1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Mobilization of Carbapenemase-Mediated Resistance in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Amy Mathers1
  • Editors: W. Michael Scheld3, James M. Hughes4, Richard J. Whitley5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Diseases and International Health, Department of Medicine; 2: Clinical Microbiology, Department of Pathology, University of Virginia Health System, Charlottesville, VA 22911; 3: Department of Infectious Diseases, University of Virginia Health System, Charlottesville, VA; 4: Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA; 5: Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
  • Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015
  • Received 14 December 2015 Accepted 17 December 2015 Published 03 June 2016
  • Amy Mathers, ajm5b@virginia.edu
image of Mobilization of Carbapenemase-Mediated Resistance in <span class="jp-italic">Enterobacteriaceae</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Mobilization of Carbapenemase-Mediated Resistance in , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/EI10-0010-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/EI10-0010-2015-2.gif
  • Abstract:

    There has been a dramatic increase in the last decade in the number of carbapenem-resistant , often leaving patients and their providers with few treatment options and resultant poor outcomes when an infection develops. The majority of the carbapenem resistance is mediated by bacterial acquisition of one of three carbapenemases ( carbapenemase [KPC], oxacillinase-48-like [OXA-48], and the New Delhi metallo-β-lactamase [NDM]). Each of these enzymes has a unique global epidemiology and microbiology. The genes which encode the most globally widespread carbapenemases are typically carried on mobile pieces of DNA which can be freely exchanged between bacterial strains and species via horizontal gene transfer. Unfortunately, most of the antimicrobial surveillance systems target specific strains or species and therefore are not well equipped for examining genes of drug resistance. Examination of not only the carbapenemase gene itself but also the genetic context which can predispose a gene to mobilize within a diversity of species and environments will likely be central to understanding the factors contributing to the global dissemination of carbapenem resistance. Using the three most prevalent carbapenemase genes as examples, this chapter highlights the potential impact the associated genetic mobile elements have on the epidemiology and microbiology for each carbapenemase. Understanding how a carbapenemase gene mobilizes through a bacterial population will be critical for detection methods and ultimately inform infection control practices. Understanding gene mobilization and tracking will require novel approaches to surveillance, which will be required to slow the spread of this emerging resistance.

  • Citation: Mathers A. 2016. Mobilization of Carbapenemase-Mediated Resistance in . Microbiol Spectrum 4(3):EI10-0010-2015. doi:10.1128/microbiolspec.EI10-0010-2015.

Key Concept Ranking

Horizontal Gene Transfer
0.47084033
Urinary Tract Infections
0.4644463
Genetic Elements
0.4195185
Multilocus Sequence Typing
0.40639052
Klebsiella pneumoniae
0.40000004
0.47084033

