1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Jessica I. Rivera-Pérez1, Alfredo A. González2, Gary A. Toranzos3
  • Editors: Raúl J. Cano4, Gary A. Toranzos5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931; 2: Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931; 3: Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931; 4: California Polytechnic State University, San Luis Obispo, CA; 5: University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
  • Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
  • Received 27 October 2016 Accepted 29 November 2016 Published 03 February 2017
  • Jessica I. Rivera-Pérez, jessica.i.rivera88@gmail.com
image of From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/EMF-0009-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/EMF-0009-2016-2.gif
  • Abstract:

    As the “human microbiome era” continues, there is an increasing awareness of our resident microbiota and its indispensable role in our fitness as holobionts. However, the host-microbe relationship is not so clearly defined for some human symbionts. Here we discuss examples of “accidental pathogens,” meaning previously nonpathogenic and/or environmental microbes thought to have inadvertently experienced an evolutionary shift toward pathogenicity. For instance, symbionts such as and JC polyomavirus have been shown to have accompanied humans since prehistoric times and are still abundant in extant populations as part of the microbiome. And yet, the relationship between a subgroup of these microbes and their human hosts seems to have changed with time, and they have recently gained notoriety as gastrointestinal and neuropathogens, respectively. On the other hand, environmental microbes such as spp. have recently experienced a shift in host range and are now a major problem in industrialized countries as a result of artificial ecosystems. Other variables involved in this accidental phenomenon could be the apparent change or reduction in the diversity of human-associated microbiota because of modern medicine and lifestyles. All of this could result in an increased prevalence of accidental pathogens in the form of emerging pathogens.

  • Citation: Rivera-Pérez J, González A, Toranzos G. 2017. From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity. Microbiol Spectrum 5(1):EMF-0009-2016. doi:10.1128/microbiolspec.EMF-0009-2016.

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.43267852
0.43267852

References

1. Fraune S, Bosch TCG. 2007. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan hydra. Proc Natl Acad Sci USA 104:13146–13151. [PubMed]
2. Grasis JA, Lachnit T, Anton-Erxleben F, Lim YW, Schmieder R, Fraune S, Franzenburg S, Insua 2, Machado G, Haynes M, Little M, Kimble R, Rosenstiel P, Rohwer FL, Bosch TC. 2014. Species-specific viromes in the ancestral holobiont hydra. PLoS One 9:e109952. doi:10.1371/journal.pone.0109952. [PubMed]
3. Werren JH, O’Neill SL. 1997. The evolution of heritable symbionts, pp 3–41. In O’Neill SL, Hoffmann AA, Werren JH (ed), Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford, England.
4. Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Loso T, Bosch TC. 2012. MyD88-deficient hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci USA 109:19374–19379. [PubMed]
5. Bosch TCG. 2013. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol 67:499–518. [PubMed]
6. McCutcheon JP, Moran NA. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397. [PubMed]
7. Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. [PubMed]
8. Marcobal A, Sonnenburg JL. 2012. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect 18:12–15. [PubMed]
9. De Leoz MLA, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, Mills DA, Lebrilla CB. 2014. Human milk glycomics and gut microbial genomics in infant feces shows correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Proteome Res 14:491–502. [PubMed]
10. Finley SJ, Benbow ME, Javan GT. 2015. Microbial communities associated with human decomposition and their potential use as postmortem clocks. Int J Legal Med 129:623–632. [PubMed]
11. Javan GT, Finley SJ, Abidin Z, Mulle JG. 2016. The thanatomicrobiome: a missing piece of the microbial puzzle of death. Front Microbiol 7:225. doi:10.3389/fmicb.2016.00225. [PubMed]
12. Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B. 2012. Skin microbiota: microbial community structure and its potential association with health and disease. Infect Genet Evol 11:839–848. [PubMed]
13. Schommer NN, Gallo RL. 2013. Structure and function of the human skin microbiome. Trends Microbiol 21:660–668. [PubMed]
14. Stecher B, Hardt WD. 2008. The role of microbiota in infectious disease. Trends Microbiol 16:107–114. [PubMed]
15. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076. [PubMed]
16. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504. [PubMed]
17. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. [PubMed]
18. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. 2011. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65. [PubMed]
19. Krajmalnik-Brown R, Zehra-Esra I, Dae-Wook K, DiBaise JK. 2013. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214. [PubMed]
20. Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12:277–288. [PubMed]
21. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168. [PubMed]
22. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593. [PubMed]
23. Mazmanian SK, Cui HL, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118. [PubMed]
24. Cebra JJ. 1999. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046–1051. [PubMed]
25. Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–324. [PubMed]
26. Stappenbeck TS, Hooper LV, Gordon JI. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455. [PubMed]
27. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625. [PubMed]
28. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R. 2011. Moving pictures of the human microbiome. Genome Biol 12:R50. doi:10.1186/gb-2011-12-5-r50. [PubMed]
29. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, Koenig SS, Fu L, Ma ZS, Zhou X, Abdo Z, Forney LJ, Ravel J. 2012. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52. [PubMed]
30. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, Leff JW, Vázquez-Baeza Y, Gonzalez A, Knight R, Dunn RR, Fierer N. 2014. Temporal variability is a personalized feature of the human microbiome. Genome Biol 15:531. doi:10.1186/s13059-014-0531-y.
31. Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. 2013. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J 7:1493–506. [PubMed]
32. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103. [PubMed]
33. Blaser MJ, Atherton JC. 2004. Helicobacter pylori persistence: biology and disease. J Clin Invest 113:321–333. [PubMed]
34. Goodman KJ, Correa P. 1995. The transmission of Helicobacter pylori: a critical review of the evidence. Int J Epidemiol 24:875–887.
