1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Forensic Approaches to Detect Possible Agents of Bioterror

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Alfredo A. González1, Jessica I. Rivera-Pérez2, Gary A. Toranzos3
  • Editor: Raúl J. Cano4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930; 2: Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930; 3: Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930; 4: California Polytechnic State University, San Luis Obispo, CA
  • Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.EMF-0010-2016
  • Received 10 November 2016 Accepted 10 March 2017 Published 28 April 2017
  • Alfredo A. González, alfredogonzalez_96@msn.com
image of Forensic Approaches to Detect Possible Agents of Bioterror
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Forensic Approaches to Detect Possible Agents of Bioterror, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/EMF-0010-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/EMF-0010-2016-2.gif
  • Abstract:

    Many biological agents have been strategic pathogenic agents throughout history. Some have even changed history as a consequence of early discoveries of their use as weapons of war. Many of these bioagents can be easily isolated from the environment, and some have recently been genetically manipulated to become more pathogenic for biowarfare. However, it is difficult to determine accidental outbreaks of disease from intentional exposures. In this review, we examine how molecular tools have been used in combination with forensic research to resolve cases of unusual outbreaks and trace the source of the biocrime. New technologies are also discussed in terms of their crucial role impacting forensic science. The anthrax event of 2001 serves as an example of the real threat of bioterrorism and the employment of bioagents as weapons against a population. The Amerithrax investigation has given us lessons of the highest resolution possible with new technologies capable of distinguishing isolates at the base-pair level of sensitivity. In addition, we discuss the implications of proper sanitation to avoid waterborne diseases. The use of new methods in forensic science and health-related surveillance will be invaluable in determining the source of any new disease outbreak, and these data will allow for a quick response to any type of public health threat, whether accidental or purposely initiated.

  • Citation: González A, Rivera-Pérez J, Toranzos G. 2017. Forensic Approaches to Detect Possible Agents of Bioterror. Microbiol Spectrum 5(2):EMF-0010-2016. doi:10.1128/microbiolspec.EMF-0010-2016.

Key Concept Ranking

Infectious Diseases
0.5098105
Severe Acute Respiratory Syndrome
0.45302793
Zoonotic Diseases
0.43107438
0.5098105

