Berger L, Weldon C, du Preez L, Longcore JE. 2009. Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5:e1000458. doi:10.1371/journal.ppat.1000458. [CrossRef]
38. Farrer RA, Weinert LA, Bielby J, Garner TW, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Pond SL, Shahar-Golan R, Henk DA, Fisher MC. 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci USA 108:18732–18736. [PubMed][CrossRef]
39. Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, Brown AJ, Walker LA, Gow NA, Stajich JE, Garner TW. 2009. Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Mol Ecol 18:415–429. [PubMed][CrossRef]
40. Gahl MK, Longcore JE, Houlahan JE. 2012. Varying responses of northeastern North American amphibians to the chytrid pathogen Batrachochytrium dendrobatidis. Conserv Biol 26:135–141. [PubMed][CrossRef]
41. Gervasi S, Gondhalekar C, Olson DH, Blaustein AR. 2013. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen. PLoS One 8:e54490. doi:10.1371/journal.pone.0054490. [PubMed][CrossRef]
42. Rosenblum EB, Voyles J, Poorten TJ, Stajich JE. 2010. The deadly chytrid fungus: a story of an emerging pathogen. PLoS Pathog 6:e1000550. doi:10.1371/journal.ppat.1000550. [PubMed][CrossRef]
43. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M, Zhao S, Wangen C, Ferreira CM, Hipolito M, Davies AJ, Cuomo CA, Daszak P, James TY. 2012. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177. [PubMed][CrossRef]
44. Weldon C, du Preez LH, Hyatt AD, Muller R, Spears R. 2004. Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105. [PubMed][CrossRef]
45. Cheng TL, Rovito SM, Wake DB, Vredenburg VT. 2011. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci USA 108:9502–9507. [PubMed][CrossRef]
46. Richards-Hrdlicka KL. 2012. Extracting the amphibian chytrid fungus from formalin-fixed specimens. Methods Ecol Evol 3:842–849. [CrossRef]
47. Adams AJ, LaBonte JP, Ball ML, Richards-Hrdlicka KL, Toothman MH, Briggs CJ. 2015. DNA extraction method affects the detection of a fungal pathogen in formalin-fixed specimens using qPCR. PLoS One 10:e0135389. doi:10.1371/journal.pone.0135389. [PubMed][CrossRef]
48. Talley BL, Muletz CR, Vredenburg VT, Fleischer RC, Lips KR. 2015. A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888-1989). Biol Conserv 182:254–261. [CrossRef]
49. Rodriguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR. 2014. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787. [PubMed][CrossRef]
50. Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD. 2009. Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18:4757–4774. [PubMed][CrossRef]
51. Fong JJ, Cheng TL, Bataille A, Pessier AP, Waldman B, Vredenburg VT. 2015. Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS One 10:e0115656. doi:10.1371/journal.pone.0115656. [PubMed][CrossRef]
52. Soto-Azat C, Clarke BT, Fisher MC, Walker SF, Cunningham AA. 2010. Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers Distrib 16:126–131. [CrossRef]
53. Fisher MC, Garner TWJ. 2007. The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol Rev 21:2–9. [CrossRef]
54. Schloegel LM, Picco A, Kilpatrick AM, Hyatt A, Daszak P. 2009. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biol Conserv 142:1420–1426. [CrossRef]
55. Kolby JE, Smith KM, Berger L, Karesh WB, Preston A, Pessier AP, Skerratt LF. 2014. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. PLoS One 9:e90750. doi:10.1371/journal.pone.0090750. [PubMed][CrossRef]
56. Phillott AD, Speare R, Hines HB, Skerratt LF, Meyer E, McDonald KR, Cashins SD, Mendez D, Berger L. 2010. Minimising exposure of amphibians to pathogens during field studies. Dis Aquat Organ 92:175–185. [PubMed][CrossRef]
57. Johnson ML, Speare R. 2005. Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Dis Aquat Organ 65:181–186. [PubMed][CrossRef]