35. Delport W, Cunningham M, Olivier B, Preisig O, Van Der Merwe SW. 2006. A population genetics pedigree perspective on the transmission of Helicobacter pylori. Genetics 174:2107–2118. [PubMed]
36. Dooley CP, Cohen H, Fitzgibbons PL, Bauer M, Appleman MD, Perez-Perez GI, Blaser MJ. 1989. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med 321:1562–1566. [PubMed]
37. Holcombe C, Omotara BA, Eldridge DJ, Jones DM. 1992. H. pylori, the most common bacterial infection in Africa: a random serological study. Am J Gastroenterol 87:28–30. [PubMed]
38. Ahmad MM, Rahman M, Rumi AK, Islam S, Huq F, Chowdhury MF, Jinnah F, Morshed MG, Hassan MS, Khan AK, Hasan M. 1997. Prevalence of Helicobacter Pylori in asymptomatic population a pilot serological study in Bangladesh. J Epidemiol 7:251–254. [PubMed]
39. Moss SF, Calam J, Legon S, Bishop AE, Polak JM. 1992. Effect of Helicobacter pylori on gastric somatostatin in duodenal ulcer disease. Lancet 340:930–932.
40. Sipponen P, Hyvarinen H. 1993. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand J Gastroenterol 28:407–425. [PubMed]
41. Miwa H, Go MF, Sato N. 2002. H. pylori and gastric cancer: the Asian enigma. Am J Gastroenterol 97:1106–1112. [PubMed]
42. Yamada T, Searle JG; Ahnen D. 1994. Helicobacter pylori in peptic ulcer disease. JAMA 272:65–69.
43. Lu J, Perng CL, Shyu RY, Chen CH, Lou Q, Chong SK, Lee CH. 1999. Comparison of five PCR methods for detection of Helicobacter pylori DNA in gastric tissues. J Clin Microbiol 37:772–774. [PubMed]
44. Israel DA, Salama N, Arnold CN, Moss SF, Ando T, Wirth HP, Tham KT, Camorlinga M, Blaser MJ, Falkow S, Peek RM Jr. 2001. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest 107:611–620. [PubMed]
45. Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW, Yamaoka Y, Graham DY, Perez-Trallero E, Wadstrom T, Suerbaum S, Achtman M. 2007. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915–918. [PubMed]
46. Montano V, Didelot X, Foll M, Linz B, Reinhardt R, Suerbaum S, Moodley Y, Jensen JD. 2015. Worldwide population structure, long term demography, and local adaptation of Helicobacter pylori. Genetics 200:947–963. [PubMed]
47. Janssen PJ, Audit B, Ouzounis CA. 2001. Strain-specific genes of Helicobacter pylori: distribution, function and dynamics. Nucleic Acids Res 29:4395–4404. [PubMed]
48. Suzuki R, Shiota S, Yamaoka Y. 2013. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol 12:203–213. [PubMed]
49. Gressmann H, Linz B, Ghai R, Pleissner K-P, Schlapbach R, Yamaoka Y, Kraft C, Suerbaum S, Meyer TF, Achtman M. 2005. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet 1:e43. doi:10.1371/journal.pgen.0010043. [PubMed]
50. Martínez-Carrillo DN, Atrisco-Morales J, Hernández-Pando R, Reyes-Navarrete S, Betancourt-Linares R, Cruz-del Carmen I, Illades Aguiar B, Román-Román A, Fernández-Tilapa G. 2014. Helicobacter pylori vacA and cagA genotype diversity and interferon gamma expression in patients with chronic gastritis and patients with gastric cancer. Rev Gastroenterol Méx 79:220–228. [PubMed]
51. Kraft C, Suerbaum S. 2005. Mutation and recombination in Helicobacter pylori: mechanisms and role in generating strain diversity. Int J Med Microbiol 295:299–305. [PubMed]
52. Kersulyte D, Chalkauskas H, Berg DE. 1999. Emergence of recombinant strains of Helicobacter pylori during human infection. Mol Microbiol 31:31–43. [PubMed]
53. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, Blaser MJ, Graham DY, Vacher S, Perez-Perez GI, Yamaoka Y, Mégraud F, Otto K, Reichard U, Katzowitsch E, Wang X, Achtman M, Suerbaum S. 2003. Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585. [PubMed]
54. Breurec S, Guillard B, Hem S, Brisse S, Dieye FB, Huerre M, Oung C, Raymond J, Tan TS, Thiberge JM, Vong S, Monchy D, Linz B. 2011. Evolutionary history of Helicobacter pylori sequences reflect past human migrations in southeast Asia. PLoS One 6:e22058. doi:10.1371/journal.pone.0022058.
55. Yamaoka Y. 2009. Helicobacter pylori typing as a tool for tracking human migration. Clin Microbiol Infect 15:829–834. [PubMed]
56. Moodley Y, Linz B. 2009. Helicobacter pylori sequences reflect past human migrations. Genome Dyn 6:62–74. [PubMed]
57. Kersulyte D, Kalia A, Gilman RH, Mendez M, Herrera P, Cabrera L, Velapatiño B, Balqui J, Paredes Puente de la Vega F, Rodriguez Ulloa CA, Cok J, Hooper CC, Dailide G, Tamma S, Berg DE. 2010. Helicobacter pylori from Peruvian Amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain. PLoS One 5:e15076. doi:10.1371/journal.pone.0015076.
58. Dominguez-Bello MG, Blaser MJ. 2011. The human microbiota as a marker for migrations of individuals and populations. Annu Rev Anthropol 40:451–474.
59. Devi SM, Ahmed I, Khan AA, Rahman SA, Alvi A, Sechi LA, Ahmed N. 2006. Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics 7:191 doi:10.1186/1471-2164-7-191.