References

1. Ludovici GM, Cenciarelli O, Carestia M, Malizia A, Tamburrini A, Gabbarini V, Sassolini A, Di Giovanni D, Mancinelli S, Palombi L, Gaudio P, Bellecci C, Rinaldi T. 2015. The importance of forensic microbiology in CBRNe investigations. Defense ST Tech Bull 8:153.
2. Pritchard JB. 2016. Ancient Near Eastern Texts Relating to the Old Testament. Princeton University Press, Princeton, NJ.
3. Mishra S, Trikamji B. 2014. Historical and preventive aspect of biological warfare. Int J Health Syst Disaster Manage 2:204.
4. Trevisanato SI. 2007. The ‘Hittite plague’: an epidemic of tularemia and the first record of biological warfare. Med Hypotheses 69:1371–1374. [PubMed]
5. Kortepeter M, Christopher GW. 2001. USAMRIID’s Medical Management of Biological Casualties Handbook. Government Printing Office, Washington, DC.
6. Schiff PL Jr. 2006. Ergot and its alkaloids. Am J Pharm Educ 70:98. [PubMed]
7. Pausanias. 1898. Description of Greece, vol. 6. MacMillan, London, United Kingdom.
8. Derbes VJ. 1966. De Mussis and the great plague of 1348. A forgotten episode of bacteriological warfare. JAMA 196:59–62. [PubMed]
9. Herlihy D, Cohn SK. 1997. The Black Death and the Transformation of the West. Harvard University Press, Cambridge, MA.
10. Barras V, Greub G. 2014. History of biological warfare and bioterrorism. Clin Microbiol Infect 20:497–502. [PubMed]
11. Geissler E, van Courtland Moon JE. 1999. Biological and Toxin Weapons: Research, Development and Use from Middle Ages to 1945. Oxford University Press, Oxford, United Kingdom.
12. Kirby R. 2005. Using the flea as a weapon. Army Chem Rev Jul:30–36.
13. Wolfe ND, Dunavan CP, Diamond J. 2007. Origins of major human infectious diseases. Nature 447:279–283. [PubMed]
14. Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. 2015. Gut microbiome of an 11th century A.D. pre-Columbian Andean mummy. PLoS One 10:e0138135. doi:10.1371/journal.pone.0138135. [PubMed]
15. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497. [PubMed]
16. Cook ND. 1998. Born to Die: Disease and New World Conquest, 1492-1650. Cambridge University Press, Cambridge, United Kingdom.
17. Ranlet P. 2000. The British, the Indians, and smallpox: what actually happened at Fort Pitt in 1763? Pa Hist 67:427–441. [PubMed]
18. Kohn GC. 2007. Encyclopedia of Plague and Pestilence: from Ancient Times to the Present. Infobase Publishing, New York, NY.
19. Meselson M, Guillemin J, Hugh-Jones M, Langmuir A, Popova I, Shelokov A, Yampolskaya O. 1994. The Sverdlovsk anthrax outbreak of 1979. Science 266:1202–1208. [PubMed]
20. Bezdenezhnykh IS, Nikiforov VN. 1980. Epidemiologic analysis of anthrax in Sverdlovsk. Zh Mikrobiol Epidemiol Immunobiol (5):111–113. (In Russian.) [PubMed]
21. Muratov D, Sorokin Y, Fronin V. 1992. Interview with Russian President Boris Yeltsin in Moscow 23 May 1992: Boris Yeltsin: I am not hiding the difficulties and I want the people to understand this [in Russian]. Komsomolskaya Pravda, 27 May, p 2. Moscow, Russia.
22. Jackson PJ, Hugh-Jones ME, Adair DM, Green G, Hill KK, Kuske CR, Grinberg LM, Abramova FA, Keim P. 1998. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims. Proc Natl Acad Sci USA 95:1224–1229. [PubMed]
23. Simonson TS, Okinaka RT, Wang B, Easterday WR, Huynh L, U’Ren JM, Dukerich M, Zanecki SR, Kenefic LJ, Beaudry J, Schupp JM, Pearson T, Wagner DM, Hoffmaster A, Ravel J, Keim P. 2009. Bacillus anthracis in China and its relationship to worldwide lineages. BMC Microbiol 9:1. doi:10.1186/1471-2180-9-71. [PubMed]
24. Okinaka RT, Henrie M, Hill KK, Lowery KS, Van Ert M, Pearson T, Schupp J, Kenefic L, Beaudry J, Hofstadler SA, Jackson PJ, Keim P. 2008. Single nucleotide polymorphism typing of Bacillus anthracis from Sverdlovsk tissue. Emerg Infect Dis 14:653–656. [PubMed]
25. Handelman S, Alibek K. 2014. Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World: Told from the Inside by the Man who Ran it. Dell Publishing, New York, NY.