References

1. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. 2008. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106. [PubMed][CrossRef]
2. Centers for Disease Control and Prevention. 2013. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 62:165–170. [PubMed]
3. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. 2014. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 20:1170–1175. [PubMed][CrossRef]
4. World Health Organization. 2014. Antimicrobial Resistance: A Global Report on Surviellence. World Health Organization, Geneva, Switzerland.
5. Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention, Atlanta, GA.
6. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. [PubMed][CrossRef]
7. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. 2008. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29:996–1011. [PubMed][CrossRef]
8. Solomkin JS, Yellin AE, Rotstein OD, Christou NV, Dellinger EP, Tellado JM, Malafaia O, Fernandez A, Choe KA, Carides A, Satishchandran V, Teppler H. 2003. Ertapenem versus piperacillin/tazobactam in the treatment of complicated intraabdominal infections: results of a double-blind, randomized comparative phase III trial. Ann Surg 237:235–245. [PubMed][CrossRef]
9. Biedenbach DJ, Moet GJ, Jones RN. 2004. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn Microbiol Infect Dis 50:59–69. [PubMed][CrossRef]
10. Martin GS, Mannino DM, Eaton S, Moss M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554. [PubMed][CrossRef]
11. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. 2005. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest 128:3854–3862. [PubMed][CrossRef]
12. Gaynes R, Edwards JR. 2005. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41:848–854. [PubMed][CrossRef]
13. Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. 2008. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 52:1413–1418. [PubMed][CrossRef]
14. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, Schlaeffer F, Sherf M. 2009. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 30:972–976. [PubMed][CrossRef]
15. Neonakis IK, Samonis G, Messaritakis H, Baritaki S, Georgiladakis A, Maraki S, Spandidos DA. 2010. Resistance status and evolution trends of Klebsiella pneumoniae isolates in a university hospital in Greece: ineffectiveness of carbapenems and increasing resistance to colistin. Chemotherapy 56:448–452. [PubMed][CrossRef]
16. Poirel L, Pitout JD, Nordmann P. 2007. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol 2:501–512. [PubMed][CrossRef]
17. Thomson KS. 2010. Extended-spectrum-beta-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 48:1019–1025. [PubMed][CrossRef]
18. Bush K. 2010. Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13:558–564. [PubMed][CrossRef]
19. Tato M, Coque TM, Ruiz-Garbajosa P, Pintado V, Cobo J, Sader HS, Jones RN, Baquero F, Canton R. 2007. Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain: toward endemicity? Clin Infect Dis 45:1171–1178. [PubMed][CrossRef]
20. Mathers AJ, Cox HL, Bonatti H, Kitchel B, Brassinga AK, Wispelwey B, Sawyer RG, Pruett TL, Hazen KC, Patel JB, Sifri CD. 2009. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. Transpl Infect Dis 11:257–265. [PubMed][CrossRef]
21. Carattoli A, Aschbacher R, March A, Larcher C, Livermore DM, Woodford N. 2010. Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. J Antimicrob Chemother 65:2070–2075. [PubMed][CrossRef]
22. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N. 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602. [PubMed][CrossRef]
23. Moellering RC, Jr. 2010. NDM-1—a cause for worldwide concern. N Engl J Med 363:2377–2379. [PubMed][CrossRef]
24. Mathers AJ, Cox HL, Kitchel B, Bonatti H, Brassinga AK, Carroll J, Scheld WM, Hazen KC, Sifri CD. 2011. Molecular dissection of an outbreak of carbapenem-resistant Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through a promiscuous plasmid. mBio 2:e00204-11. [PubMed][CrossRef]
25. Dupont H, Gaillot O, Goetgheluck AS, Plassart C, Emond JP, Lecuru M, Gaillard N, Derdouri S, Lemaire B, Girard de Courtilles M, Cattoir V, Mammeri H. 2016. Molecular characterization of carbapenem-non-susceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother 60:215–221. [PubMed][CrossRef]
26. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. [PubMed][CrossRef]
27. Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Quale J. 2005. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435. [PubMed][CrossRef]
28. Navon-Venezia S, Leavitt A, Schwaber MJ, Rasheed JK, Srinivasan A, Patel JB, Carmeli Y. 2009. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother 53:818–820. [PubMed][CrossRef]