60. Ghose C, Perez-Perez GI, Dominguez-Bello M-G, Pride DT, Bravi CM, Blaser MJ. 2002. East Asian genotypes of Helicobacter pylori strains in Amerindians provide evidence for its ancient human carriage. Proc Natl Acad Sci USA 99:15107–15111. [PubMed]
61. Wirth T, Wang X, Linz B, Novick RP, Koji Lum J, Blaser M, Morelli G, Falush D, Achtman D. 2004. Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci USA 101:4746–4751. [PubMed]
62. Yamaoka Y, Orito E, Mizokami M, Gutierrez O, Saitou N, Kodama T, Osato MS, Kim JG, Ramirez FC, Mahachai V, Graham DY. 2002. Helicobacter pylori in North and South America before Columbus. FEBS Lett 517:180–184. [PubMed]
63. Molina-Castro SE, Herrera D, Malespin-Bendana W, Ramirez V, Une C. 2014. The geographic origin of Helicobacter pylori isolated from Costa Rican patients. Gut Microbes 5:517–521. [PubMed]
64. Ghose C, Perez-Perez GI, Van Doorn LJ, Domínguez-Bello MG, Blaser MJ. 2005. High frequency of gastric colonization with multiple Helicobacter pylori strains in Venezuelan subjects. J Clin Microbiol 43:2635–2641. [PubMed]
65. Breurec S, Raymond J, Thiberge JM, Hem S, Monchy D, Seck A, Dehoux P, Garin B, Dauga C. 2013. Impact of human migrations on diversity of Helicobacter pylori in Cambodia and New Caledonia. Helicobacter 18:249–261. [PubMed]
66. Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, Kusebauch U, Vigl EE, Malfertheiner P, Megraud F, O’Sullivan N, Cipollini G, Coia V, Samadelli M, Engstrand L, Linz B, Moritz RL, Grimm R, Krause J, Nebel A, Moodley Y, Rattei T, Zink A. 2016. The 5300-year-old Helicobacter pylori genome of the Iceman. Science 351:162–165. [PubMed]
67. Hoffecker JF, Powers WR, Goebel T. 1993. The colonization of beringia and the peopling of the new world. Science 259:46–53. [PubMed]
68. Achilli A, Perego UA, Lancioni H, Olivieri A, Gandini F, Hooshiar Kashani B, Battaglia V, Grugni V, Angerhofer N, Rogers MP, Herrera RJ, Woodward SR, Labuda D, Smith DG, Cybulski JS, Semino O, Malhi RS, Torroni A. 2013. Reconciling migration models to the Americas with the variation of North American native mitogenomes. Proc Natl Acad Sci USA 110:14308–14313. [PubMed]
69. Dillehay TD. 2009. Probing deeper into first American studies. Proc Natl Acad Sci USA 106:971–978. [PubMed]
70. Martínez I, Stegen JC, Maldonado-Gómez MX, Murat Eren A, Siba PM, Greenhill AR, Walter J. 2015. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep 11:527–538. [PubMed]
71. Blaser MJ, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Estrada I, Gao Z, Clemente JC, Costello EK, Knight R. 2012. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J 7:85–95. [PubMed]
72. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF, Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG. 2015. The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183. doi:10.1126/sciadv.1500183. [PubMed]
73. Mane SP, Dominguez-Bello MG, Blaser MJ, Sobral BW, Hontecillas R, Skoneczka J, Mohapatra SK, Crasta OR, Evans C, Modise T, Shallom S, Shukla M, Varon C, Mégraud F, Maldonado-Contreras AL, Williams KP, Bassaganya-Riera J. 2010. Host-interactive genes in Amerindian Helicobacter pylori diverge from their old world homologs and mediate inflammatory responses. J Bacteriol 192:3078–3092. [PubMed]
74. Reinhard KJ, Johnson K, LeRoy-Toren S, Wieseman K, Teixeira-Santos I, Vieira M. 2012. Understanding the pathoecological relationship between ancient diet and modern diabetes through coprolite analysis. Curr Anthropol 53:506–512.
75. Walter J, Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65:411–429. [PubMed]
76. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227.
77. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. 2013. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019. doi:10.1371/journal.pone.0066019. [PubMed]
78. Graham DY. 1991. Helicobacter pylori: its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hepatol 6:105–113. [PubMed]
79. Valle J, Kekki M, Sipponen P, Ihamaki T, Suirala M. 1996. Long-term course and consequences of Helicobacter pylori gastritis. Scand J Gastroenterol 31:546–550. [PubMed]
80. Tilg H, Kaser A. 2011. Gut microbiome, obesity, and metabolic dysfunction. J Clin Investig 121:2126–2132. [PubMed]
81. Tsai F, Coyle WJ. 2009. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11:307-313. [PubMed]
82. Nilsson C, Sillén A, Eriksson L, Strand ML, Enroth H, Normark S, Falk P, Engstrand L. 2003. Correlation between cag pathogenicity island composition and Helicobacter pylori- associated gastroduodenal disease. Infect Immun 71:6573–6581. [PubMed]
83. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Genetics 93:14648–14653.
