1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Soil Microbial Forensics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Tasha M. Santiago-Rodriguez1, Raúl J. Cano3
  • Editors: Raúl J. Cano5, Gary A. Toranzos6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biology; 2: Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407; 3: Department of Biology; 4: Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407; 5: California Polytechnic State University, San Luis Obispo, CA; 6: University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.EMF-0007-2015
  • Received 20 October 2015 Accepted 22 October 2015 Published 22 July 2016
  • Tasha M. Santiago-Rodriguez, tsantiagoro@gmail.com
image of Soil Microbial Forensics
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Soil Microbial Forensics, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/EMF-0007-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/EMF-0007-2015-2.gif
  • Abstract:

    Soil microbial forensics can be defined as the study of how microorganisms can be applied to forensic investigations. The field of soil microbial forensics is of increasing interest and applies techniques commonly used in diverse disciplines in order to identify microbes and determine their abundances, complexities, and interactions with soil and surrounding objects. Emerging new techniques are also providing insights into the complexity of microbes in soil. Soil may harbor unique microbes that may reflect specific physical and chemical characteristics indicating site specificity. While applications of some of these techniques in the field of soil microbial forensics are still in early stages, we are still gaining insight into how microorganisms may be more robustly used in forensic investigations.

  • Citation: Santiago-Rodriguez T, Cano R. 2016. Soil Microbial Forensics. Microbiol Spectrum 4(4):EMF-0007-2015. doi:10.1128/microbiolspec.EMF-0007-2015.

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.4224767
Denaturing Gradient Gel Electrophoresis
0.4224767
Restriction Fragment Length Polymorphism
0.4224767
Denaturing Gradient Gel Electrophoresis
0.4224767
0.4224767

References

1. Zala K. 2007. Forensic science. Dirty science: soil forensics digs into new techniques. Science 318:386–387. [PubMed][CrossRef]
2. Ruffell A. 2010. Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Sci Int 202:9–12. [PubMed][CrossRef]
3. Alan G, Sarah JP. 2012. Microbes as forensic indicators. Trop Biomed 29:311–330. [PubMed]
4. Zala K. 2007. Forensic science. Dirty science: soil forensics digs into new techniques. Science 318:386–387. [PubMed][CrossRef]
5. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC. 2007. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479. [PubMed][CrossRef]
6. Birkeland PW. 1999. Soils and geomorphology, vol 3. Oxford University Press, New York, NY. [PubMed]
7. Taylor SA, Ashcroft GL. 1972. Physical edaphology. The physics of irrigated and nonirrigated soils. WH Freeman, San Francisco, CA.
8. Schnitze M. 1965. Contribution of organic matter to cation exchange capacity of soils. Nature 207:667–668. [CrossRef]
9. Sims JL, Patrick WH. 1978. Distribution of micronutrient cations in soil under conditions of varying redox potential and ph. Soil Sci Soc Am J 42:258–262. [CrossRef]
10. Dean LA, Rubins EJ. 1947. Anion exchange in soils. 1. Exchangeable phosphorus and the anion-exchange capacity. Soil Sci 63:377–387. [CrossRef]
11. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM. 2011. Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324. [PubMed][CrossRef]
12. Daniel R. 2005. The metagenomics of soil. Nat Rev Microbiol 3:470–478. [PubMed][CrossRef]
13. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. [PubMed][CrossRef]
14. Hopkins DW, Wiltshire PEJ, Turner BD. 2000. Microbial characteristics of soils from graves: arm investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14:283–288. [CrossRef]
15. Santiago-Rodriguez TM, Toranzos GA, Bayman P, Massey SE, Cano RJ. 2013. Sociomicrobiome of wood decay in a tropical rain forest: unraveling complexity. Springerplus 2:435. [PubMed][CrossRef]
