1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Insect Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Brian Lovett1, Raymond J. St. Leger2
  • Editor: Joseph Heitman3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Entomology, University of Maryland, College Park, MD 20742; 2: Department of Entomology, University of Maryland, College Park, MD 20742; 3: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
  • Received 22 February 2016 Accepted 19 December 2016 Published 03 March 2017
  • Brian Lovett, lovettbr@umd.edu
image of The Insect Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Insect Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0001-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0001-2016-2.gif
  • Abstract:

    Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.

  • Citation: Lovett B, St. Leger R. 2017. The Insect Pathogens. Microbiol Spectrum 5(2):FUNK-0001-2016. doi:10.1128/microbiolspec.FUNK-0001-2016.

Key Concept Ranking

Infection and Immunity
0.6086615
Metarhizium anisopliae
0.44078946
Fungal Infections
0.43176648
Plant Pathogenic Fungi
0.40428293
0.6086615

References

1. Ødegaard F. 2000. How many species of arthropods? Erwin’s estimate revised. Biol J Linn Soc Lond 71:583–597. http://dx.doi.org/10.1111/j.1095-8312.2000.tb01279.x
2. Vega FE, Blackwel M. 2005. Insect-Fungal Associations: Ecology and Evolution. Oxford University Press, Oxford, United Kingdom.
3. Araújo JPM, Hughes DP. 2016. Diversity of entomopathogenic Fungi: which groups conquered the insect body? p 1–39. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2016.01.001
4. Suh SO, Noda H, Blackwell M. 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003901
5. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 2005. The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. http://dx.doi.org/10.1146/annurev.ecolsys.36.102003.152626
6. De Kesel A. 1996. Host specificity and habitat preference of Laboulbenia slackensis. Mycologia 88:565–573. http://dx.doi.org/10.2307/3761150
7. Roberts DW, St Leger RJ. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70. http://dx.doi.org/10.1016/S0065-2164(04)54001-7 [PubMed]
8. Meyling NV, Hajek AE. 2010. Principles from community and metapopulation ecology: application to fungal entomopathogens. BioControl 55:39–54. http://dx.doi.org/10.1007/s10526-009-9246-5
9. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. 2015. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. http://dx.doi.org/10.1016/j.jip.2015.07.009 [PubMed][CrossRef]
10. Vega FE, Meyling NV, Luangsa-ard JJ, Blackwell M. 2012. Insect Pathology. Elsevier, London, UK.
11. Lovett B, St. Leger RJ (ed). 2016. Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA.
12. Roy HE, Chandler D, Goettel MS, Pell J, Vega FE, Wajnberg E. 2010. The Ecology of Fungal Entomopathogens. Springer, Dordrecht, Netherlands. http://dx.doi.org/10.1007/978-90-481-3966-8
13. Stock SP, Vanderberg J, Boemare N, Glazer I. 2009. Insect Pathogens: Molecular Approaches and Techniques. CABI, Wallingford, United Kingdom. http://dx.doi.org/10.1079/9781845934781.0000
14. Lu H-L, St. Leger RJ. 2016. Insect immunity to entomopathogenic fungi, p 251–285. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2015.11.002
15. Wang JB, St. Leger RJ, Wang C. 2016. Advances in genomics of insect pathogenic fungi, p 67–105. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2016.01.002
16. Steinhaus EA. 1956. Microbial Control: The Emergence of an Idea; a Brief History of Insect Pathology Through the Nineteenth Century. University of California, Berkeley, CA.