84. Ling PD, Lednicky JA, Keitel WA, Poston DG, White ZS, Peng R, Liu Z, Mehta SK, Pierson DL, Rooney CM, Vilchez RA, Smith EO, Butel JS. 2003. The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study. J Infect Dis 187:1571–1580. [PubMed]
85. Kitamura T, Sugimoto C, Kato A, Ebihara H, Suzuki M, Taguchi F, Kawabe K, Yogo Y. 1997. Persistent JC virus ( JCV ) infection is demonstrated by continuous shedding of the same JCV strains. J Clin Microbiol 35:1255–1257. [PubMed]
86. Caldarelli-Stefano R, Vago L, Omodeo-Zorini E, Mediati M, Losciale L, Nebuloni M, Costanzi G, Ferrante P. 1999. Detection and typing of JC virus in autopsy brains and extraneural organs of AIDS patients and non-immunocompromised individuals. J Neurovirol 5:125–133. [PubMed]
87. Loeber G, Dörries K. 1988. DNA rearrangements in organ-specific variants of polyomavirus JC strain GS. J Virol 62:1730–1735. [PubMed]
88. Monaco MC, Jensen PN, Hou J, Durham LC, Major EO. 1998. Detection of JC virus DNA in human tonsil tissue: evidence for site of initial viral infection. J Virol 72:9918–9923. [PubMed]
89. Rieckmann P, Michel U, Kehrl JH. 1994. Regulation of JC virus expression in B lymphocytes. J Virol 68:217–222. [PubMed]
90. Arthur RR, Dagostin S, Shah KV. 1989. Detection of BK virus and JC virus in urine and brain tissue by the polymerase chain reaction. J Clin Microbiol 27:1174–1179. [PubMed]
91. Hundesa A, Maluquer de Motes, Bofill-Mas S, Albinana-Gimenez N, Girones R. 2006. Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl Environ Microbiol 72:7886–7893. [PubMed]
92. Rudick RA, O’Connor PW, Polman CH, Goodman AD, Ray SS, Griffith NM, Jurgensen SA, Gorelik L, Forrestal F, Sandrock AW, Goelz SE. 2010. Assessment of JC virus DNA in blood and urine from natalizumab-treated patients. Ann Neurol 68:304–310. [PubMed]
93. Kokkinos PA, Ziros PG, Mpalasopoulou A, Galanis A, Vantarakis A. 2011. Molecular detection of multiple viral targets in untreated urban sewage from Greece. Virol J 8:195. [PubMed]
94. Mcquaig SM, Scott, TM, Lukasik, JO, Paul, JH and Harwood, VJ. 2009. Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75:3379. [PubMed]
95. Bofill-Mas S, Girones R. 2003. Role of the environment in the transmission of JC virus. J Neurovirol 9(Suppl 1):54–58. [PubMed]
96. Berger JR, Miller CS, Mootoor Y, Avdiushko SA, Kryscio RJ, Zhu H. 2006. JC virus detection in bodily fluids: clues to transmission. Clin Infect Dis 43:e9–e12. [PubMed]
97. Kunitake T, Kitamura T, Guo J, Taguchi F, Kawabe K, Yogo Y. 1995. Parent-to-child transmission is relatively common in the spread of the human polyomavirus JC virus. J Clin Microbiol 33:1448–1451. [PubMed]
98. Suzuki M, Zheng HY, Takasaka T, Sugimoto C, Kitamura T, Beutler E, Yogo Y. 2002. Asian genotypes of JC virus in Japanese-Americans suggest familial transmission. J Virol 76:10074–10078. [PubMed]
99. Albinana-Gimenez N, Girones R, Miagostovich MP, Calgua B, Huguet JM. 2009. Analysis of adenoviruses and polyomaviruses quantified by qPCR as indicators of water quality in source and drinking-water treatment plants. Water Res 43:2011–2019. [PubMed]
100. Boldorini R, Veggiani C, Amoruso E, Allegrini S, Miglio U, Paganotti A, Ribaldone R, Monga G. 2008. Latent human polyomavirus infection in pregnancy: investigation of possible transplacental transmission. Pathology 40:72–77. [PubMed]
101. Kato A, Kitamura T, Sugimoto C, Ogawa Y, Nakazato K, Nagashima L, Hall WW, Kawabe K, Yogo Y. 1997. Lack of evidence for the transmission of JC polyomavirus between human populations. Arch Virol 142:875–882. [PubMed]
102. Knowles WA. 2005. Discovery and epidemiology of the human polyomaviruses BK virus ( BKV ) and JC virus ( JCV ) , pp 1–25. In Ahsan N (ed), Polyomaviruses and Human Diseases. Springer-Verlag, New York, NY.
103. Agostini RT, Ryschkewitsch CF, Stoner GL. 1996. Genotype profile of human polyomavirus JC excreted in urine of immunocompetent individuals. J Clin Microbiol 34:159–164. [PubMed]
104. Kersulyte D, Mukhopadhyay AK, Velapatiño B, Su W, Pan Z, Garcia C, Hernandez V, Valdez Y, Mistry RS, Gilman RH, Yuan Y, Gao H, Alarcón T, López-Brea M, Balakrish Nair G, Chowdhury A, Datta S, Shirai M, Nakazawa T, Ally R, Segal I, Wong BC, Lam SK, Olfat FO, Borén T, Engstrand L, Torres O, Schneider R, Thomas JE, Czinn S, Berg DE. 2000. Differences in genotypes of Helicobacter pylori from different human populations. J Bacteriol 182:3210–3218. [PubMed]
105. Holmes EC. 2008. Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol 62:307–328. [PubMed]
106. Kitchen A, Miyamoto MM, Mulligan CJ. 2008. Utility of DNA viruses for studying human host history: case study of JC virus. Mol Phylogenet Evol 46:673–682. [PubMed]
107. Wooding S. 2001. Do human and JC virus genes show evidence of host-parasite codemography? Infect Genet Evol 1:3–12. [PubMed]
108. Sugimoto C, Kitamura T, Guo J, Al-Ahdal MN, Shchelkunov SN, Otova B, Ondrejka P, Chollet JY, El-Safi S, Ettayebi M, Grésenguet G, Kocagöz T, Chaiyarasamee S, Thant KZ, Thein S, Moe K, Kobayashi N, Taguchi F, Yogo Y. 1997. Typing of urinary JC virus DNA offers a novel means of tracing human migrations. Proc Natl Acad Sci USA 94:9191–9196. [PubMed]
109. Chima SC, Ryschkewitsch CF, Fan KJ, Stoner GL. 2014. Polyomavirus JC genotypes in an urban United States population reflect the history of African origin and genetic admixture in modern African Americans. Hum Biol 72:837–850.