16. Li J, Sayeed S, McClane BA. 2007. Prevalence of enterotoxigenic Clostridium perfringens isolates in Pittsburgh (Pennsylvania) area soils and home kitchens. Appl Environ Microbiol 73:7218–7224. [PubMed][CrossRef]
17. Horswell J, Cordiner SJ, Maas EW, Martin TM, Sutherland KB, Speir TW, Nogales B, Osborn AM. 2002. Forensic comparison of soils by bacterial community DNA profiling. J Forensic Sci 47:350–353. [PubMed][CrossRef]
18. Hawksworth DL, Wiltshire PEJ. 2011. Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int 206:1–11. [PubMed][CrossRef]
19. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB. 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066. [PubMed][CrossRef]
20. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. 2011. Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. [PubMed][CrossRef]
21. Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltenstern S, Richter A, Sessitsch A. 2011. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402. [PubMed][CrossRef]
22. Verhamme DT, Prosser JI, Nicol GW. 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071. [PubMed][CrossRef]
23. Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ. 2010. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394. [PubMed][CrossRef]
24. Garcia AD, Aravind L, Koonin EV, Moss B. 2000. Bacterial-type DNA Holliday junction resolvases in eukaryotic viruses. Proc Natl Acad Sci U S A 97:8926–8931. [PubMed][CrossRef]
25. Brüssow H, Hendrix RW. 2002. Phage genomics: small is beautiful. Cell 108:13–16. [PubMed][CrossRef]
26. La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D. 2008. The virophage as a unique parasite of the giant mimivirus. Nature 455:100–104. [PubMed][CrossRef]
27. Pearson H. 2008. ‘Virophage’ suggests viruses are alive. Nature 454:677. [PubMed][CrossRef]
28. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L, McDaniel L, Moran MA, Nelson KE, Nilsson C, Olson R, Paul J, Brito BR, Ruan Y, Swan BK, Stevens R, Valentine DL, Thurber RV, Wegley L, White BA, Rohwer F. 2008. Functional metagenomic profiling of nine biomes. Nature 452:629–632. [PubMed][CrossRef]
29. Ackermann HW. 1987. Bacteriophage taxonomy in 1987. Microbiol Sci 4:214–218. [PubMed]
30. Symonds EM, Griffin DW, Breitbart M. 2009. Eukaryotic viruses in wastewater samples from the United States. Appl Environ Microbiol 75:1402–1409. [PubMed][CrossRef]
31. Brüssow H, Bruttin A. 1995. Characterization of a temperate Streptococcus thermophilus bacteriophage and its genetic relationship with lytic phages. Virology 212:632–640. [PubMed][CrossRef]
32. Santiago-Rodriguez TM, Marcos P, Monteiro S, Urdaneta M, Santos R, Toranzos GA. 2013. Evaluation of Enterococcus-infecting phages as indices of fecal pollution. J Water Health 11:51–63. [PubMed][CrossRef]
33. Brüssow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. [PubMed][CrossRef]
34. Williamson KE, Radosevich M, Smith DW, Wommack KE. 2007. Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574. [PubMed][CrossRef]
35. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F. 2006. The marine viromes of four oceanic regions. PLoS Biol 4:e368. [PubMed][CrossRef]
36. Robles-Sikisaka R, Ly M, Boehm T, Naidu M, Salzman J, Pride DT. 2013. Association between living environment and human oral viral ecology. ISME J 7:1710–1724. [PubMed][CrossRef]
37. Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT. 2014. Human oral viruses are personal, persistent and gender-consistent. ISME J 8:1753–1767. [PubMed][CrossRef]
38. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT. 2014. Altered oral viral ecology in association with periodontal disease. mBio 5:e01133-14. [PubMed][CrossRef]
39. Eilers KG, Debenport S, Anderson S, Fierer N. 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65. [CrossRef]
40. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EK, Linsenmair KE, Pfeiffer S, Renner S, Schöning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406. [PubMed][CrossRef]