26. Bernett BC. 2006. US Biodefense & Homeland Security: Toward Detection & Attribution. Naval Postgraduate School, Monterey, CA.
27. Parker HS. 2002. Agricultural Bioterrorism: a Federal Strategy to Meet the Threat. DTIC Document, National Defense University, Washington, DC.
28. Török TJ, Tauxe RV, Wise RP, Livengood JR, Sokolow R, Mauvais S, Birkness KA, Skeels MR, Horan JM, Foster LR. 1997. A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA 278:389–395. [PubMed]
29. Crowe K. 2007. Salad bar Salmonella. Forensic Exam 16:24.
30. Carus WS. 2001. Bioterrorism and Biocrimes: the Illicit Use of Biological Agents Since 1900. National Defense University, Washington, DC.
31. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV, CDC PulseNet Task Force. 2001. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389. [PubMed]
32. Bean NH, Martin SM, Bradford H Jr. 1992. PHLIS: an electronic system for reporting public health data from remote sites. Am J Public Health 82:1273–1276. [PubMed]
33. Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2:39–45. [PubMed]
34. Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A, Dougan G, Harrison LH, Brisse S, S. Enterica MLST Study Group. 2012. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 8:e1002776. doi:10.1371/journal.ppat.1002776.
35. Zhang H, Zhang X, Yan M, Pang B, Kan B, Xu H, Huang X. 2011. Genotyping of Salmonella enterica serovar Typhi strains isolated from 1959 to 2006 in China and analysis of genetic diversity by genomic microarray. Croat Med J 52:688–693. [PubMed]
36. Yap KP, Ho WS, Gan HM, Chai LC, Thong KL. 2016. Global MLST of Salmonella typhi revisited in post-genomic era: genetic conservation, population structure, and comparative genomics of rare sequence types. Front Microbiol 7:270. doi:10.3389/fmicb.2016.00270.
37. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, Kingsley RA, Thomson NR, Keane JA, Weill F-X, Edwards DJ, Hawkey J, Harris SR, Mather AE, Cain AK, Hadfield J, Hart PJ, Tran Vu Thieu N, Klemm EJ, Glinos DA, Breiman RF, Watson CH, Kariuki S, Gordon MA, Heyderman RS, Okoro C, Jacobs J, Lunguya O, Edmunds WJ, Msefula C, Chabalgoity JA, Kama M, Jenkins K, Dutta S, Marks F, Campos J, Thompson C, Obaro S, MacLennan CA, Dolecek C, Keddy KH, Smith AM, Parry CM, Karkey A, Mulholland EK, Campbell JI, Dongol S, Basnyat B, Dufour M, Bandaranayake D, Naseri TT, Singh SP, Hatta M, Newton P, Onsare RS, Isaia L, Dance D, Davong V, Thwaites G, Wijedoru L, Crump JA, De Pinna E, Nair S, Nilles EJ, Thanh DP, Turner P, Soeng S, Valcanis M, Powling J, Dimovski K, Hogg G, Farrar J, Holt KE, Dougan G. 2015. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet 47:632–639. [PubMed]
38. Chau TT, Campbell JI, Galindo CM, Van Minh Hoang N, Diep TS, Nga TT, Van Vinh Chau N, Tuan PQ, Page AL, Ochiai RL, Schultsz C, Wain J, Bhutta ZA, Parry CM, Bhattacharya SK, Dutta S, Agtini M, Dong B, Honghui Y, Anh DD, Canh DG, Naheed A, Albert MJ, Phetsouvanh R, Newton PN, Basnyat B, Arjyal A, La TT, Rang NN, Phuong LT, Van Be Bay P, von Seidlein L, Dougan G, Clemens JD, Vinh H, Hien TT, Chinh NT, Acosta CJ, Farrar J, Dolecek C. 2007. Antimicrobial drug resistance of Salmonella enterica serovar Typhi in Asia and molecular mechanism of reduced susceptibility to the fluoroquinolones. Antimicrob Agents Chemother 51:4315–4323. [PubMed]
39. Kariuki S, Revathi G, Kiiru J, Mengo DM, Mwituria J, Muyodi J, Munyalo A, Teo YY, Holt KE, Kingsley RA, Dougan G. 2010. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J Clin Microbiol 48:2171–2176. [PubMed]
40. Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G, Achtman M. 2006. Evolutionary history of Salmonella Typhi. Science 314:1301–1304. [PubMed]
41. Wirth T. 2015. Massive lineage replacements and cryptic outbreaks of Salmonella Typhi in eastern and southern Africa. Nat Genet 47:565–567. [PubMed]
42. Gilpin B. 2007. Molecular epidemiology: the potential of microbial genotyping to transform disease investigation in the 21st century. N Z Sci 64:42–46.