110. Zheng HY, Sugimoto C, Hasegawa M, Kobayashi N, Kanayama A, Rodas A, Mejia M, Nakamichi J, Guo J, Kitamura T, Yogo Y. 2003. Phylogenetic relationships among JC virus strains in Japanese/Koreans and Native Americans speaking Amerind or Na-Dene. J Mol Evol 56:18–27. [PubMed]
111. Fernandez-Cobo MF, Jobes DV, Yanagihara R, Nerurkar VR, Yamamura Y, Ryschkewitsch CF, Stoner GL. 2001. Reconstructing population history using JC virus: Amerinds, Spanish, and Africans in the ancestry of modern Puerto Ricans. Hum Biol 73:385–402. [PubMed]
112. Narganes-Sorde Y, Chanlatte-Baik L, Garcia-Padilla A. 2002. La Cultura Saladoide en Puerto Rico. Museo de Historia, Antropologia y Arte: Universidad de Puerto Rico, Recinto de Rio Piedras, Universidad de Puerto Rico.
113. Giovas CM, Fitzpatrick SM. 2014. Prehistoric migration in the Caribbean: past perspectives, new models and the ideal free distribution of West Indian colonization. World Archaeol 46:569–589.
114. Chanlatte-Baik L, Narganes-Storde YM. 2002. Archaeological Evaluation of Sorce La Hueca, Vieques. Vieques Conservation and Historical Trust, Vieques, Puerto Rico.
115. Pagán-Jiménez JR. 2009. El Mundo Vivido por los Antiguos Pobladores Indígenas Huecoide en Las Antillas Nororientales (circa 300 aC-500 dC). Arqueología y Democratización del Conocimiento, San Juan, Puerto Rico.
116. Ryschkewitsch CF, Friedlaender JS, Mgone CS, Jobes DV, Agostini HT, Chima SC, Alpers MP, Koki G, Yanagihara R, Stoner GL. 2000. Human polyomavirus JC variants in Papua New Guinea and Guam reflect ancient population settlement and viral evolution. Microbes Infect 2:987–996.
117. Padgett B, Zurhein G, Walker D, Eckroade R, Dessel B. 1971. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 297:1257–1260.
118. Chen NN, Chang CF, Gallia GL, Kerr DA, Johnson EM, Krachmarov CP, Barr SM, Frisque RJ, Bollag B, Khalili K. 1995. Cooperative action of cellular proteins YB-1 and Pura with the tumor antigen of the human JC polyomavirus determines their interaction with the viral lytic control element. Proc Natl Acad Sci USA 92:1087–1091. [PubMed]
119. Imperiale MJ. 2000. The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 267:1–7. [PubMed]
120. Drachenberg CB, Hirsch HH, Ramos E, Papadimitriou JC. 2005. Polyomavirus disease in renal transplantation: review of pathological findings and diagnostic methods. Hum Pathol 36:1245–1255. [PubMed]
121. Del Valle L, Enam S, Lara C, Ortiz-Hidalgo C, Katsetos CD, Khalili K. 2002. Detection of JC polyomavirus DNA sequences and cellular localization of T-antigen and agnoprotein in oligodendrogliomas. Clin Cancer Res 8:3332–3340. [PubMed]
122. Hogan TF, Padgett BL, Walker DL, Borden EC, Frias Z. 1983. Survey of human polyomavirus (JCV, BKV) infections in 139 patients with lung cancer, breast cancer, melanoma, or lymphoma. Prog Clin Biol Res 105:311–324. [PubMed]
123. Padgett BL, Rogers CM, Walker DL. 1977. JC virus, a human polyomavirus associated with progressive multifocal leukoencephalopathy: additional biological characteristics and antigenic relationships. Infect Immun 15:656–662. [PubMed]
124. Yogo Y, Kitamura T, Sugimoto C, Ueki T, Aso Y, Hara K, Taguchi F. 1990. Isolation of a possible archetypal JC virus DNA sequence from nonimmunocompromised individuals. J Virol 64:3139–3143. [PubMed]
125. Karalić D, Lazarević I, Ćupić M, Jovanović T. 2012. The prevalence of human polyomaviruses in urine samples of immunocompetent individuals in the Serbian population. Arch Biol Sci 64:1383–1388.
126. Jeong BH, Lee KH, Choi EK, Kim K, Kim YS. 2004. Genotyping of the JC virus in urine samples of healthy Korean individuals. J Med Virol 72:281–289. [PubMed]
127. Pavesi A. 2003. African origin of polyomavirus JC and implications for prehistoric human migrations. J Mol Evol 56:564–572. [PubMed]
128. Parpia A, Ndeffo Mbah M, Wenzel N, Galvani A. 2016. Effects of response to the 2014–2015 Ebola outbreak on deaths from malaria, HIV, and tuberculosis, West Africa. Emerg Infect Dis 22:433–441. [PubMed]
129. Cohn DL, Bustreo F, Raviglione MC. 1997. Drug-resistant tuberculosis: review of the worldwide situation and the WHO / IUATLD Global Surveillance Project. Clin Infect Dis 24:121–130.