17. Aronstein KA, Murray KD. 2010. Chalkbrood disease in honey bees. J Invertebr Pathol 103(Suppl 1):S20–S29. http://dx.doi.org/10.1016/j.jip.2009.06.018
18. Oerke E-C, Dehne H-W. 2004. Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285. http://dx.doi.org/10.1016/j.cropro.2003.10.001
19. Lord JC. 2005. From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29. http://dx.doi.org/10.1016/j.jip.2005.04.006 [PubMed]
20. de Faria MR, Wraight SP. 2007. Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. http://dx.doi.org/10.1016/j.biocontrol.2007.08.001
21. Ortiz-Urquiza A, Luo Z, Keyhani NO. 2015. Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol 99:1057–1068. http://dx.doi.org/10.1007/s00253-014-6270-x
22. Fang W, Azimzadeh P, St Leger RJ. 2012. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol 15:232–238. http://dx.doi.org/10.1016/j.mib.2011.12.012
23. Wang C, St Leger RJ. 2007. A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456. http://dx.doi.org/10.1038/nbt1357 [PubMed]
24. Fang W, St Leger RJ. 2012. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS One 7:e43069. http://dx.doi.org/10.1371/journal.pone.0043069
25. Fang W, Lu H-L, King GF, St Leger RJ. 2014. Construction of a hypervirulent and specific mycoinsecticide for locust control. Sci Rep 4:7345. http://dx.doi.org/10.1038/srep07345 [PubMed]
26. Fan Y, Borovsky D, Hawkings C, Ortiz-Urquiza A, Keyhani NO. 2012. Exploiting host molecules to augment mycoinsecticide virulence. Nat Biotechnol 30:35–37. http://dx.doi.org/10.1038/nbt.2080 [PubMed]
27. Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. 2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074–1077. http://dx.doi.org/10.1126/science.1199115 [PubMed]
28. Wang S, O’Brien TR, Pava-Ripoll M, St Leger RJ. 2011. Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations. Proc Natl Acad Sci USA 108:20449–20454. http://dx.doi.org/10.1073/pnas.1113824108
29. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A. 2012. Have biopesticides come of age? Trends Biotechnol 30:250–258. http://dx.doi.org/10.1016/j.tibtech.2012.01.003 [PubMed]
30. Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NL, Thebtaranonth Y. 2005. Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823. http://dx.doi.org/10.1021/ar040247r [PubMed]
31. Kim HG, Song H, Yoon DH, Song B-W, Park SM, Sung GH, Cho J-Y, Park HI, Choi S, Song WO, Hwang KC, Kim TW. 2010. Cordyceps pruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway. J Ethnopharmacol 128:342–351. http://dx.doi.org/10.1016/j.jep.2010.01.049
32. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao G-P, Liu X, St Leger RJ, Wang C. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116. http://dx.doi.org/10.1186/gb-2011-12-11-r116
33. Hu X, Zhang Y-J, Xiao G-H, Zheng P, Xia Y-L, Zhang X-Y, St. Leger RJ, Liu X-Z, Wang C-S. 2013. Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chin Sci Bull 58:2846–2854. http://dx.doi.org/10.1007/s11434-013-5929-5
34. Liu L, Zhang J, Chen C, Teng J, Wang C, Luo D. 2015. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genet Biol 81:191–200. http://dx.doi.org/10.1016/j.fgb.2015.03.009
35. Pereira JL, Noronha EF, Miller RNG, Franco OL. 2007. Novel insights in the use of hydrolytic enzymes secreted by fungi with biotechnological potential. Lett Appl Microbiol 44:573–581. http://dx.doi.org/10.1111/j.1472-765X.2007.02151.x [PubMed]
36. Silva WOB, Santi L, Berger M, Pinto AFM, Guimarães JA, Schrank A, Vainstein MH. 2009. Characterization of a spore surface lipase from the biocontrol agent Metarhizium anisopliae. Process Biochem 44:829–834. http://dx.doi.org/10.1016/j.procbio.2009.03.019
37. Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. http://dx.doi.org/10.1146/annurev.immunol.25.022106.141615 [PubMed]
38. Hu G, St Leger RJ. 2002. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387. http://dx.doi.org/10.1128/AEM.68.12.6383-6387.2002
39. Moonjely S, Barelli L, Bidochka MJ. 2016. Insect pathogenic fungi as endophytes, p 107–135. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2015.12.004
40. Wang C, St Leger RJ. 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816. http://dx.doi.org/10.1128/EC.00409-06
41. Liao X, Lu H-L, Fang W, St Leger RJ. 2014. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 98:777–783. http://dx.doi.org/10.1007/s00253-013-5360-5 [PubMed]
42. Liao X, O’Brien TR, Fang W, St Leger RJ. 2014. The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol 98:7089–7096. http://dx.doi.org/10.1007/s00253-014-5788-2
43. Eilenberg J, Pell JK. 2007. EcologyArthropod-pathogenic entomophthorales. Office for Official Publications of the European Communities, Luxembourg. [PubMed]
