1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Lene Lange1
  • Editors: Joseph Heitman2, Eva Holtgrewe Stukenbrock3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Technical University of Denmark, Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, 2800 Kgs. Lyngby, Denmark; 2: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 3: Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany, and Max Planck Institute for Evolutionary Biology, Plön, Germany
  • Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0007-2016
  • Received 01 March 2016 Accepted 20 April 2016 Published 03 February 2017
  • Lene Lange, lenl@kt.dtu.dk
image of Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0007-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0007-2016-2.gif
  • Abstract:

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently—in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  • Citation: Lange L. 2017. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiol Spectrum 5(1):FUNK-0007-2016. doi:10.1128/microbiolspec.FUNK-0007-2016.

Key Concept Ranking

Lactic Acid Fermentation
0.43476453
0.43476453

References

1. Lange L. 2014. The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5:463–471 http://dx.doi.org/10.5598/imafungus.2014.05.02.10. [PubMed]
2. Food and Agriculture Organization of the United Nations. 2016. FAO Food Loss and Food Waste. http://www.fao.org/food-loss-and-food-waste/en/.
3. Lange L, Björnsdottir B, Brandt A, Hildén K, Hreggviðsson G, Jacobsen B, Jessen A, Karlsson EN, Lindedam J, Mäkelä M, Smáradóttir S, Vang J, Wentzel A. 2016. Development of the Nordic Bioeconomy: NCM Reporting: TEST Centers for Green Energy Solutions - Biorefineries and Business Needs. Nordisk Ministerråd, Copenhagen, Denmark.
4. Schmid O, Padel S, Levidow L. 2012. The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-based Appl Econ 1:47–63.
5. Kubicek CP, Starr TL, Glass NL. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451 http://dx.doi.org/10.1146/annurev-phyto-102313-045831. [PubMed]
6. Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M. 2005. Polarisome meets spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229 http://dx.doi.org/10.1128/EC.4.2.225-229.2005. [PubMed]
7. CAZy. 2016. The CAZy database. http://www.cazy.org/.
8. Lange L, Pilgaard B, Gleason F, Busk PK, Gorm-Pedersen A. 2015. The chytrid secretome: a comparative analysis of the secretome of an aerobic, anaerobic and pathogenic Chytrid species. Poster, 28th Fungal Genetics Conference, Pacific Grove, CA.
9. Busk PK, Lange M, Pilgaard B, Lange L. 2014. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. PLoS One 9:e114138. http://dx.doi.org/10.1371/journal.pone.0114138. [PubMed]
10. Busk PK, Lange L. 2013. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs. Appl Environ Microbiol 79:3380–3391 http://dx.doi.org/10.1128/AEM.03803-12. [PubMed]
11. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. 2015. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50:1327–1341 http://dx.doi.org/10.1016/j.procbio.2015.05.017. [PubMed]
12. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N. 2014. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549. http://dx.doi.org/10.1186/1471-2164-15-549. [PubMed]
13. Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E, Grigoriev IV, Lange L, Tunlid A. 2012. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487 http://dx.doi.org/10.1111/j.1462-2920.2012.02736.x. [PubMed]
14. Poidevin L, Berrin JG, Bennati-Granier C, Levasseur A, Herpoël-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E. 2014. Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98:7457–7469 http://dx.doi.org/10.1007/s00253-014-5698-3. [PubMed]
15. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S. 2013. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79:4220–4229 http://dx.doi.org/10.1128/AEM.00327-13. [PubMed]
16. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. 2015. Fungal cellulases. Chem Rev 115:1308–1448 http://dx.doi.org/10.1021/cr500351c. [PubMed]
17. Pollegioni L, Tonin F, Rosini E. 2015. Lignin-degrading enzymes. FEBS J 282:1190–1213 http://dx.doi.org/10.1111/febs.13224. [PubMed]
18. Kern M, McGeehan JE, Streeter SD, Martin RNA, Besser K, Elias L, Eborall W, Malyon GP, Payne CM, Himmel ME, Schnorr K, Beckham GT, Cragg SM, Bruce NC, McQueen-Mason SJ. 2013. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci USA 110:10189–10194 http://dx.doi.org/10.1073/pnas.1301502110. [PubMed]
19. Cosgrove DJ. 2000. Loosening of plant cell walls by expansins. Nature 407:321–326 http://dx.doi.org/10.1038/35030000. [PubMed]
20. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D. 2002. The growing world of expansins. Plant Cell Physiol 43:1436–1444 http://dx.doi.org/10.1093/pcp/pcf180. [PubMed]
21. Brotman Y, Briff E, Viterbo A, Chet I. 2008. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789 http://dx.doi.org/10.1104/pp.108.116293. [PubMed]