41. Kang IJ, Khan NA, Haque E, Jhung SH. 2011. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions. Chemistry 17:6437–6442. [PubMed][CrossRef]
42. Xiong Y, Yao S, Driess M. 2012. Versatile conversion of N-heterocyclic silylene to silyl metal compounds by insertion of divalent silicon into metal-carbon and metal-hydrogen bonds. Chemistry 18:3316–3320. [PubMed][CrossRef]
43. Turner DA, Goodpaster JV. 2013. The effects of season and soil type on microbial degradation of gasoline residues from incendiary devices. Anal Bioanal Chem 405:1593–1599. [PubMed][CrossRef]
44. Carter DO, Yellowlees D, Tibbett M. 2007. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24. [PubMed][CrossRef]
45. Dicker HJ, Smith DW. 1980. Acetylene-reduction (nitrogen-fixation) in a Delaware, USA salt-marsh. Mar Biol 57:241–250. [CrossRef]
46. Kamberger W. 1977. Regulation of symbiotic nitrogen fixation in root nodules of alfalfa (Medicago sativa) infected with Rhizobium meliloti. Arch Microbiol 115:103–108. [PubMed][CrossRef]
47. Moreno LI, Mills D, Fetscher J, John-Williams K, Meadows-Jantz L, McCord B. 2011. The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. J Microbiol Methods 84:388–393. [PubMed][CrossRef]
48. Elliott ET. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633. [CrossRef]
49. Brookes PC, Mcgrath SP. 1984. Effects of Metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346. [CrossRef]
50. Stockdale EA, Brookes PC. 2006. Detection and quantification of the soil microbial biomass—impacts on the management of agricultural soils. J Agric Sci 144:285–302. [CrossRef]
51. Ingham RE, Trofymow JA, Ingham ER, Coleman DC. 1985. Interactions of bacteria, fungi, and their nematode grazers—effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140. [CrossRef]
52. Santamaría J, Toranzos GA. 2003. Enteric pathogens and soil: a short review. Int Microbiol 6:5–9. [PubMed]
53. Stevens HM. 1984. The stability of some drugs and poisons in putrefying human liver tissues. J Forensic Sci Soc 24:577–589. [PubMed][CrossRef]
54. Lenz EJ, Foran DR. 2010. Bacterial profiling of soil using genus-specific markers and multidimensional scaling. J Forensic Sci 55:1437–1442. [PubMed][CrossRef]
55. Meyers SK, Deng SP, Basta NT, Clarkson WW, Wilber GG. 2007. Long-term explosive contamination in soil: effects on soil microbial community and bioremediation. Soil Sediment Contam 16:61–77. [CrossRef]
56. Janusz A, Kirkbride KP, Scott TL, Naidu R, Perkins MV, Megharaj M. 2003. Microbial degradation of illicit drugs, their precursors, and manufacturing by-products: implications for clandestine drug laboratory investigation and environmental assessment. Forensic Sci Int 134:62–71. [PubMed][CrossRef]
57. Caliz J, Vila X, Martí E, Sierra J, Cruañas R, Garau MA, Montserrat G. 2011. Impact of chlorophenols on microbiota of an unpolluted acidic soil: microbial resistance and biodegradation. FEMS Microbiol Ecol 78:150–164. [PubMed][CrossRef]
58. Manickam N, Pathak A, Saini HS, Mayilraj S, Shanker R. 2010. Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India. J Appl Microbiol 109:1458–1468. [PubMed][CrossRef]
59. Halter D, Cordi A, Gribaldo S, Gallien S, Goulhen-Chollet F, Heinrich-Salmeron A, Carapito C, Pagnout C, Montaut D, Seby F, Van Dorsselaer A, Schaeffer C, Bertin PN, Bauda P, Arsène-Ploetze F. 2011. Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Res Microbiol 162:877–887. [PubMed][CrossRef]
60. Muller EEL, Bringel F, Vuilleumier S. 2011. Dichloromethane-degrading bacteria in the genomic age. Res Microbiol 162:869–876. [PubMed][CrossRef]
61. Macdonald LM, Singh BK, Thomas N, Brewer MJ, Campbell CD, Dawson LA. 2008. Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition. J Appl Microbiol 105:813–821. [PubMed][CrossRef]
62. Macdonald NW, Rediske RR, Scull BT, Wierzbicki D. 2008. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications. J Environ Qual 37:1974–1985. [PubMed][CrossRef]
63. Khola G, Hanif U. 2012. Palynological study of soil sample collected from an archaeological site (Gulabi Bagh) in Lahore, Pakistan. J Anim Plant Sci 22:1113–1117.