44. de Bekker C, Quevillon LE, Smith PB, Fleming KR, Ghosh D, Patterson AD, Hughes DP. 2014. Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol Biol 14:166. http://dx.doi.org/10.1186/s12862-014-0166-3
45. Evans HC, Elliot SL, Hughes DP. 2011. Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil. PLoS One 6:e17024. http://dx.doi.org/10.1371/journal.pone.0017024
46. Kobmoo N, Mongkolsamrit S, Wutikhun T, Tasanathai K, Khonsanit A, Thanakitpipattana D, Luangsa-Ard JJ. 2015. New species of Ophiocordyceps unilateralis, an ubiquitous pathogen of ants from Thailand. Fungal Biol 119:44–52. http://dx.doi.org/10.1016/j.funbio.2014.10.008 [PubMed][CrossRef]
47. Blackwell M. 2010. Fungal evolution and taxonomy. BioControl 55:7–16. http://dx.doi.org/10.1007/s10526-009-9243-8
48. Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, Liu X, Zhan S, St Leger RJ, Wang C. 2014. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci USA 111:16796–16801. http://dx.doi.org/10.1073/pnas.1412662111
49. Hesketh H, Roy HE, Eilenberg J, Pell JK, Hails RS. 2010. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects, p 55–73. In Roy HE, Vega FE, Goettel MS, Chandler D, Pell JK, Wajnberg E (ed), The Ecology of Fungal Entomopathogens. Springer, Dordrecht, Netherlands. http://dx.doi.org/10.1007/978-90-481-3966-8_5
50. Hajek AE, Delalibera I. 2010. Fungal pathogens as classical biological control agents against arthropods. BioControl 55:147–158. http://dx.doi.org/10.1007/s10526-009-9253-6
51. Gao Q, Jin K, Ying S-H, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie X-Q, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma L-J, St Leger RJ, Zhao G-P, Pei Y, Feng M-G, Xia Y, Wang C. 2011. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264. http://dx.doi.org/10.1371/journal.pgen.1001264
52. Pattemore JA, Hane JK, Williams AH, Wilson BAL, Stodart BJ, Ash GJ. 2014. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics 15:660. http://dx.doi.org/10.1186/1471-2164-15-660
53. Staats CC, Junges A, Guedes RLM, Thompson CE, de Morais GL, Boldo JT, de Almeida LGP, Andreis FC, Gerber AL, Sbaraini N, da Paixão RLA, Broetto L, Landell M, Santi L, Beys-da-Silva WO, Silveira CP, Serrano TR, de Oliveira ES, Kmetzsch L, Vainstein MH, de Vasconcelos ATR, Schrank A. 2014. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 15:822. http://dx.doi.org/10.1186/1471-2164-15-822
54. Xiao G, Ying S-H, Zheng P, Wang Z-L, Zhang S, Xie X-Q, Shang Y, St Leger RJ, Zhao G-P, Wang C, Feng M-G. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483. http://dx.doi.org/10.1038/srep00483 [PubMed]
55. de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP. 2015. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16:620. http://dx.doi.org/10.1186/s12864-015-1812-x
56. Agrawal Y, Khatri I, Subramanian S, Shenoy BD. 2015. Genome sequence, comparative analysis, and evolutionary insights into chitinases of entomopathogenic fungus Hirsutella thompsonii. Genome Biol Evol 7:916–930. http://dx.doi.org/10.1093/gbe/evv037
57. Fisher JJ, Rehner SA, Bruck DJ. 2011. Diversity of rhizosphere associated entomopathogenic fungi of perennial herbs, shrubs and coniferous trees. J Invertebr Pathol 106:289–295. http://dx.doi.org/10.1016/j.jip.2010.11.001
58. Pava-Ripoll M, Angelini C, Fang W, Wang S, Posada FJ, St Leger R. 2011. The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology 157:47–55. http://dx.doi.org/10.1099/mic.0.042200-0
59. Brownbridge M, Reay SD, Nelson TL, Glare TR. 2012. Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biol Control 61:194–200. http://dx.doi.org/10.1016/j.biocontrol.2012.01.002
60. Biswas C, Dey P, Satpathy S, Satya P. 2011. Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker. BioControl 57:565–571. http://dx.doi.org/10.1007/s10526-011-9424-0
61. Ownley BH, Gwinn KD, Vega FE. 2009. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution, p 113–128. In Roy HE, Vega FE, Goettel MS, Chandler D, Pell JK, Wajnberg E (ed), The Ecology of Fungal Entomopathogens. Springer, Dordrecht, Netherlands. http://dx.doi.org/10.1007/978-90-481-3966-8_9
62. Vega FE. 2008. Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279. http://dx.doi.org/10.1016/j.jip.2008.01.008 [PubMed]
63. Lovett B, St Leger RJ. 2015. Stress is the rule rather than the exception for Metarhizium. Curr Genet 61:253–261. http://dx.doi.org/10.1007/s00294-014-0447-9 [PubMed]
64. Behie SW, Bidochka MJ. 2014. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560. http://dx.doi.org/10.1128/AEM.03338-13
65. Fang W, St Leger RJ. 2010. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154:1549–1557. http://dx.doi.org/10.1104/pp.110.163014 [PubMed]
66. Bark YG, Lee DG, Kang SC, Kim YH. 1996. Antibiotic properties of an entomopathogenic fungus, Beauveria bassiana, on Fusarium oxysporum and Botrytis cinerea. Korean J Plant Pathol 12:245–250.