58. Schloegel LM, Daszak P, Cunningham AA, Speare R, Hill B. 2010. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment. Dis Aquat Organ 92:101–108. [PubMed][CrossRef]
59. McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB, McKenzie VJ, Richards-Zawacki CL, Venesky MD, Rohr JR. 2013. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc Natl Acad Sci USA 110:210–215. [PubMed][CrossRef]
60. Brannelly LA, McMahon TA, Hinton M, Lenger D, Richards-Zawacki CL. 2015. Batrachochytrium dendrobatidis in natural and farmed Louisiana crayfish populations: prevalence and implications. Dis Aquat Organ 112:229–235. [PubMed][CrossRef]
61. Shapard EJ, Moss AS, San Francisco MJ. 2012. Batrachochytrium dendrobatidis can infect and cause mortality in the nematode Caenorhabditis elegans. Mycopathologia 173:121–126. [PubMed][CrossRef]
62. Webb R, Mendez D, Berger L, Speare R. 2007. Additional disinfectants effective against the amphibian chytrid fungus Batrachochytrium dendrobatidis. Dis Aquat Organ 74:13–16. [PubMed][CrossRef]
63. Cashins SD, Skerratt LF, Alford RA, Campbell RA. 2008. Sodium hypochlorite denatures the DNA of the amphibian chytrid fungus Batrachochytrium dendrobatidis. Dis Aquat Organ 80:63–67. [PubMed][CrossRef]
64. Mendez D, Webb R, Berger L, Speare R. 2008. Survival of the amphibian chytrid fungus Batrachochytrium dendrobatidis on bare hands and gloves: hygiene implications for amphibian handling. Dis Aquat Organ 82:97–104. [PubMed][CrossRef]
65. Rowley JJL, Chan SKF, Tang WS, Speare R, Skerratt LF, Alford RA, Cheung KS, Ho CY, Campbell R. 2007. Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade. Dis Aquat Organ 78:87–95. [PubMed][CrossRef]
66. Kolby JE, Ramirez SD, Berger L, Richards-Hrdlicka KL, Jocque M, Skerratt LF. 2015a. Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS One 10:e0125386. doi:10.1371/journal.pone.0125386. [CrossRef]
67. Cummer MR, Green DE, O’Neill EM. 2005. Aquatic chytrid pathogen detected in a terrestrial plethodontid salamander. Herpetol Rev 36:248–249.
68. Weinstein SB. 2009. An aquatic disease on a terrestrial salamander: individual and population level effects of the amphibian chytrid fungus, Batrachochytrium dendrobatidis, on Batrachoseps attenuatus (Plethodontidae). Copeia 4:653–660. [CrossRef]
69. Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M, Kouete MT, Tapley B, Orton F, Daniel OZ, Wynne F, Flach E, Müller H, Menegon M, Stephen I, Browne RK, Fisher MC, Cunningham AA, Garner TW. 2013. Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). EcoHealth 10:173–183. [PubMed][CrossRef]
70. Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, Haesebrouck F, Martel A. 2012. Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS One 7:e35038. doi:10.1371/journal.pone.0035038. [PubMed][CrossRef]
71. Reeder NMM, Pessier AP, Vredenburg VT. 2012. A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7:e33567. doi:10.1371/journal.pone.0033567. [CrossRef]
72. Shin J, Bataille A, Kosch TA, Waldman B. 2014. Swabbing often fails to detect amphibian chytridiomycosis under conditions of low infection load. PLoS One 9:e111091. doi:10.1371/journal.pone.0111091. [PubMed][CrossRef]
73. Griffin DW. 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477. [PubMed][CrossRef]
74. Kellogg CA, Griffin DW. 2006. Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644. [PubMed][CrossRef]
75. Kolby JE, Ramirez SD, Berger L, Griffin DW, Jocque M, Skerratt LF. 2015. Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible. Aerobiologia 31:411–419. [CrossRef]
76. Defenders of Wildlife (DOW). 2009. Petition: To List All Live Amphibians in Trade as Injurious Unless Free of Batrachochytrium dendrobatidis. 9 September 2009. http://www.defenders.org/publications/petition_to_interior_secretary_salazar.pdf.