130. Jaramillo E, Williams BG, Dye C, Raviglione M. 2009. Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 68:2240–2246. [PubMed]
131. Glickman MS, Jacobs WR Jr. 2016. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104:477–485.
132. Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T. 1999. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4:59–70. [PubMed]
133. CDC Division of Tuberculosis Elimination. 2014. Data and statistics. https://www.cdc.gov/tb/statistics/default.htm.
134. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, et al. 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409. [PubMed]
135. Streicher EM, Victor TC, van der Spuy G, Sola C, Rastogi N, van Helden PD, Warren RM. 2007. Spoligotype signatures in the Mycobacterium tuberculosis complex. J Clin Microbiol 45:237–240. [PubMed]
136. Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4:e7815. doi:10.1371/journal.pone.0007815.
137. Minister of Public Works and Government Services. 2009. Tuberculosis in Canada 2007. Catalog no. HP37-5/2007E-PDF. Ottawa, Canada.
138. Gardy J, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJM, Brinkman FSL, Brunham RC, Tang P. 2011. Whole-genome sequencing and social- network analysis of a tuberculosis outbreak. N Engl J Med 364:730–739. [PubMed]
139. Fitzpatrick LK, Hardacker JA, Heirendt W, Agerton T, Streicher A, Melnyk H, Ridzon R, Valway S, Onorato I. 2001. A preventable outbreak of tuberculosis investigated through an intricate social network. Clin Infect Dis 33:1801–1806. [PubMed]
140. Sacks JJ, Brenner ER, Breeden DEEC, Anders HM, Parker RL. 1985. Epidemiology of a tuberculosis outbreak in a South Carolina junior high school. Am J Public Health 75:361–365. [PubMed]
141. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S. 2008. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311. doi:10.1371/journal.pbio.0060311.
142. Gagneux S, Small PM. 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7:328–337. [PubMed]
143. Frith J, Villemin A. 2014. History of tuberculosis. Part 1. Phthisis, consumption and the white plague. J Mil Veterans’ Health 22:29–35.
144. Daniel TM. 2006. The history of tuberculosis. Respir Med 100:1862–1870. [PubMed]
145. Spigelman M, Matheson C, Lev G, Greenblatt C, Donoghue HD. 2002. Confirmation of the presence of Mycobacterium tuberculosis complex-specific DNA in three archaeological specimens. Int J Osteoarchaeol 12:393–401.
146. Kerley ER. 1968. Diseases in antiquity: a survey of the diseases, injuries, and surgery of early populations. Science 161:875–876.
147. Morse D, Brothwell DR, Ucko PJ. 1964. Tuberculosis in ancient Egypt. Am Rev Respir Dis 90:524–541. [PubMed]
148. Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY-C, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Kahila Bar-Gal G, Spigelman M. 2008. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the eastern Mediterranean. PLoS One 3:e3426. doi:10.1371/journal.pone.0003426.
149. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5. doi:10.1371/journal.ppat.0010005. [PubMed]
150. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689. [PubMed]
151. Stead WW. 1997. The origin and erratic global spread of tuberculosis. How the past explains the present and is the key to the future. Clin Chest Med 18:65–77. [PubMed]
152. Stead WW, Eisenach KD, Cave MD, Beggs ML, Templeton GL, Thoen CO, Bates JH. 1995. When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am J Respir Crit Care Med 151:1267–1268.
153. Salo WL, Aufderheide a C, Buikstra J, Holcomb TA. 1994. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci USA 91:2091–2094. [PubMed]
154. Smith NH. 2006. A re-evaluation of prototuberculosis. PLoS Pathog 2:e98. doi:10.1371/journal.ppat.0020098. [PubMed]
155. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV. 2009. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7:537–544. [PubMed]
156. Brites D, Gagneux S. 2015. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264:6–24. [PubMed]
157. Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, Nerlich AG. 2003. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol 41:359–367. [PubMed]
158. Cave AJE, Demonstrator A. 1939. The evidence for the incidence of tuberculosis in ancient Egypt. Br J Tuberc 33:142–152.
159. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Collins Cook D, Niemann S, Behr M, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497. [PubMed]
160. Chisholm RH, Tanaka MM, Chisholm RH. 2016. The emergence of latent infection in the early evolution of Mycobacterium tuberculosis. Proc R Soc B 283:20160499. [PubMed]
161. Søborg DA, Hendriksen B, Kilian M. 2013. Widespread occurrence of bacterial human virulence determinants in soil and freshwater environments. Appl Environ Microbiol 79:5488–5497. [PubMed]
162. Hruska K, Kaevska M. 2012. Mycobacteria in water, soil, plants and air: a review. Vet Med - Czech 57:623–679.
163. Ghodbane R, Medie FM, Lepidi H, Nappez C, Drancourt M. 2016. Long-term survival of tuberculosis complex mycobacteria in soil. Microbiology 160:496–501. [PubMed]
164. Chisholm RH, Trauer JM, Curnoe D, Tanaka MM. 2016. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci USA 113:9051–9056. [PubMed]
165. Brown DR, Alderman N. 2010. The dangers to health from outdoor wood furnaces (North Haven). www.ehhi.org.
166. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR. 2007. Woodsmoke health effects: a review. Inhal Toxicol 191:67–106. [PubMed]
167. Center for Disease Control. 2015. Toxoplasmosis (toxoplasma infection). http://www.cdc.gov/parasites/toxoplasmosis/biology.html.
168. Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258. [PubMed]
169. Pereira KS, Franco RMB, Leal DAG. 2010. Transmission of toxoplasmosis (Toxoplasma gondii) by foods. Adv Food Nutr Res 60:1–19. [PubMed]
170. Flegr J. 2007. Effects of toxoplasma on human behavior. Schizophr Bull 33:757–760. [PubMed]
171. Vyas A, Kim S, Giacomini N, Boothroyd JC, Sapolsky RM. 2007. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA 104:6442–6447. [PubMed]
172. Ingram WM, Goodrich LM, Robey EA, Eisen MB. 2013. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine , even after extensive parasite clearance. PLoS One 8:e75246. doi:10.1371/journal.pone.0075246.