29. Shen P, Wei Z, Jiang Y, Du X, Ji S, Yu Y, Li L. 2009. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother 53:4333–4338. [PubMed][CrossRef]
30. Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP, Colombian Nosocomial Resistance Study Group. 2007. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 51:1553–1555. [PubMed][CrossRef]
31. da Silva RM, Traebert J, Galato D. 2012. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther 12:663–671. [PubMed][CrossRef]
32. Papadimitriou-Olivgeris M, Marangos M, Fligou F, Christofidou M, Bartzavali C, Anastassiou ED, Filos KS. 2012. Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. J Antimicrob Chemother 67:2976–2981. [PubMed][CrossRef]
33. Adler A, Hussein O, Ben-David D, Masarwa S, Navon-Venezia S, Schwaber MJ, Carmeli Y, Post-Acute-Care Hospital Carbapenem-Resistant Enterobacteriaceae Working Group. 2015. Persistence of Klebsiella pneumoniae ST258 as the predominant clone of carbapenemase-producing Enterobacteriaceae in post-acute-care hospitals in Israel, 2008–13. J Antimicrob Chemother 70:89–92. [PubMed][CrossRef]
34. Poirel L, Heritier C, Tolun V, Nordmann P. 2004. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22. [PubMed][CrossRef]
35. Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de Castro R, Bauraing C, Gerard M, Verbruggen AM, Deplano A, Denis O, Bogaerts P. 2012. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 39:168–172. [PubMed][CrossRef]
36. Zowawi HM, Sartor AL, Balkhy HH, Walsh TR, Al Johani SM, AlJindan RY, Alfaresi M, Ibrahim E, Al-Jardani A, Al-Abri S, Al Salman J, Dashti AA, Kutbi AH, Schlebusch S, Sidjabat HE, Paterson DL. 2014. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother 58:3085–3090. [PubMed][CrossRef]
37. Palacios-Baena ZR, Oteo J, Conejo C, Larrosa MN, Bou G, Fernández-Martínez M, González-López JJ, Pintado V, Martínez-Martínez L, Merino M, Pomar V, Mora-Rillo M, Rivera MA, Oliver A, Ruiz-Carrascoso G, Ruiz-Garbajosa P, Zamorano L, Bautista V, Ortega A, Morales I, Pascual Á, Campos J, Rodríguez-Baño J, GEIH-GEMARA (SEIMC) and REIPI Group for CPE. 2016. Comprehensive clinical and epidemiological assessment of colonisation and infection due to carbapenemase-producing Enterobacteriaceae in Spain. J Infect 72:152–160. [PubMed][CrossRef]
38. Cho SY, Huh HJ, Baek JY, Chung NY, Ryu JG, Ki CS, Chung DR, Lee NY, Song JH. 2015. Klebsiella pneumoniae co-producing NDM-5 and OXA-181 carbapenemases, South Korea. Emerg Infect Dis 21:1088–1089. [PubMed][CrossRef]
39. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. 2011. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob Agents Chemother 55:1274–1278. [PubMed][CrossRef]
40. Kayama S, Koba Y, Shigemoto N, Kuwahara R, Kakuhama T, Kimura K, Hisatsune J, Onodera M, Yokozaki M, Ohge H, Sugai M. 2015. Imipenem-susceptible, meropenem-resistant Klebsiella pneumoniae producing OXA-181 in Japan. Antimicrob Agents Chemother 59:1379–1380. [PubMed][CrossRef]
41. Walsh TR, Weeks J, Livermore DM, Toleman MA. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. [PubMed][CrossRef]
42. Wailan AM, Sartor AL, Zowawi HM, Perry JD, Paterson DL, Sidjabat HE. 2015. Genetic contexts of blaNDM-1 in patients carrying multiple NDM-producing strains. Antimicrob Agents Chemother 59:7405–7410. [PubMed][CrossRef]
43. Epson EE, Pisney LM, Wendt JM, MacCannell DR, Janelle SJ, Kitchel B, Rasheed JK, Limbago BM, Gould CV, Kallen AJ, Barron MA, Bamberg WM. 2014. Carbapenem-resistant Klebsiella pneumoniae producing New Delhi metallo-β-lactamase at an acute care hospital, Colorado, 2012. Infect Control Hosp Epidemiol 35:390–397. [PubMed][CrossRef]
44. Clinical Laboratory and Standards Institute. 2012. Performance Standards for Antimicrobial Susceptibility Testing. M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA.
45. McGettigan SE, Andreacchio K, Edelstein PH. 2009. Specificity of ertapenem susceptibility screening for detection of Klebsiella pneumoniae carbapenemases. J Clin Microbiol 47:785–786. [PubMed][CrossRef]
46. Tenover FC, Kalsi RK, Williams PP, Carey RB, Stocker S, Lonsway D, Rasheed JK, Biddle JW, McGowan JE, Jr, Hanna B. 2006. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis 12:1209–1213. [PubMed][CrossRef]
47. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, Carey RB, Thompson A, Stocker S, Limbago B, Patel JB. 2007. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 45:2723–2725. [PubMed][CrossRef]
48. Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, Georgousi K, Tzouvelekis LS, Tassios PT, Bamia C, Petrikkos G. 2009. Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 53:1868–1873. [PubMed][CrossRef]