64. Ammann K. 1972. Palynological studies on alpine soil profiles in Grimsel Pass. Ber Dtsch Bot Ges 85:11–12.
65. Budowle B, Schutzer SE, Burans JP, Beecher DJ, Cebula TA, Chakraborty R, Cobb WT, Fletcher J, Hale ML, Harris RB, Heitkamp MA, Keller FP, Kuske C, Leclerc JE, Marrone BL, McKenna TS, Morse SA, Rodriguez LL, Valentine NB, Yadev J. 2006. Quality sample collection, handling, and preservation for an effective microbial forensics program. Appl Environ Microbiol 72:6431–6438. [PubMed][CrossRef]
66. Wallenius K, Rita H, Simpanen S, Mikkonen A, Niemi RM. 2010. Sample storage for soil enzyme activity and bacterial community profiles. J Microbiol Methods 81:48–55. [PubMed][CrossRef]
67. Evans MM, Stagner PA, Rooms R. 2003. Maintaining the chain of custody—evidence handling in forensic cases. AORN J 78:563–569. [PubMed][CrossRef]
68. Benninger LA, Carter DO, Forbes SL. 2008. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci Int 180:70–75. [PubMed][CrossRef]
69. Carter DO, Yellowlees D, Tibbett M. 2010. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci Int 200:60–66. [PubMed][CrossRef]
70. Eganhouse RP, Ruth EC, Kaplan IR. 1983. Determination of long-chain alkylbenzenes in environmental samples by argentation thin-layer chromatography high-resolution gas-chromatography and gas-chromatography mass-spectrometry. Anal Chem 55:2120–2126. [CrossRef]
71. Qin BH, Yu BB, Zhang Y, Lin XC. 2009. Residual analysis of organochlorine pesticides in soil by gas chromatograph-electron capture detector (GC-ECD) and gas chromatograph-negative chemical ionization mass spectrometry (GC-NCI-MS). Environ Forensics 10:331–335. [CrossRef]
72. Bhanu R, Rajesh P. 2011. Study on evaluation of available soil micronutrients of soils from different districts of Maharashtra using atomic absorption spectroscopy. Res J Chem Environ 15:978–981.
73. Protz R, Dekalb E, Riecken FF. 1967. Determination of magnesium in Hci solutions of Hf-Hcio4 digests of soil clays by atomic absorption spectroscopy. Soil Sci Soc Am Proc 31:726. [CrossRef]
74. Craig OE, Collins MJ. 2000. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. J Immunol Methods 236:89–97. [PubMed][CrossRef]
75. Moreno LI, Mills DK, Entry J, Sautter RT, Mathee K. 2006. Microbial metagenome profiling using amplicon length heterogeneity-polymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens. J Forensic Sci 51:1315–1322. [PubMed][CrossRef]
76. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396. [PubMed][CrossRef]
77. Macdonald CA, Clark IM, Hirsch PR, Zhao FJ, McGrath SP. 2011. Development of a real-time PCR assay for detection and quantification of Rhizobium leguminosarum bacteria and discrimination between different biovars in zinc-contaminated soil. Appl Environ Microbiol 77:4626–4633. [PubMed][CrossRef]
78. Petric I, Philippot L, Abbate C, Bispo A, Chesnot T, Hallin S, Laval K, Lebeau T, Lemanceau P, Leyval C, Lindström K, Pandard P, Romero E, Sarr A, Schloter M, Simonet P, Smalla K, Wilke BM, Martin-Laurent F. 2011. Inter-laboratory evaluation of the ISO standard 11063 “Soil quality—Method to directly extract DNA from soil samples.” J Microbiol Methods 84:454–460. [PubMed][CrossRef]
79. D’Agostino PA, Hancock JR, Chenier CL. 2004. Packed capillary liquid chromatography-electrospray ionization (tandem) mass spectrometry of mustard hydrolysis products in soil. J Chromatogr A 1058:97–105. [PubMed][CrossRef]
80. Ritchie NJ, Schutter ME, Dick RP, Myrold DD. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl Environ Microbiol 66:1668–1675. [PubMed][CrossRef]