43. Dembek ZF, Kortepeter MG, Pavlin JA. 2007. Discernment between deliberate and natural infectious disease outbreaks. Epidemiol Infect 135:353–371. [PubMed]
44. Kolavic SA, Kimura A, Simons SL, Slutsker L, Barth S, Haley CE. 1997. An outbreak of Shigella dysenteriae type 2 among laboratory workers due to intentional food contamination. JAMA 278:396–398. [PubMed]
45. Njamkepo E, Fawal N, Tran-Dien A, Hawkey J, Strockbine N, Jenkins C, Talukder KA, Bercion R, Kuleshov K, Kolínská R, Russell JE, Kaftyreva L, Accou-Demartin M, Karas A, Vandenberg O, Mather AE, Mason CJ, Page AJ, Ramamurthy T, Bizet C, Gamian A, Carle I, Sow AG, Bouchier C, Wester AL, Lejay-Collin M, Fonkoua MC, Hello SL, Blaser MJ, Jernberg C, Ruckly C, Mérens A, Page AL, Aslett M, Roggentin P, Fruth A31, Denamur E, Venkatesan M, Bercovier H, Bodhidatta L, Chiou CS, Clermont D, Colonna B, Egorova S, Pazhani GP, Ezernitchi AV, Guigon G, Harris SR, Izumiya H, Korzeniowska-Kowal A, Lutyńska A, Gouali M, Grimont F, Langendorf C, Marejková M, Peterson LA, Perez-Perez G, Ngandjio A, Podkolzin A, Souche E, Makarova M, Shipulin GA, Ye C, Žemličková H, Herpay M, Grimont PA, Parkhill J, Sansonetti P, Holt KE, Brisse S, Thomson NR, Weill FX. 2016. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol 1:16027. doi:10.1038/nmicrobiol.2016.27. [PubMed]
46. Rohmer L, Jacobs MA, Brittnacher MJ, Fong C, Hayden HS, Hocquet D, Weiss EJ, Radey M, Germani Y, Talukder KA, Hager AJ, Kemner JM, Sims-Day EH, Matamouros S, Hager KR, Miller SI. 2014. Genomic analysis of the emergence of 20th century epidemic dysentery. BMC Genom 15:1. doi:10.1186/1471-2164-15-355.
47. The Japan Times. 2010. Tokyo marks subway sarin attack. http://www.japantimes.co.jp/cgi-bin/nn20100321a1.html.
48. Olson KB. 1999. Aum Shinrikyo: once and future threat? Emerg Infect Dis 5:513–516. [PubMed]
49. Takahashi H, Keim P, Kaufmann AF, Keys C, Smith KL, Taniguchi K, Inouye S, Kurata T. 2004. Bacillus anthracis incident, Kameido, Tokyo, 1993. Emerg Infect Dis 10:117–120. [PubMed]
50. Smithson AE. 2000. Rethinking the lessons of Tokyo, p 71–111. In Smithson AE, Levy LA (ed), Ataxia: The Chemical and Biological Terrorism Threat and the US Response. The Henry L. Stimson Center, Washington, DC.
51. Keim P, Smith KL, Keys C, Takahashi H, Kurata T, Kaufmann A. 2001. Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J Clin Microbiol 39:4566–4567. [PubMed]
52. Erickson J. 2003. On the trail of a germ: microbial forensics poised to become new anti-terror tool. Rocky Mountain News, 17 February.
53. Danzig R, Sageman M, Leighton T, Hough L, Yuki H, Kotani R, Hosford ZM. 2011. Aum Shinrikyo: insights into how terrorists develop biological and chemical weapons. Center for a New American Security. https://s3.amazonaws.com/files.cnas.org/documents/CNAS_AumShinrikyo_Danzig_1.pdf.
54. Demidov VV. 2002. Bioterrorism: how well are we protected? Trends Biotechnol 20:192. [PubMed]
55. Koblentz GD, Tucker JB. 2010. Tracing an attack: the promise and pitfalls of microbial forensics. Survival (Lond) 52:159–186.
56. Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME. 2000. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928. [PubMed]
57. Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T. 2002. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis 8:1111–1116. [PubMed]
58. Ravel J, Jiang L, Stanley ST, Wilson MR, Decker RS, Read TD, Worsham P, Keim PS, Salzberg SL, Fraser-Liggett CM, Rasko DA. 2009. The complete genome sequence of Bacillus anthracis, Ames ancestor. J Bacteriol 191:445–446. [PubMed]
59. Ellis J, Oyston PC, Green M, Titball RW. 2002. Tularemia. Clin Microbiol Rev 15:631–646. [PubMed]
60. Sidell FR, Takafuji ET, Franz DR. 1997. Medical aspects of chemical and biological warfare. DTIC document (Accession number: ADA398241), Office of the Surgeon General (Army), Falls Church, VA. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA398241
61. Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E, Byström M, Fox J, Chu M, Forsman M, Sjöstedt A, Keim P. 2004. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol 186:5808–5818. [PubMed]