67. Rhee YJ, Hillier S, Gadd GM. 2012. Lead transformation to pyromorphite by fungi. Curr Biol 22:237–241. http://dx.doi.org/10.1016/j.cub.2011.12.017 [PubMed]
68. Bidochka MJ, Clark DC, Lewis MW, Keyhani NO. 2010. Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators? Microbiology 156:2164–2171. http://dx.doi.org/10.1099/mic.0.038216-0
69. Screen SE, Hu G, St Leger RJ. 2001. Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invertebr Pathol 78:260–266. http://dx.doi.org/10.1006/jipa.2001.5067
70. Wang C, St Leger RJ. 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4:937–947. http://dx.doi.org/10.1128/EC.4.5.937-947.2005 [PubMed]
71. St Leger RJ, Staples RC, Roberts DW. 1992. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Gene 120:119–124. http://dx.doi.org/10.1016/0378-1119(92)90019-L
72. Bidochka MJ, St. Leger RJ, Joshi L, Roberts DW. 1995. The rodlet layer from aerial and submerged conidia of the entomopathogenic fungus Beauveria bassiana contains hydrophobin. Mycol Res 99:403–406. http://dx.doi.org/10.1016/S0953-7562(09)80637-0
73. Kirkland BH, Keyhani NO. 2011. Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli. J Ind Microbiol Biotechnol 38:327–335. http://dx.doi.org/10.1007/s10295-010-0777-7
74. Zhang S, Xia YX, Kim B, Keyhani NO. 2011. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 80:811–826. http://dx.doi.org/10.1111/j.1365-2958.2011.07613.x
75. Sevim A, Donzelli BGG, Wu D, Demirbag Z, Gibson DM, Turgeon BG. 2012. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet 58:79–92. http://dx.doi.org/10.1007/s00294-012-0366-6 [PubMed]
76. St. Leger RJ, Roberts DW, Staples RC. 1991. A model to explain differentiation of appressoria by germlings of Metarhizium anisopliae. J Invertebr Pathol 57:299–310. http://dx.doi.org/10.1016/0022-2011(91)90134-C
77. St. Leger RJ, Bidochka MJ, Roberts DW. 1994. Germination triggers of Metarhizium anisopliae conidia are related to host species. Microbiology 140:1651–1660. http://dx.doi.org/10.1099/13500872-140-7-1651
78. St. Leger RJ, May B, Allee LL, Frank DC, Staples RC, Roberts DW. 1992. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 60:89–101. http://dx.doi.org/10.1016/0022-2011(92)90159-2
79. Ying S-H, Feng M-G, Keyhani NO. 2013. A carbon responsive G-protein coupled receptor modulates broad developmental and genetic networks in the entomopathogenic fungus, Beauveria bassiana. Environ Microbiol 15:2902–2921.