49. Weisenberg SA, Morgan DJ, Espinal-Witter R, Larone DH. 2009. Clinical outcomes of patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae after treatment with imipenem or meropenem. Diagn Microbiol Infect Dis 64:233–235. [PubMed][CrossRef]
50. Falcone M, Mezzatesta ML, Perilli M, Forcella C, Giordano A, Cafiso V, Amicosante G, Stefani S, Venditti M. 2009. Infections with VIM-1 metallo-β-lactamase-producing Enterobacter cloacae and their correlation with clinical outcome. J Clin Microbiol 47:3514–3519. [PubMed][CrossRef]
51. Daikos GL, Markogiannakis A. 2011. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect 17:1135–1141. [PubMed][CrossRef]
52. Clinical Laboratory and Standards Institute. 2010. Performance Standards for Antimicrobial Susceptibility Testing. M100-S20 U. Clinical and Laboratory Standards Institute, Wayne, PA.
53. Clinical Laboratory and Standards Institute. 2009. Performance Standards for Antimicrobial Susceptibility Testing. M100-S19. Clinical and Laboratory Standards Institute, Wayne, PA.
54. Clinical Laboratory and Standards Institute. 2010. Performance Standards for Antimicrobial Susceptibility Testing. M100-S20, 20th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
55. Ruiz E, Ocampo-Sosa AA, Rezusta A, Revillo MJ, Roman E, Torres C, Martinez-Martinez L. 2012. Acquisition of carbapenem resistance in multiresistant Klebsiella pneumoniae strains harbouring blaCTX-M-15, qnrS1 and aac(6′)-Ib-cr genes. J Med Microbiol 61(Part 5):672–677. [PubMed][CrossRef]
56. Doumith M, Ellington MJ, Livermore DM, Woodford N. 2009. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 63:659–667. [PubMed][CrossRef]
57. Bennett JW, Mende K, Herrera ML, Yu X, Lewis JS, 2nd, Wickes BL, Jorgensen JH, Murray CK. 2010. Mechanisms of carbapenem resistance among a collection of Enterobacteriaceae clinical isolates in a Texas city. Diagn Microbiol Infect Dis 66:445–448. [PubMed][CrossRef]
58. Davies TA, Marie Queenan A, Morrow BJ, Shang W, Amsler K, He W, Lynch AS, Pillar C, Flamm RK. 2011. Longitudinal survey of carbapenem resistance and resistance mechanisms in Enterobacteriaceae and non-fermenters from the USA in 2007–09. J Antimicrob Chemother 66:2298–2307. [PubMed][CrossRef]
59. Garcia-Sureda L, Domenech-Sanchez A, Barbier M, Juan C, Gasco J, Alberti S. 2011. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 55:4742–4747. [PubMed][CrossRef]
60. García-Fernández A, Miriagou V, Papagiannitsis CC, Giordano A, Venditti M, Mancini C, Carattoli A. 2010. An ertapenem-resistant extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother 54:4178–4184. [PubMed][CrossRef]
61. Mathers AJ, Hazen KC, Carroll J, Yeh AJ, Cox HL, Bonomo RA, Sifri CD. 2013. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the New World. J Clin Microbiol 51:680–683. [PubMed][CrossRef]
62. Mathers AJ, Carroll J, Sifri CD, Hazen KC. 2013. Modified Hodge test versus indirect carbapenemase test: prospective evaluation of a phenotypic assay for detection of Klebsiella pneumoniae carbapenemase (KPC) in Enterobacteriaceae. J Clin Microbiol 51:1291–1293. [PubMed][CrossRef]
63. Centers for Disease Control and Prevention. 2009. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 58:256–260. [PubMed]
64. Mathers AJ, Poulter M, Dirks D, Carroll J, Sifri CD, Hazen KC. 2014. Clinical microbiology costs for methods of active surveillance for Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol 35:350–355. [PubMed][CrossRef]
65. Mathers AJ, Peirano G, Pitout JD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591. [PubMed][CrossRef]
66. Adler A, Paikin S, Sterlin Y, Glick J, Edgar R, Aronov R, Schwaber MJ, Carmeli Y. 2012. A swordless knight: epidemiology and molecular characteristics of the blaKPC-negative sequence type 258 Klebsiella pneumoniae clone. J Clin Microbiol 50:3180–3185. [PubMed][CrossRef]
67. Poirel L, Potron A, Nordmann P. 2012. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 67:1597–1606. [PubMed][CrossRef]
68. Poirel L, Bonnin RA, Nordmann P. 2012. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 56:559–562. [PubMed][CrossRef]
69. Potron A, Poirel L, Nordmann P. 2014. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother 58:467–471. [PubMed][CrossRef]
70. Johnson AP, Woodford N. 2013. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499–513. [PubMed][CrossRef]
71. Dortet L, Poirel L, Nordmann P. 2014. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014:249856. [PubMed][CrossRef]
72. Toleman MA, Bugert JJ, Nizam SA. 2015. Extensively drug-resistant New Delhi metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012. Emerg Infect Dis 21:1027–1030. [PubMed][CrossRef]
microbiolspec.EI10-0010-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.EI10-0010-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EI10-0010-2015
2016-06-03
2017-04-24