62. Titball RW, Johansson A, Forsman M. 2003. Will the enigma of Francisella tularensis virulence soon be solved? Trends Microbiol 11:118–123.
63. Oyston PCF. 2008. Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 57:921–930. [PubMed]
64. Farlow J, Wagner DM, Dukerich M, Stanley M, Chu M, Kubota K, Petersen J, Keim P. 2005. Francisella tularensis in the United States. Emerg Infect Dis 11:1835–1841. [PubMed]
65. Guryčová D. 1998. First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14:797–802. [PubMed]
66. Staples JE, Kubota KA, Chalcraft LG, Mead PS, Petersen JM. 2006. Epidemiologic and molecular analysis of human tularemia, United States, 1964-2004. Emerg Infect Dis 12:1113–1118. [PubMed]
67. Gyuranecz M, Birdsell DN, Splettstoesser W, Seibold E, Beckstrom-Sternberg SM, Makrai L, Fodor L, Fabbi M, Vicari N, Johansson A, Busch JD, Vogler AJ, Keim P, Wagner DM. 2012. Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis 18:290–293. [PubMed]
68. Olsufjev NG, Meshcheryakova IS. 1983. Subspecific taxonomy of Francisella tularensis McCoy and Chapin 1912. Int J Syst Evol Microbiol 33:872–874.
69. Birdsell DN, Johansson A, Öhrman C, Kaufman E, Molins C, Gyuranecz M. 2014. Francisella tularensis subsp. tularensis AI phylogeography in the United States. Emerg Infect Dis 20:861–865. [PubMed]
70. Whipp MJ, Davis JM, Lum G, de Boer J, Zhou Y, Bearden SW, Petersen JM, Chu MC, Hogg G. 2003. Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. J Med Microbiol 52:839–842. [PubMed]
71. Hollis DG, Weaver RE, Steigerwalt AG, Wenger JD, Moss CW, Brenner DJ. 1989. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol 27:1601–1608. [PubMed]
72. Chaudhuri RR, Ren CP, Desmond L, Vincent GA, Silman NJ, Brehm JK, Elmore MJ, Hudson MJ, Forsman M, Isherwood KE, Gurycová D, Minton NP, Titball RW, Pallen MJ, Vipond R. 2007. Genome sequencing shows that European isolates of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain Schu S4. PLoS One 2:e352. doi:10.1371/journal.pone.0000352.
73. Meinhardt PL. 2005. Water and bioterrorism: preparing for the potential threat to U.S. water supplies and public health. Annu Rev Public Health 26:213–237. [PubMed]
74. Clark CG, Price L, Ahmed R, Woodward DL, Melito PL, Rodgers FG, Jamieson F, Ciebin B, Li A, Ellis A. 2003. Characterization of waterborne outbreak-associated Campylobacter jejuni, Walkerton, Ontario. Emerg Infect Dis 9:1232–1241. [PubMed]
75. Auld H, MacIver D, Klaassen J. 2004. Heavy rainfall and waterborne disease outbreaks: the Walkerton example. J Toxicol Environ Health A 67:1879–1887. [PubMed]
76. Golder Associates, Ltd. 2000. Interim report on hydrogeological assessment, well integrity testing, geophysical survey and land use inventory, bacteriological impacts, Walkerton town wells, Municipality of Brockton, County of Bruce, Ontario.
77. McQuigge M. 2000. The investigative report on the Walkerton outbreak of waterborne gastroenteritis: May–June 2000. Bruce-Grey-Owen Sound Health Unit.
78. Howard KWF. 2006. Microbial pollution of groundwater in the town of Walkerton, Canada, p 315–330. In Tellam JH, Rivett MO, Israfilov RG, Herringshaw LG (ed), Urban Groundwater Management and Sustainability. Springer, Dordrecht, The Netherlands.
79. O’Connor DR. 2002. Report of the Walkerton inquiry: the events of May 2000 and related issues: a summary. Publications Ontario, Toronto, Canada.
80. Centers for Disease Control and Prevention (CDC). 2010. Update: outbreak of cholera: Haiti, 2010. MMWR Morb Mortal Wkly Rep 59:1586–1590. [PubMed]
81. Orata FD, Keim PS, Boucher Y. 2014. The 2010 cholera outbreak in Haiti: how science solved a controversy. PLoS Pathog 10:e1003967. doi:10.1371/journal.ppat.1003967. [PubMed]
82. Ministère de la Santé Publique et de la Population. 2014. Rapport journalier MSPP du 07 Janvier 2014. Port-au-Prince: Ministère de la Santé Publique et de la Population. http://mspp.gouv.ht/site/downloads/Rapport%20Web_07.01_Avec_Courbes_Departementales.pdf. Accessed 16 November 2016.