80. Jarrold SL, Moore D, Potter U, Charnley AK. 2007. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol Res 111:240–249. http://dx.doi.org/10.1016/j.mycres.2006.10.007 [PubMed]
81. Ortiz-Urquiza A, Keyhani NO. 2013. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374. http://dx.doi.org/10.3390/insects4030357 [PubMed]
82. St. Leger RJ, Butt TM, Goettel MS, Staples RC, Roberts DW. 1989. Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Exp Mycol 13:274–288. http://dx.doi.org/10.1016/0147-5975(89)90049-2
83. St. Leger RJ, Goettel M, Roberts DW, Staples RC. 1991. Prepenetration events during infection of host cuticle by Metarhizium anisopliae. J Invertebr Pathol 58:168–179. http://dx.doi.org/10.1016/0022-2011(91)90061-T
84. Crespo R, Júrez MP, Dal Bello GM, Padín S, Fernández GC, Pedrini N. 2002. Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. BioControl 47:685–696. http://dx.doi.org/10.1023/A:1020545613148
85. Pedrini N, Zhang S, Juárez MP, Keyhani NO. 2010. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 156:2549–2557. http://dx.doi.org/10.1099/mic.0.039735-0
86. Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO. 2012. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem 287:13477–13486. http://dx.doi.org/10.1074/jbc.M111.338947 [PubMed]
87. Wang C, St Leger RJ. 2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115. http://dx.doi.org/10.1074/jbc.M609592200
88. Freimoser FM, Hu G, St Leger RJ. 2005. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371. http://dx.doi.org/10.1099/mic.0.27560-0
89. Bagga S, Hu G, Screen SE, St Leger RJ. 2004. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169. http://dx.doi.org/10.1016/j.gene.2003.09.031
90. Goettel MS, St. Leger RJ, Rizzo NW, Staples RC, Roberts DW. 1989. Ultrastructural localization of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexto) cuticle. Microbiology 135:2233–2239. http://dx.doi.org/10.1099/00221287-135-8-2233
91. Hu G, Leger RJ. 2004. A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol 17:1204–1214. http://dx.doi.org/10.1111/j.1420-9101.2004.00786.x [CrossRef]
92. St Leger R, Joshi L, Bidochka MJ, Roberts DW. 1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci USA 93:6349–6354. http://dx.doi.org/10.1073/pnas.93.13.6349
93. Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y. 2007. Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302. http://dx.doi.org/10.1128/AEM.01974-06
94. Fang W, Feng J, Fan Y, Zhang Y, Bidochka MJ, Leger RJ, Pei Y. 2009. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J Invertebr Pathol 102:155–159. http://dx.doi.org/10.1016/j.jip.2009.07.013
95. Zhang W, Yueqing C, Yuxian X. 2008. Cloning of the subtilisin Pr1A gene from a strain of locust specific fungus, Metarhizium anisopliae, and functional expression of the protein in Pichia pastoris. World J Microbiol Biotechnol 24:2481–2488. http://dx.doi.org/10.1007/s11274-008-9771-x
96. Wang S, Fang W, Wang C, St Leger RJ. 2011. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathog 7:e1002097. http://dx.doi.org/10.1371/journal.ppat.1002097
97. Wang C, Hu G, St Leger RJ. 2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718. http://dx.doi.org/10.1016/j.fgb.2005.04.006
98. Wang C, St Leger RJ. 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA 103:6647–6652. http://dx.doi.org/10.1073/pnas.0601951103
99. Feng P, Shang Y, Cen K, Wang C. 2015. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci USA 112:11365–11370. http://dx.doi.org/10.1073/pnas.1503200112 [PubMed]
100. Wang J, Zhou G, Ying S-H, Feng M-G. 2014. Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity, and multistress responses. Fungal Biol 118:422–431. http://dx.doi.org/10.1016/j.funbio.2014.03.001
101. Fang W, Pava-ripoll M, Wang S, St Leger R. 2009. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genet Biol 46:277–285. http://dx.doi.org/10.1016/j.fgb.2008.12.001
102. Li F, Wang Z-L, Zhang L-B, Ying S-H, Feng M-G. 2015. The role of three calcineurin subunits and a related transcription factor (Crz1) in conidiation, multistress tolerance and virulence in Beauveria bassiana.Appl Microbiol Biotechnol 99:827–840. http://dx.doi.org/10.1007/s00253-014-6124-6
103. Zhang Y, Zhang J, Jiang X, Wang G, Luo Z, Fan Y, Wu Z, Pei Y. 2010. Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 76:2262–2270. http://dx.doi.org/10.1128/AEM.02246-09
104. Jin K, Ming Y, Xia YX. 2012. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum. Microbiology 158:2987–2996. http://dx.doi.org/10.1099/mic.0.059469-0
105. Wang C, Duan Z, St Leger RJ. 2008. MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryot Cell 7:302–309. http://dx.doi.org/10.1128/EC.00310-07 [PubMed]
106. Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C. 2013. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 9:538–549. http://dx.doi.org/10.4161/auto.23575
107. Zhao H, Xu C, Lu H-L, Chen X, St Leger RJ, Fang W. 2014. Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathog 10:e1004009. http://dx.doi.org/10.1371/journal.ppat.1004009 [PubMed][CrossRef]
108. Fang W, St Leger RJ. 2010. RNA binding proteins mediate the ability of a fungus to adapt to the cold. Environ Microbiol 12:810–820. http://dx.doi.org/10.1111/j.1462-2920.2009.02127.x [PubMed]
109. Liao X, Fang W, Lin L, Lu H-L, St Leger RJ. 2013. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 8:e78118. http://dx.doi.org/10.1371/journal.pone.0078118
110. Huang W, Shang Y, Chen P, Cen K, Wang C. 2015. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 290:8218–8231. doi:10.1074/jbc.M114.630939.