81. Macdonald CA, Ang R, Cordiner SJ, Horswell J. 2011. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling. J Forensic Sci 56:61–69. [PubMed][CrossRef]
82. Takai S, Henton MM, Picard JA, Guthrie AJ, Fukushi H, Sugimoto C. 2001. Prevalence of virulent Rhodococcus equi in isolates from soil collected from two horse farms in South Africa and restriction fragment length polymorphisms of virulence plasmids in the isolates from infected foals, a dog and a monkey. Onderstepoort J Vet Res 68:105–110. [PubMed]
83. Lukow T I, Dunfield PF, Liesack W. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247. [CrossRef]
84. Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte L, Crespo-Torres E, Toranzos GA, Jimenez-Flores R, Hamrick A, Cano RJ. 2013. Microbial communities in pre-columbian coprolites. PLoS One 8:e65191. [PubMed][CrossRef]
85. Heath LE, Saunders VA. 2006. Assessing the potential of bacterial DNA profiling for forensic soil comparisons. J Forensic Sci 51:1062–1068. [PubMed][CrossRef]
86. Backman JSK, Hermansson A, Tebbe CC, Lindgren PE. 2003. Liming induces growth of a diverse flora of ammonia-oxidising bacteria in acid spruce forest soil as determined by SSCP and DGGE. Soil Biol Biochem 35:1337–1347. [CrossRef]
87. Lerner A, Shor Y, Vinokurov A, Okon Y, Jurkevitch E. 2006. Can denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16s rDNA of soil bacterial populations be used in forensic investigations? Soil Biol Biochem 38:1188–1192. [CrossRef]
88. da Silveira EL, Pereira RM, Scaquitto DC, Pedrinho EAN, Val-Moraes SP, Wickert E, Carareto-Alves LM, Lemos EGD. 2006. Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis. Pesquisa Agropecu Bras 41:1507–1516. [CrossRef]
89. Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M. 2012. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One 7:e42671. [PubMed][CrossRef]
90. Yang C, Ji Y, Wang X, Yang C, Yu DW. 2013. Testing three pipelines for 18S rDNA-based metabarcoding of soil faunal diversity. Sci China Life Sci 56:73–81. [PubMed][CrossRef]
91. Oros-Sichler M, Gomes NCM, Neuber G, Smalla K. 2006. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Methods 65:63–75. [PubMed][CrossRef]
92. He J, Xu Z, Hughes J. 2005. Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiol Lett 247:91–100. [PubMed][CrossRef]
93. Waite IS, O’Donnell AG, Harrison A, Davies JT, Colvan SR, Ekschmitt K, Dogan H, Wolters V, Bongers T, Bongers M, Bakonyi G, Nagy P, Papatheodorou EM, Stamou GP, Bostrom S. 2003. Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biol Biochem 35:1165–1173. [CrossRef]
94. Steele HL, Streit WR. 2006. Metagenomics for the study of soil microbial communities, p 42–54. In Cooper JE, Rao JR (ed), Molecular Approaches to Soil, Rhizosphere and Plant Microorganism Analysis. CABI Publishing, Wallingford, United Kingdom. [PubMed][CrossRef]
95. Rosen GL, Sokhansanj BA, Polikar R, Bruns MA, Russell J, Garbarine E, Essinger S, Yok N. 2009. Signal processing for metagenomics: extracting information from the soup. Curr Genomics 10:493–510. [PubMed][CrossRef]
96. Quaak FCA, Kuiper I. 2011. Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons. Forensic Sci Int 210:96–101. [PubMed][CrossRef]
97. Wheatley RJ, Lillestolen TC. 2007. Calculating intermolecular potentials with SIMPER: the water-nitrogen and water-oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules. Int Rev Phys Chem 26:449–485. [CrossRef]
98. Anderson MJ, Walsh DCI. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574. [PubMed][CrossRef]