83. Parker AA. 2010. Cholera in Haiti: the climate connection. http://www.circleofblue.org/2010/world/hold-cholera-in-haiti-the-climate-connection/.
84. Enserink M. 2011. Despite sensitivities, scientists seek to solve Haiti’s cholera riddle. Science 331:388–389. [PubMed]
85. Enserink M. 2011. Cholera linked to UN forces, but questions remain. Science 332:776–777. [PubMed]
86. Maharjan L. 2010. Cholera outbreak looms over capital. Himalayan Times.
87. Katz JM. 2010. UN probes base as source of Haiti cholera outbreak. The Washington Times, 27 October. http://www.washingtontimes.com/news/2010/oct/27/un-probes-base-as-source-of-haiti-cholera-outbreak.
88. English AJ. 2016. UN investigates Haiti outbreak. http://www.aljazeera.com/news/africa/2010/10/2010102841412141967.html.
89. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. 2011. The origin of the Haitian cholera outbreak strain. N Engl J Med 364:33–42. [PubMed]
90. Piarroux R, Barrais R, Faucher B, Haus R, Piarroux M, Gaudart J, Magloire R, Raoult D. 2011. Understanding the cholera epidemic, Haiti. Emerg Infect Dis 17:1161–1168. [PubMed]
91. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, Engelthaler DM, Bortolaia V, Pearson T, Waters AE, Upadhyay BP, Shrestha SD, Adhikari S, Shakya G, Keim PS, Aarestrup FM. 2011. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2:e00157-11. doi:10.1128/mBio.00157-11.
92. Brachman PS. 2002. Bioterrorism: an update with a focus on anthrax. Am J Epidemiol 155:981–987. [PubMed]
93. Ackelsberg J, Rakeman J, Hughes S, Petersen J, Mead P, Schriefer M, Kingry L, Hoffmaster A, Gee JE. 2015. Lack of evidence for plague or anthrax on the New York City subway. Cell Syst 1:4–5. [PubMed]
94. Holtz TH, Ackelsberg J, Kool JL, Rosselli R, Marfin A, Matte T, Beatrice ST, Heller MB, Hewett D, Moskin LC, Bunning ML, Layton M. 2003. Isolated case of bioterrorism-related inhalational anthrax, New York City, 2001. Emerg Infect Dis 9:689–696. [PubMed]
95. Davies JC. 1983. A major epidemic of anthrax in Zimbabwe. Part II. Cent Afr J Med 29:8–12. [PubMed]
96. Brachman PS. 1980. Inhalation anthrax. Ann N Y Acad Sci 353:83–93. [PubMed]
97. Nguyen TQ, Clark N, 2006 NYC Anthrax Working Group, Karpati A, Goldberg A, Paykin A, Tucker A, Baker A, Almiroudis A, Fine A, Tsoi B, Aston C, Berg D, Weiss D, Connelly E, Beaudry G, Weisfuse I, Durrah JC, Prudhomme J, Leighton J, Ackelsberg J, Mahoney K, Van Vynck L, Lee L, Moskin L, Layton M, Wong M, Raphael M, Robinson M, Phillips M, Jones M, Jeffery N, Nieves R, Slavinski S, Mullin S, Beatrice ST, Balter S, Blank S, Frieden T, Keifer M, Rosenstein N, Diaz P, Clark T, Compton H, Daloia J, Cardarelli J, Norrell N, Horn E, Jackling S, Bacon C, Glasgow E, Gomez T, Baltzersen RA, Kammerdener C, Margo-Zavazky D, Colgan J, Pulaski P. 2010. Public health and environmental response to the first case of naturally acquired inhalational anthrax in the United States in 30 years: infection of a New York City resident who worked with dried animal hides. J Public Health Manag Pract 16:189–200. [PubMed]
98. de La Potherie MD. 1722. Histoire de l’Amérique septentrionale. Chez Jean-Luc Nion et François Didot, Paris, France.
99. Centers for Disease Control and Prevention (CDC). 2011. Summary of notifiable diseases: United States, 2009. MMWR Morb Mortal Wkly Rep 58:1–100. [PubMed]
100. Ngo E, Manning B. Bioterrorism: the biology of threats and health impacts. http://www.westernschools.com/Portals/0/html/H8598/Pt7ko__files/OEBPS/Text/Section0003.html.
101. Grundmann O. 2014. The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manag Healthc Policy 7:177–187. [PubMed]
102. Riedel S. 2004. Biological warfare and bioterrorism: a historical review. Proc Bayl Univ Med Cent 17:400–406. [PubMed]
microbiolspec.EMF-0010-2016.citations
cm/5/2
content/journal/microbiolspec/10.1128/microbiolspec.EMF-0010-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.EMF-0010-2016
2017-04-28
2017-09-23