111. Huang W, Shang Y, Chen P, Gao Q, Wang C. 2015. MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii. Environ Microbiol 17:994–1008. http://dx.doi.org/10.1111/1462-2920.12451 [PubMed]
112. St. Leger RJ, Charnley AK, Cooper RM. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. J Invertebr Pathol 48:85–95. http://dx.doi.org/10.1016/0022-2011(86)90146-1
113. St Leger RJ, Joshi L, Roberts D. 1998. Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 64:709–713. [PubMed]
114. St Leger RJ, Nelson JO, Screen SE. 1999. The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2699. http://dx.doi.org/10.1099/00221287-145-10-2691
115. St. Leger RJ, Charnley AK, Cooper RM. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: mechanisms of interaction between pathogen enzymes and insect cuticle. J Invertebr Pathol 47:295–302. http://dx.doi.org/10.1016/0022-2011(86)90099-6
116. Lu H-L, Wang JB, Brown MA, Euerle C, St Leger RJ. 2015. Identification of Drosophila mutants affecting defense to an entomopathogenic fungus. Sci Rep 5:12350. http://dx.doi.org/10.1038/srep12350 [PubMed]
117. De Fine Licht HH, Hajek AE, Eilenberg J, Jensen AB. 2016. Utilizing genomics to study entomopathogenicity in the fungal phylum entomophthoromycota: a review of current genetic resources, p 41–65. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2016.01.003
118. Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J. 2014. Evolutionary interaction networks of insect pathogenic fungi. Annu Rev Entomol 59:467–485. http://dx.doi.org/10.1146/annurev-ento-011613-162054 [PubMed]
119. Kurtti TJ, Keyhani NO. 2008. Intracellular infection of tick cell lines by the entomopathogenic fungus Metarhizium anisopliae. Microbiology 154:1700–1709. http://dx.doi.org/10.1099/mic.0.2008/016667-0 [PubMed]
120. St Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW. 1996. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62:1257–1264. [PubMed]
121. Matskevich AA, Quintin J, Ferrandon D. 2010. The Drosophila PRR GNBP3 assembles effector complexes involved in antifungal defenses independently of its Toll-pathway activation function. Eur J Immunol 40:1244–1254. http://dx.doi.org/10.1002/eji.200940164
122. Tzou P, De Gregorio E, Lemaitre B. 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 5:102–110. http://dx.doi.org/10.1016/S1369-5274(02)00294-1
123. Donzelli BGG, Krasnoff SB. 2016. Molecular genetics of secondary chemistry in Metarhizium fungi, p 365–436. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. http://dx.doi.org/10.1016/bs.adgen.2016.01.005
124. Pal S, St Leger RJ, Wu LP. 2007. Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282:8969–8977. http://dx.doi.org/10.1074/jbc.M605927200 [PubMed]
125. Chen X-R, Hu Q-B, Yu X-Q, Ren S-X. 2014. Effects of destruxins on free calcium and hydrogen ions in insect hemocytes. Insect Sci 21:31–38. http://dx.doi.org/10.1111/1744-7917.12028 [PubMed]
126. Kulkarni RD, Thon MR, Pan H, Dean RA. 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24. http://dx.doi.org/10.1186/gb-2005-6-3-r24
127. Giuliano Garisto Donzelli B, Krasnoff SB, Sun-Moon Y, Churchill AC, Gibson DM. 2012. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Curr Genet 58:105–116. http://dx.doi.org/10.1007/s00294-012-0368-4
128. Silva B, Faustino P. 2015. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 1852:1347–1359. http://dx.doi.org/10.1016/j.bbadis.2015.03.011