Abstract:

There has been a dramatic increase in the last decade in the number of carbapenem-resistant , often leaving patients and their providers with few treatment options and resultant poor outcomes when an infection develops. The majority of the carbapenem resistance is mediated by bacterial acquisition of one of three carbapenemases ( carbapenemase [KPC], oxacillinase-48-like [OXA-48], and the New Delhi metallo-β-lactamase [NDM]). Each of these enzymes has a unique global epidemiology and microbiology. The genes which encode the most globally widespread carbapenemases are typically carried on mobile pieces of DNA which can be freely exchanged between bacterial strains and species via horizontal gene transfer. Unfortunately, most of the antimicrobial surveillance systems target specific strains or species and therefore are not well equipped for examining genes of drug resistance. Examination of not only the carbapenemase gene itself but also the genetic context which can predispose a gene to mobilize within a diversity of species and environments will likely be central to understanding the factors contributing to the global dissemination of carbapenem resistance. Using the three most prevalent carbapenemase genes as examples, this chapter highlights the potential impact the associated genetic mobile elements have on the epidemiology and microbiology for each carbapenemase. Understanding how a carbapenemase gene mobilizes through a bacterial population will be critical for detection methods and ultimately inform infection control practices. Understanding gene mobilization and tracking will require novel approaches to surveillance, which will be required to slow the spread of this emerging resistance.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1a
FIGURE 1a

Global epidemiology of three major carbapenemase enzymes in . Distribution of KPC; distribution of OXA-48; distribution of NDM. Legend colors (darkest to lightest): endemic, multiple outbreaks, sporadic, unknown.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1b
FIGURE 1b

Global epidemiology of three major carbapenemase enzymes in . Distribution of KPC; distribution of OXA-48; distribution of NDM. Legend colors (darkest to lightest): endemic, multiple outbreaks, sporadic, unknown.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1c
FIGURE 1c

Global epidemiology of three major carbapenemase enzymes in . Distribution of KPC; distribution of OXA-48; distribution of NDM. Legend colors (darkest to lightest): endemic, multiple outbreaks, sporadic, unknown.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic of mechanisms of mobility of carbapenemase genes in .

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Ambler class β-lactamases with efficient carbapenem hydrolysis found in

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.EI10-0010-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error