173. House PK, Vyas A, Sapolsky R. 2011. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats. PLoS One 6:8–11. doi:10.1371/journal.pone.0023277. [PubMed]
174. Nurse G, Lenghaus C. 1986. An outbreak of Toxoplasma gondii abortion, mummification and perinatal death in goats. Aust Vet J 63:1983–1985. [PubMed]
175. Munday BL, Mason RW. 1979. Toxoplasmosis as a cause of perinatal death in goats. Aust Vet J 55:485–487. [PubMed]
176. Webster JP, Kaushik M, Bristow GC, McConkey GA. 2013. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 216:99–112. [PubMed]
177. Arling TA, Yolken RH, Lapidus M, Langenberg P, Dickerson FB, Zimmerman SA, Balis T, Cabassa JA, Scrandis DA, Tonelli LH, Postolache TT. 2009. Toxoplasma gondii antibody titers and history of suicide attempts in patients with recurrent mood disorders. J Nerv Ment Dis 197:905–908. [PubMed]
178. Lafferty KD. 2006. Can the common brain parasite, Toxoplasma gondii, influence human culture? Proc R Soc B 273:2749–2755. [PubMed]
179. Switaj K, Master A, Skrzypczak M, Zaborowski P. 2005. Recent trends in molecular diagnostics for Toxoplasma gondii infections. Clin Microbiol Infect 11:170–176. [PubMed]
180. Liu Q, Wang Z-D, Huang S-Y, Zhu X-Q. 2015. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8:292. [PubMed]
181. Blackston CR, Dubey JP, Dotson E, Su C, Thulliez P, Sibley, Lehmann T. 2001. High-resolution typing of Toxoplasma gondii using microsatellite loci. J Parasitol 87:1472–1475. [PubMed]
182. Demar M, Carme B, Darde ML, Ajzenberg D, Ban AL. 2004. Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol 34:1185–1196. [PubMed]
183. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA. 1997. Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350:173–177. [PubMed]
184. Demar M, Ajzenberg D, Maubon D, Djossou F, Panchoe D, Punwasi W, Valery N, Peneau C, Daigre JL, Aznar C, Cottrelle B, Terzan L, Dardé ML, Carme B. 2007. Fatal outbreak of human toxoplasmosis along the Maroni River: epidemiological, clinical, and parasitological aspects. Clin Infect Dis 45:e88–e95. [PubMed]
185. de Moura L, Bahia-Oliveira LM, Wada MY, Jones JL, Tuboi SH, Carmo EH, Ramalho WM, Camargo NJ, Trevisan R, Graça RM, da Silva AJ, Moura I, Dubey JP, Garrett DO. 2006. Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 12:326–329. [PubMed]
186. Honnold SP, Braun R, Scott DP, Sreekumar C, Dubey JP. 2005. Toxoplasmosis in a Hawaiian monk seal (Monachus schauinslandi). J Parasitol 91:695–697. [PubMed]
187. Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH. 1981. Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 41:9–16. [PubMed]
188. Rowbotham TJ. 1980. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183. [PubMed]
189. Bitar DM, Molmeret M, Abu Kwaik Y. 2004. Molecular and cell biology of Legionella pneumophila. Int J Med Microbiol 293:519–527. [PubMed]
190. Jurcev-Savicevic A, Bradarić N, Paić VO, Mulić R, Puntarić D, Miše K. 2014. Bus water storage tank as a reservoir of Legionella pneumophila. Coll Antropol 38:1033–1037.
191. Zbikowska E, Kletkiewicz H, Walczak M, Burkowska A. 2014. Coexistence of Legionella pneumophila bacteria and free-living amoebae in lakes serving as a cooling system of a power plant. Water Air Soil Pollut 225:2066. [PubMed]
192. Carvalho FRS, Foronda AS, Pellizari VH. 2007. Detection of Legionella pneumophila in water and biofilm samples by culture and molecular methods from man-made systems in Sao Paulo, Brazil. Brazilian J Microbiol 38:743–751.
193. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A. 2002. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186:127–128. [PubMed]
194. Jernigan DB, Hofmann J, Cetron MS, Nuorti JP, Fields BS, Benson RF, Breiman RF, Lipman HB, Carter RJ, Genese CA, Paul SM, Edelstein PH, Guerrero IC. 1996. Outbreak of Legionnaires’ disease among cruise ship passengers exposed to a contaminated whirlpool spa. Lancet 347:494–499.
195. Gilmour MW, Bernard K, Tracz DM, Olson AB, Corbett CR, Burdz T, Ng B, Wiebe D, Broukhanski G, Boleszczuk P, Tang P, Jamieson F, Van Domselaar G, Plummer FA, Berry JD. 2007. Molecular typing of a Legionella pneumophila outbreak in Ontario, Canada. J Med Microbiol 56:336–341. [PubMed]
196. Salah IB, Ghigo E, Drancourt M. 2009. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 15:894–905. [PubMed]
197. Horwitz MA, Silverstein SC. 1980. Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J Clin Invest 66:441–450. [PubMed]
198. Horwitz MA. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med 158:2108–2126. [PubMed]
199. Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhäusern S, Bondi M. 2013. Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 195:89–96. [PubMed]
200. Gao LY, Harb OS, Kwaik YA. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65:4738–4746. [PubMed]
201. Segal G, Shuman HA. 1999. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67:2117–2124. [PubMed]
202. Isberg RR, O’Connor TJ, Heidtman M. 2009. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7:13–24. [PubMed]
203. Steinert M, Hentschel U, Hacker J. 2002. Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 26:149–162. [PubMed]
204. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol 55:165–99. [PubMed]