129. Ortiz-Urquiza AO, Keyhani N. 2016. Molecular genetics of Beauveria bassiana infection of insects, p 165–249. In Lovett B, St. Leger RJ (ed), Genetics and Molecular Biology of Entomopathogenic Fungi. Advances in Genetics, vol 94. Academic Press, Cambridge, MA. [PubMed]
130. Paterson RRM. 2008. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69:1469–1495. http://dx.doi.org/10.1016/j.phytochem.2008.01.027
131. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW. 2013. The genome of Tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9:e1003496. http://dx.doi.org/10.1371/journal.pgen.1003496
132. Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ, Hughes DP. 2009. The life of a dead ant: the expression of an adaptive extended phenotype. Am Nat 174:424–433. http://dx.doi.org/10.1086/603640 [PubMed]
133. Shang Y, Feng P, Wang C. 2015. Fungi that infect insects: altering host behavior and beyond. PLoS Pathog 11:e1005037. http://dx.doi.org/10.1371/journal.ppat.1005037 [PubMed]
134. Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK. 2006. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357. http://dx.doi.org/10.1146/annurev.ento.51.110104.150941 [PubMed]
135. Milner RJ, Holdom DG, Glare TR. 1984. Diurnal patterns of mortality in aphids infected by entomophthoran fungi. Entomol Exp Appl 36:37–42. http://dx.doi.org/10.1111/j.1570-7458.1984.tb03404.x
136. Krasnoff SB, Watson DW, Gibson DM, Kwan EC. 1995. Behavioral effects of the entomopathogenic fungus, Entomophthora muscae on its host Musca domestica: postural changes in dying hosts and gated pattern of mortality. J Insect Physiol 41:895–903. http://dx.doi.org/10.1016/0022-1910(95)00026-Q
137. Evans H. 1982. Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecol Entomol 7:47–60. http://dx.doi.org/10.1111/j.1365-2311.1982.tb00643.x
138. Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ. 2011. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11:13. http://dx.doi.org/10.1186/1472-6785-11-13 [PubMed]
139. Boer P. 2008. Observations of summit disease in Formica rufa Linnaeus, 1761 (Hymenoptera: formicidae). Myrmecol News 11:63–66.
140. Marikovsky PI. 1962. On some features of behavior of the ants Formica rufa L. infected with fungous disease. Insectes Soc 9:173–179. http://dx.doi.org/10.1007/BF02224263
141. Zurek L, Wes Watson D, Krasnoff SB, Schal C. 2002. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol 80:171–176. http://dx.doi.org/10.1016/S0022-2011(02)00109-X
142. Małagocka J, Grell MN, Lange L, Eilenberg J, Jensen AB. 2015. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. J Invertebr Pathol 128:47–56. http://dx.doi.org/10.1016/j.jip.2015.05.001
143. Eadie MJ. 2003. Convulsive ergotism: epidemics of the serotonin syndrome? Lancet Neurol 2:429–434. http://dx.doi.org/10.1016/S1474-4422(03)00439-3
144. Molnár I, Gibson DM, Krasnoff SB. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1241–1275. http://dx.doi.org/10.1039/c001459c [PubMed]
145. Kamita SG, Nagasaka K, Chua JW, Shimada T, Mita K, Kobayashi M, Maeda S, Hammock BD. 2005. A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc Natl Acad Sci USA 102:2584–2589. http://dx.doi.org/10.1073/pnas.0409457102 [PubMed]
146. van Houte S, Ros VID, Mastenbroek TG, Vendrig NJ, Hoover K, Spitzen J, van Oers MM. 2012. Protein tyrosine phosphatase-induced hyperactivity is a conserved strategy of a subset of baculoviruses to manipulate lepidopteran host behavior. PLoS One 7:e46933. http://dx.doi.org/10.1371/journal.pone.0046933
147. Humber RA. 1982. Strongwellsea vs. Erynia: the case for a phylogenetic classification of the Entomophthorales (Zygomycetes). Mycotaxon 15:167–184.