99. Johnson TE, Hasted A, Ristic R, Bastian SEP. 2013. Multidimensional scaling (MDS), cluster and descriptive analyses provide preliminary insights into Australian Shiraz wine regional characteristics. Food Qual Prefer 29:174–185. [CrossRef]
100. Xiong J, He Z, Van Nostrand JD, Luo G, Tu S, Zhou J, Wang G. 2012. Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination. PLoS One 7:e50507. [PubMed][CrossRef]
101. Ruiz-Marin A, Zavala-Loria JC, Canedo-Lopez Y, Cordova-Quiroz AV. 2013. Tropical bacteria isolated from oil-contaminated mangrove soil: bioremediation by natural attenuation and bioaugmentation. Rev Mex Ing Quim 12:553–560.
102. Majumder A, Ghosh S, Saha N, Kole SC, Sarkar S. 2013. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J Environ Biol 34:841–846. [PubMed]
103. Fukuhara Y, Horii S, Matsuno T, Matsumiya Y, Mukai M, Kubo M. 2013. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation. Appl Biochem Biotechnol 170:329–339. [PubMed][CrossRef]
104. Lee KY, Bosch J, Meckenstock RU. 2012. Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environ Geochem Health 34(Suppl 1):135–142. [PubMed][CrossRef]
105. Huttenhower C, et al. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. [PubMed][CrossRef]
106. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. [PubMed][CrossRef]
107. Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244–253. [PubMed][CrossRef]
108. Li H. 2011. The human skin microbiome in health and skin diseases, p 145–163. In Nelson KE (ed), Metagenomics of the Human Body. Springer, New York, NY. [CrossRef]
109. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192:5002–5017. [PubMed][CrossRef]
110. Hattori M, Taylor TD. 2009. The human intestinal microbiome: a new frontier of human biology. DNA Res 16:1–12. [PubMed][CrossRef]
111. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. 2012. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol 129:1204–1208. [PubMed][CrossRef]
112. Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT. 2014. Human oral viruses are personal, persistent and gender-consistent. ISME J 8:1753–1767. [PubMed][CrossRef]
113. Phillips GE, Williams B, Hallahan A. 2010. The use of hair and skin examination in the diagnosis of Chediak-Higashi syndrome: report of a case. Exp Dermatol 19:560–561.
114. Phillips G, Reith F, Qualls C, Ali AM, Spilde M, Appenzeller O. 2010. Bacterial deposition of gold on hair: archeological, forensic and toxicological implications. PLoS One 5:e9335. [PubMed][CrossRef]
microbiolspec.EMF-0007-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.EMF-0007-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EMF-0007-2015
2016-07-22
2017-09-23

Abstract:

Soil microbial forensics can be defined as the study of how microorganisms can be applied to forensic investigations. The field of soil microbial forensics is of increasing interest and applies techniques commonly used in diverse disciplines in order to identify microbes and determine their abundances, complexities, and interactions with soil and surrounding objects. Emerging new techniques are also providing insights into the complexity of microbes in soil. Soil may harbor unique microbes that may reflect specific physical and chemical characteristics indicating site specificity. While applications of some of these techniques in the field of soil microbial forensics are still in early stages, we are still gaining insight into how microorganisms may be more robustly used in forensic investigations.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error