Abstract:

Many biological agents have been strategic pathogenic agents throughout history. Some have even changed history as a consequence of early discoveries of their use as weapons of war. Many of these bioagents can be easily isolated from the environment, and some have recently been genetically manipulated to become more pathogenic for biowarfare. However, it is difficult to determine accidental outbreaks of disease from intentional exposures. In this review, we examine how molecular tools have been used in combination with forensic research to resolve cases of unusual outbreaks and trace the source of the biocrime. New technologies are also discussed in terms of their crucial role impacting forensic science. The anthrax event of 2001 serves as an example of the real threat of bioterrorism and the employment of bioagents as weapons against a population. The Amerithrax investigation has given us lessons of the highest resolution possible with new technologies capable of distinguishing isolates at the base-pair level of sensitivity. In addition, we discuss the implications of proper sanitation to avoid waterborne diseases. The use of new methods in forensic science and health-related surveillance will be invaluable in determining the source of any new disease outbreak, and these data will allow for a quick response to any type of public health threat, whether accidental or purposely initiated.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Iroquois Native Americans engaging in trade with Europeans, 1722 (reproduced from reference 98 ).

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.EMF-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The annual fluctuation of cases from 1953 to 2008 ( 99 ).

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.EMF-0010-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Classification of potential biological agents used for bioterrorism attacks

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.EMF-0010-2016
Generic image for table
TABLE 2

Number of casualties produced by a biological agent in a hypothetical bioterror attack

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.EMF-0010-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error