148. Thaxter R. 1888. The Entomophthoreae of the United States. Boston Society of Natural History. http://dx.doi.org/10.5962/bhl.title.57312
149. Duke L, Steinkraus DC, English JE, Smith KG. 2002. Infectivity of resting spores of Massospora cicadina (Entomophthorales: Entomophthoraceae), an entomopathogenic fungus of periodical cicadas (Magicicada spp.) (Homoptera: Cicadidae). J Invertebr Pathol 80:1–6. http://dx.doi.org/10.1016/S0022-2011(02)00040-X
150. Idnurm A. 2011. Sex determination in the first-described sexual fungus. Eukaryot Cell 10:1485–1491. http://dx.doi.org/10.1128/EC.05149-11 [PubMed]
151. Whittle CA, Nygren K, Johannesson H. 2011. Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Biol 48:661–667. http://dx.doi.org/10.1016/j.fgb.2011.02.005 [PubMed]
152. Ni M, Feretzaki M, Sun S, Wang X, Heitman J. 2011. Sex in fungi. Annu Rev Genet 45:405–430. http://dx.doi.org/10.1146/annurev-genet-110410-132536 [PubMed][CrossRef]
153. Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430. [PubMed]
154. St. Leger RJ, Cooper RM, Charnley AK. 1987. Production of cuticle-degrading enzymes by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. Microbiology 133:1371–1382. http://dx.doi.org/10.1099/00221287-133-5-1371
155. Pava-Ripoll M, Posada FJ, Momen B, Wang C, St. Leger RJ. 2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae), by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J Invertebr Pathol 99:220–226. [PubMed]
156. Hughes DP, Araújo JPM, Loreto RG, Quevillon LE, de Bekker C, Evans HC. 2016. From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:437–469. [PubMed]
microbiolspec.FUNK-0001-2016.citations
cm/5/2
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0001-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0001-2016
2017-03-03
2017-05-30

Abstract:

Fungi are the most common disease-causing agents of insects; aside from playing a crucial role in natural ecosystems, insect-killing fungi are being used as alternatives to chemical insecticides and as resources for biotechnology and pharmaceuticals. Some common experimentally tractable genera, such as spp., exemplify genetic diversity and dispersal because they contain numerous intraspecific variants with distinct environmental and insect host ranges. The availability of tools for molecular genetics and multiple sequenced genomes has made these fungi ideal experimental models for answering basic questions on the genetic and genomic processes behind adaptive phenotypes. For example, comparative genomics of entomopathogenic fungi has shown they exhibit diverse reproductive modes that often determine rates and patterns of genome evolution and are linked as cause or effect with pathogenic strategies. Fungal-insect pathogens represent lifestyle adaptations that evolved numerous times, and there are significant differences in host range and pathogenic strategies between the major groups. However, typically, spores landing on the cuticle produce appressoria and infection pegs that breach the cuticle using mechanical pressure and cuticle-degrading enzymes. Once inside the insect body cavity, fungal pathogens face a potent and comprehensively studied immune defense by which the host attempts to eliminate or reduce an infection. The Fungal Kingdom stands alone in the range, extent, and complexity of their manipulation of arthropod behavior. In part, this is because most only sporulate on cadavers, so they must ensure the dying host positions itself to allow efficient transmission.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Scanning electron micrograph of growing on caterpillar () cuticle; appressoria (Ap) were most frequently produced on zones of weakness such as hair sockets. Diagrammatic representation of cuticle penetration by using an appressorium along a seta (brown), glandular duct (beige), and trichogen cell (purple) followed by budding off of yeast-like blastospores in the hemolymph. Shown are -infected fly wings incubated with specific histochemical substrates to demonstrate aminopeptidase, subtilisin protease, and esterase activity, respectively, on appressoria and appressorial plates as described by St. Leger et al. ( 154 ).

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Malaria vector mosquito killed by a transgenic strain of expressing GFP and the spider toxin, Hybrid. Fully matured fruiting bodies of emerging from a silk worm pupa. A fruiting body of forming on the subterranean larvae of its specific host . Images B and C courtesy of Chengshu Wang.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

A phylogenetic tree representing relatedness of entomopathogenic fungal taxa. Important entomopathogenic groups are indicated in parentheses. (From reference 15 , with permission.)

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

A Brazilian carpenter ant biting a leaf with just beginning its growth out of the ant’s body. fruiting body emerging from the head of the Thai carpenter ant, . Spore-producing bodies of on the Brazilian carpenter ant . Images courtesy of David Hughes.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Live cicada with its abdomen replaced by sporulating : the insect host disseminates the fungus during this stage of the disease. Image courtesy of Mike Raupp.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0001-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error