77. Fowler AJ, Lodge DM, Hsia JF. 2007. Failure of the Lacey Act to protect US ecosystems against animal invasions. Front Ecol Environ 5:353–359. [CrossRef]
78. Simberloff D. 2005. The politics of assessing risk for biological invasions: the USA as a case study. Trends Ecol Evol 20:216–222. [PubMed][CrossRef]
79. Pessier AP, Mendelson JR (ed). 2010. A Manual for Control of Infectious Diseases in Amphibian Survival Assurance Colonies and Reintroduction Programs. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN.
80. Brannelly LA, Richards-Zawacki CL, Pessier AP. 2012. Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Dis Aquat Organ 101:95–104. [PubMed][CrossRef]
81. Holden WM, Fites JS, Reinert LK, Rollins-Smith LA. 2014. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. Fungal Biol 118:48–60. [PubMed][CrossRef]
82. Bishop PJ, Speare R, Poulter R, Butler M, Speare BJ, Hyatt A, Olsen V, Haigh A. 2009. Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi. Dis Aquat Organ 84:9–15. [PubMed][CrossRef]
83. Woodhams DC, Alford RA, Marantelli G. 2003. Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Organ 55:65–67. [PubMed][CrossRef]
84. Berger L, Speare R, Hines HB, Marantelli G, Hyatt AD, McDonald KR, Skerratt LF, Olsen V, Clarke JM, Gillespie G, Mahony M, Sheppard N, Williams C, Tyler MJ. 2004. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J 82:434–439. [PubMed][CrossRef]
85. Brannelly L, Berger L, Marantelli G, Skerratt LF. 2015. Low humidity is a failed treatment option for chytridiomycosis in the critically endangered southern corroboree frog. Wildl Res 42:44–49. [CrossRef]
86. Cashins SD, Grogan LF, McFadden M, Hunter D, Harlow PS, Berger L, Skerratt LF. 2013. Prior infection does not improve survival against the amphibian disease chytridiomycosis. PLoS One 8:e56747. doi:10.1371/journal.pone.0056747. [PubMed][CrossRef]
87. McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR. 2014. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–227. [PubMed][CrossRef]
88. Harris RN, James TY, Lauer A, Simon MA, Patel A. 2006. Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. J Herpetoletol 3:53–56. [CrossRef]
89. Becker MH, Harris RN. 2010. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5:e10957. doi:10.1371/journal.pone.0010957. [CrossRef]
90. Brannelly LA, Hunter DA, Skerratt LF, Scheele BC, Lenger D, McFadden MS, Harlow PS, Berger L. 2015. Chytrid infection and post-release fitness in the reintroduction of an endangered alpine tree frog. Anim Conserv [Epub ahead of print.] doi:101111/acv12230.
91. Geiger CC. 2013. Developing methods to mitigate chytridiomycosis: an emerging disease of amphibians. Dissertation. Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland.
92. Lubick N. 2010. Ecology: emergency medicine for frogs. Nature 465:680–681. [PubMed][CrossRef]
93. Kolby JE. 2014. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar. PLoS One 9:e89660. doi:10.1371/journal.pone.0089660. [PubMed][CrossRef]
94. Kolby JE, Smith KM, Ramirez SD, Rabemananjara F, Pessier AP, Brunner JL, Goldberg CS, Berger L, Skerratt LF. 2015. Rapid response to evaluate the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in wild amphibian populations in Madagascar. PLoS One 10:e0125330. doi:10.1371/journal.pone.0125330. [CrossRef]
95. Bletz MC, Rosa GM, Andreone F, Courtois EA, Schmeller DS, Rabibisoa NHC, Rabemananjara FCE, Raharivololoniaina L, Vences M, Weldon C, Edmonds D, Raxworthy CJ, Harris RN, Fisher MC, Crottini A. 2015. Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Sci Rep 5:8633. [PubMed][CrossRef]
96. Searle CL, Mendelson JR III, Green LE, Duffy MA. 2013. Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles. Ecol Evol 3:4129–4138. [PubMed][CrossRef]
97. Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, McFadden MS, Marantelli G, Skerratt LF, Driscoll DA. 2014. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv Biol 28:1195–1205. [PubMed][CrossRef]
98. Roznik EA, Sapsford SJ, Pike DA, Schwarzkopf L, Alford RA. 2015. Natural disturbance reduces disease risk in endangered rainforest frog populations. Sci Rep 5:13472. [PubMed][CrossRef]