205. Deep A, Chaudhary U, Gupta V. 2011. Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians 3:4–11. [PubMed]
206. Van Valen L. 1973. A new evolutionary law. Evol Theory 1:1–30.
207. Herre EA, Knowlton N, Mueller UG, Rehner SA. 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53. [PubMed]
208. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW IV. 2007. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329. [PubMed]
209. Pavesi A. 2005. Utility of JC polyomavirus in tracing the pattern of human migrations dating to prehistoric times. J Gen Virol 86:1315–1326. [PubMed]
210. Galagan JE. 2014. Genomic insights into tuberculosis. Nat Rev Genet 15:307–320. [PubMed]
211. Molmeret M, Horn M, Wagner M, Santic M. 2005. Amoebae as training grounds for intracellular bacterial pathogens. Appl Envrion Microbiol 71:20–28. [PubMed]
212. Johnson CM, Beard BL, Roden EE. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Planet Sci 36:457–493.
213. Beraldi-Campesi H. 2013. Early life on land and the first terrestrial ecosystems. Ecol Process 2:1.
214. Ursell LK, Metcalf J, Wegener Parfrey L, Knight R. 2012. Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44. [PubMed]
215. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810. [PubMed]
216. Haynes M, Rohwer F. 2011. The human virome, p 63–77. In Nelson KE (ed), Metagenomics of the Human Body. Springer New York, New York, NY.
microbiolspec.EMF-0009-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.EMF-0009-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EMF-0009-2016
2017-02-03
2017-11-25

Abstract:

As the “human microbiome era” continues, there is an increasing awareness of our resident microbiota and its indispensable role in our fitness as holobionts. However, the host-microbe relationship is not so clearly defined for some human symbionts. Here we discuss examples of “accidental pathogens,” meaning previously nonpathogenic and/or environmental microbes thought to have inadvertently experienced an evolutionary shift toward pathogenicity. For instance, symbionts such as and JC polyomavirus have been shown to have accompanied humans since prehistoric times and are still abundant in extant populations as part of the microbiome. And yet, the relationship between a subgroup of these microbes and their human hosts seems to have changed with time, and they have recently gained notoriety as gastrointestinal and neuropathogens, respectively. On the other hand, environmental microbes such as spp. have recently experienced a shift in host range and are now a major problem in industrialized countries as a result of artificial ecosystems. Other variables involved in this accidental phenomenon could be the apparent change or reduction in the diversity of human-associated microbiota because of modern medicine and lifestyles. All of this could result in an increased prevalence of accidental pathogens in the form of emerging pathogens.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Endosymbiosis: Homage to Lynn Margulis. Artist: Shoshanah Dubiner. This painting illustrates a portion of the incredible microbial complexity that existed on this planet when animals evolved, and thus the microbial soup in which all organisms developed. Image courtesy of the artist. Image credits: Endosymbiosis: Homage to Lynn Margulis, Shoshanah Dubiner, 2012. http://www.cybermuse.com.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

in Ötzi, the 5,300-year-old iceman. Reads specific to were detected via metagenomic analysis of DNA extracted from different regions of the gastrointestinal tract of Ötzi the Tyrolean Iceman. The area where the muscle control sample was obtained is highlighted as a diamond (picture on the left), and the gastrointestinal sampling sites are marked in the radiographic image using the following legend: star, stomach content; circle, small intestine; square, upper large intestine; triangle, lower large intestine. The number of -specific reads per million metagenomic reads is indicated by the colored gradient bar on the right. Figure reproduced from reference ( 71 ), with permission. Reproduced from reference ( 66 ), with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Lower fecal microbiome diversity associated with individuals from industrialized cultures. Clemente et al. ( 72 ) compared the bacterial diversity in feces from cultures with hunter-gatherer lifestyles compared to progressively more industrialized cultures. Phylogenetic diversity in feces from Yanomami and Guahibo Amerindians, Malawians, and U.S. individuals. A higher bacterial diversity was detected in feces from the Yanomami, an isolated, rural indigenous culture inhabiting the Amazon. In comparison, a slightly decreased fecal diversity was found in Guahibo Amerindians. However, a major decrease was detected in the diversity of the fecal microbiota in U.S. subjects. A pronounced decrease was also detected in the functional profiles of fecal microbiomes from U.S. subjects compared to cultures with more traditional lifestyles (figure not shown). Key differential bacterial groups between fecal microbiomes from Yanomami and Guahibo Amerindians, Malawians, and U.S. subjects. Functional diversity in feces from Yanomami and Guahibo Amerindians, Malawians, and U.S. individuals. As expected, a higher overall functional diversity was detected in Yanomami Amerindians. Comparison of major metabolic pathways detected in fecal microbiomes from Yanomami and Guahibo Amerindians, Malawians, and U.S. subjects. Reproduced from reference ( 72 ), with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Forensic studies with JCV DNA suggest that the expansion of from prehistoric Africa occurred as a two-migration model. As Pavesi shows in his model, two out-of-Africa migrations were suggested by currently characterized JCV subtypes. The first migration, represented with a solid line, is compatible with that previously suggested by human genes. The second migration, traced with a dashed line, indicates an additional route of expansion suggested by JCV but that is undetectable using only human genes. Reproduced from reference ( 209 ), with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Origin of human-associated . Although its exact ancestral history remains unresolved, recent studies clearly suggest that was associated with humans previous to their expansion from prehistoric Africa. However, is believed to have been an environmental microbe long before its association with ancient humans. This figure was taken from reference ( 210 ), with permission, and depicts a summary of the conclusions implied by current phylogenetic literature on the evolution of and other members of the complex.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

infections in environmental amoebae and human macrophages. Electron micrographs of U937 macrophages and infected by (strain AA100) at 24 h. Reproduced from reference ( 211 ), with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Definition of terms used throughout this review

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.EMF-0009-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error