99. Berger L. 2001. Diseases in Australian frogs. Dissertation. James Cook University, Townsville, Australia.
100. Johnson ML, Speare R. 2003. Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis 9:922–925. [PubMed][CrossRef]
101. Blehert DS. 2012. Fungal disease and the developing story of bat white-nose syndrome. PLoS Pathog 8:e1002779. doi:10.1371/journal.ppat.1002779. [PubMed][CrossRef]
102. Allender MC, Raudabaugh DB, Gleason FH, Miller AN. 2015. The natural history, ecology, and epidemiology of Ophidiomyces ophiodiicola and its potential impact on free-ranging snake populations. Fungal Ecol 17:187–196. [CrossRef]
103. Spitzen-van der Sluijs A, Spikmans F, Bosman W, de Zeeuw M, van der Meij T, Goverse E, Kik M, Pasmans F, Martel A. 2013. Rapid enigmatic decline drives the fire salamander (Salamandra salamndra) to the edge of extinction in The Netherlands. Amphib-Reptil 34:233–239.
104. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lötters S, Wombwell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TTT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F. 2014. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631. [PubMed][CrossRef]
105. Cunningham AA, Beckmann K, Perkins M, Fitzpatrick L, Cromie R, Redbond J, O’Brien MF, Ghosh P, Shelton J, Fisher MC. 2015. Emerging disease in UK amphibians. Vet Rec 176:468. [PubMed][CrossRef]
106. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F. 2013. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci USA 110:15325–15329. [PubMed][CrossRef]
107. Daszak P, Cunningham AA, Hyatt AD. 2000. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449. [PubMed][CrossRef]
microbiolspec.EI10-0004-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.EI10-0004-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EI10-0004-2015
2016-05-13
2017-11-25

Abstract:

The spread of amphibian chytrid fungus, , is associated with the emerging infectious wildlife disease chytridiomycosis. This fungus poses an overwhelming threat to global amphibian biodiversity and is contributing toward population declines and extinctions worldwide. Extremely low host-species specificity potentially threatens thousands of the 7,000+ amphibian species with infection, and hosts in additional classes of organisms have now also been identified, including crayfish and nematode worms.

Soon after the discovery of in 1999, it became apparent that this pathogen was already pandemic; dozens of countries and hundreds of amphibian species had already been exposed. The timeline of ’s global emergence still remains a mystery, as does its point of origin. The reason why seems to have only recently increased in virulence to catalyze this global disease event remains unknown, and despite 15 years of investigation, this wildlife pandemic continues primarily uncontrolled. Some disease treatments are effective on animals held in captivity, but there is currently no proven method to eradicate from an affected habitat, nor have we been able to protect new regions from exposure despite knowledge of an approaching “wave” of and ensuing disease.

International spread of is largely facilitated by the commercial trade in live amphibians. Chytridiomycosis was recently listed as a globally notifiable disease by the World Organization for Animal Health, but few countries, if any, have formally adopted recommended measures to control its spread. Wildlife diseases continue to emerge as a consequence of globalization, and greater effort is urgently needed to protect global health.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Detection of the amphibian chytrid fungus as of August 2015, as reported in the literature. Black shading represents one or more confirmed detections of illustrated at the country level and should be interpreted conservatively.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Minimum global distribution of amphibian chytrid fungus pre-1935. The exportation of from Africa began in 1935, marking the emergence of the modern international amphibian trade. Black shading represents detection in archived museum specimens. Shaded countries and year of presence include United States (1888), Brazil (1894), Japan (1902), North Korea (1911), and Cameroon (1933).

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0004-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error