22. Lange M, Hora FB. 1963. Collins’ Guide to Mushrooms and Toadstools. Collins, London, United Kingdom.
23. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan M-C, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LDH, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927 http://dx.doi.org/10.1038/nbt.1976. [PubMed]
24. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119 http://dx.doi.org/10.1016/j.cbpa.2015.10.018. [PubMed]
25. Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180 http://dx.doi.org/10.1038/nrmicro3182. [PubMed]
26. Ni J, Tokuda G. 2013. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850 http://dx.doi.org/10.1016/j.biotechadv.2013.04.005. [PubMed]
27. Watanabe H, Tokuda G. 2010. Cellulolytic systems in insects. Annu Rev Entomol 55:609–632 http://dx.doi.org/10.1146/annurev-ento-112408-085319. [PubMed]
28. Lange L, Grell MN. 2014. The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 98:4839–4851 http://dx.doi.org/10.1007/s00253-014-5708-5. [PubMed]
29. Huang Y, Busk PK, Grell MN, Zhao H, Lange L. 2014. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition. Enzyme Microb Technol 67:47–52 http://dx.doi.org/10.1016/j.enzmictec.2014.09.002. [PubMed]
30. Taylor CB, Talib MF, McCabe C, Bu L, Adney WS, Himmel ME, Crowley MF, Beckham GT. 2012. Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. J Biol Chem 287:3147–3155 http://dx.doi.org/10.1074/jbc.M111.270389. [PubMed]
31. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495 http://dx.doi.org/10.1093/nar/gkt1178. [PubMed]
32. Bech L, Busk PK, Lange L. 2014. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genomics Biol 4:116. doi:10.4172/2165-8056.1000116. [PubMed]
33. Dotsenko G, Tong X, Pilgaard B, Busk PK, Lange L. 2016. Acidic–alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris. Biocatal Agric Biotechnol 5:48–55. [PubMed]
34. Huang Y, Busk PK, Lange L. 2015. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases. Enzyme Microb Technol 73–74:9–19 http://dx.doi.org/10.1016/j.enzmictec.2015.03.001. [PubMed]
35. Tong X, Lange L, Grell MN, Busk PK. 2015. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol 175:1139–1152 http://dx.doi.org/10.1007/s12010-014-1348-6. [PubMed]
36. Várnai A, Huikko L, Pere J, Siika-Aho M, Viikari L. 2011. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104 http://dx.doi.org/10.1016/j.biortech.2011.06.059. [PubMed]
37. Dutta S, Wu KC. 2014. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626 http://dx.doi.org/10.1039/C4GC01405G. [PubMed]
38. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV. 2014. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA 111:9923–9928 http://dx.doi.org/10.1073/pnas.1400592111. (Erratum, 111:14959.) [PubMed]
39. Fernandez-Fueyo E, et al. 2012. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109:5458–5463 http://dx.doi.org/10.1073/pnas.1119912109. [PubMed]
40. Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT. 2013. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105:1428–1444 http://dx.doi.org/10.3852/13-059. [PubMed]
41. Kudanga T, Le Roes-Hill M. 2014. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98:6525–6542 http://dx.doi.org/10.1007/s00253-014-5810-8. [PubMed]
42. Becker F, Schnorr K, Wilting R, Tolstrup N, Bendtsen JD, Olsen PB. 2004. Development of in vitro transposon assisted signal sequence trapping and its use in screening Bacillus halodurans C125 and Sulfolobus solfataricus P2 gene libraries. J Microbiol Methods 57:123–133 http://dx.doi.org/10.1016/j.mimet.2003.12.002. [PubMed]
43. Schnorr KM, Landvik S, Spendler T, Christensen LLH. April 2004. Family gh 61 polypeptides. European patent WO2004031378A2.
44. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316 http://dx.doi.org/10.1021/bi100009p. [PubMed]
45. Vaaje-Kolstad G. 2010. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. [PubMed]
46. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. 2012. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45 http://dx.doi.org/10.1186/1754-6834-5-45. [PubMed]
47. Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. 2015. Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem 84:923–946 http://dx.doi.org/10.1146/annurev-biochem-060614-034439. [PubMed]
48. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI. 2014. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:8797–8802 http://dx.doi.org/10.1073/pnas.1408115111. [PubMed]
49. Westereng B, Cannella D, Wittrup Agger J, Jørgensen H, Larsen Andersen M, Eijsink VGH, Felby C. 2015. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561 http://dx.doi.org/10.1038/srep18561. [PubMed]
50. Eijsink VGH, Vaaje-Kolstad G, Vårum KM, Horn SJ. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235 http://dx.doi.org/10.1016/j.tibtech.2008.02.004. [PubMed]
51. Busk PK, Lange L. 2015. Classification of fungal and bacterial lytic polysaccharide monooxygenases. BMC Genomics 16:368. http://dx.doi.org/10.1186/s12864-015-1601-6. [PubMed]
52. Hemsworth GR, Henrissat B, Davies GJ, Walton PH. 2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126 http://dx.doi.org/10.1038/nchembio.1417. [PubMed]
53. Lo Leggio L, Simmons TJ, Poulsen J-CN, Frandsen KEH, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong C-L, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH. 2015. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961 http://dx.doi.org/10.1038/ncomms6961. [PubMed]
54. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, Horn SJ, Eijsink VGH, Westereng B. 2014. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292 http://dx.doi.org/10.1073/pnas.1323629111. [PubMed]
55. Lange L, Huang Y, Busk PK. 2016. Microbial decomposition of keratin in nature: a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096 http://dx.doi.org/10.1007/s00253-015-7262-1. [PubMed]
56. Busk PK, Lange L. August 2012. A novel method of providing a library of n-mers or biopolymers. US patent 2012/101151.
57. Busk PK, Lange L. 2013. Cellulolytic potential of thermophilic species from four fungal orders. AMB Express 3:47 http://dx.doi.org/10.1186/2191-0855-3-47. [PubMed]
58. Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557 http://dx.doi.org/10.1016/S0959-440X(98)80143-7. [PubMed]
59. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MWW, Lunin VV, Himmel ME, Bomble YJ. 2013. Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516. [PubMed]
60. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560 http://dx.doi.org/10.1038/nbt1403. [PubMed]
61. Naas AE, Mackenzie AK, Mravec J, Schückel J, Willats WGT, Eijsink VGH, Pope PB. 2014. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? MBio 5:e01401-14. doi:10.1128/mBio.01401-14 http://dx.doi.org/10.1128/mBio.01401-14. [PubMed]
62. Ekborg NA, Morrill W, Burgoyne AM, Li L, Distel DL. 2007. CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus. Appl Environ Microbiol 73:7785–7788 http://dx.doi.org/10.1128/AEM.00876-07. [PubMed]
63. Rothberg JM, Leamon JH. 2008. The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124 http://dx.doi.org/10.1038/nbt1485. [PubMed]
64. Huang Y, Busk PK, Lange L. 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom Biol 4:119.
65. Huang Y, Busk PK, Herbst FA, Lange L. 2015. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl Microbiol Biotechnol 99:9635–9649 http://dx.doi.org/10.1007/s00253-015-6805-9. [PubMed]
66. Alaswad A, Dassisti M, Prescott T, Olabi AG. 2015. Technologies and developments of third generation biofuel production. Renew Sustain Energy Rev 51:1446–1460 http://dx.doi.org/10.1016/j.rser.2015.07.058. [PubMed]
67. Hotchkiss AT, Olano-Martin E, Grace WE, Gibson GR, Rastall RA. 2003. Pectic oligosaccharides as prebiotics, p 5–54. In Eggleston G, Côté GL (ed), Oligosaccharides in Food and Agriculture. ACS Publications, American Chemical Society, Washington, DC.
68. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194 http://dx.doi.org/10.1080/10408390903044768. [PubMed]
69. Yao S, Mikkelsen MJ. 2010. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88:199–208 http://dx.doi.org/10.1007/s00253-010-2703-3. [PubMed]
70. Larsen L, Nielsen P, Ahring BK. 1997. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119 http://dx.doi.org/10.1007/s002030050476. [PubMed]
71. Grauslund M, Lopes JM, Rønnow B. 1999. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 27:4391–4398 http://dx.doi.org/10.1093/nar/27.22.4391. [PubMed]
72. Pavlik P, Simon M, Schuster T, Ruis H. 1993. The glycerol kinase (GUT1) gene of Saccharomyces cerevisiae: cloning and characterization. Curr Genet 24:21–25 http://dx.doi.org/10.1007/BF00324660. [PubMed]
73. Rønnow B, Kielland-Brandt MC. 1993. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130 http://dx.doi.org/10.1002/yea.320091013. [PubMed]
74. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, Karlsmark T, Krogfelt KA. 2010. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 65:1646–1654 http://dx.doi.org/10.1093/jac/dkq165. [PubMed]
75. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. 2006. The path forward for biofuels and biomaterials. Science 311:484–489 http://dx.doi.org/10.1126/science.1114736. [PubMed]
76. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843 http://dx.doi.org/10.1126/science.1246843. [PubMed]
77. Bech L, Herbst F, Grell M, Hai Z, Lange L. 2015. On-site enzyme production by Trichoderma asperellum for the degradation of duckweed. Fungal Genom Biol 5:126 http://dx.doi.org/10.4172/2165-8056.1000126. [PubMed]
78. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164 http://dx.doi.org/10.1016/0378-1119(87)90110-7. [PubMed]
79. Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F. 1997. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157. [PubMed]
80. Skjøt M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M, Dalbøge H, Andersen LN. 2001. Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A. oryzae and tobacco. Mol Genet Genomics 265:913–921 http://dx.doi.org/10.1007/s004380100489. [PubMed]
81. Dean RA, Timberlake WE. 1989. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 1:265–273 http://dx.doi.org/10.1105/tpc.1.3.265. [PubMed]
82. Pel HJ, et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231 http://dx.doi.org/10.1038/nbt1282. [PubMed]
83. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW. 2002. On the safety of Aspergillus niger: a review. Appl Microbiol Biotechnol 59:426–435 http://dx.doi.org/10.1007/s00253-002-1032-6. [PubMed]
84. Berka RM, Rey MW, Brown KM, Byun T, Klotz AV. 1998. Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427. [PubMed]
85. Jain KK, Bhanja Dey T, Kumar S, Kuhad RC. 2015. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38:787–796 http://dx.doi.org/10.1007/s00449-014-1320-4. [PubMed]
86. van Zyl WH, Lynd LR, den Haan R, McBride JE. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235 http://dx.doi.org/10.1007/10_2007_061. [PubMed]
87. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270 http://dx.doi.org/10.1002/yea.1208. [PubMed]
88. Visser H, Joosten V, Punt PJ, Gusakov AV, Olson PT, Joosten R, Bartels J, Visser J, Sinitsyn AP, Emalfarb MA, Verdoes JC, Wery J. 2011. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol (New Rochelle NY) 7:214–223 http://dx.doi.org/10.1089/ind.2011.7.214. [PubMed]
89. Taylor JW, Berbee ML. 2006. Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849 http://dx.doi.org/10.3852/mycologia.98.6.838. [PubMed]
90. Joshi C. 2014. Du Pont: producing cellulosic ethanol. http://biofueluptodate.com/du-pont/.
91. Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y. 2012. Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749 http://dx.doi.org/10.1007/s10295-012-1195-9. [PubMed]
92. Gusakov AV. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425 http://dx.doi.org/10.1016/j.tibtech.2011.04.004. [PubMed]
93. Gurramkonda C, Adnan A, Gäbel T, Lünsdorf H, Ross A, Nemani SK, Swaminathan S, Khanna N, Rinas U. 2009. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen. Microb Cell Fact 8:13 http://dx.doi.org/10.1186/1475-2859-8-13. [PubMed]
94. Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. 2014. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 78:614–649 http://dx.doi.org/10.1128/MMBR.00035-14. [PubMed]
95. Yoder WT, Lehmbeck J. 2004. Heterologous expression and protein secretion in filamentous fungi, p 201–219. In Tkacz JS, Lange L (ed), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Kluwer Academic/Plenum Publishers, New York, NY. http://dx.doi.org/10.1007/978-1-4419-8859-1_9 [CrossRef]
96. Gouka RJ, Punt PJ, van den Hondel CAMJJ. 1997. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11 http://dx.doi.org/10.1007/s002530050880. [PubMed]
97. Hamann T, Lange L. 2006. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae. J Biotechnol 126:265–276 http://dx.doi.org/10.1016/j.jbiotec.2006.04.026. [PubMed]
98. FDA. 2016. Generally recognized as safe (GRAS). http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/.
99. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V. 2015. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8:16 http://dx.doi.org/10.1186/s13068-015-0200-8. [PubMed]
100. Dalbøge H, Lange L. 1998. Using molecular techniques to identify new microbial biocatalysts. Trends Biotechnol 16:265–272 http://dx.doi.org/10.1016/S0167-7799(98)01202-5. [PubMed]
101. Araújo R, Casal M, Cavaco-Paulo A. 2008. Application of enzymes for textile fibres processing. Biocatalysis Biotransform 26:332–349 http://dx.doi.org/10.1080/10242420802390457. [PubMed]
102. Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial enzyme applications. Curr Opin Biotechnol 13:345–351 http://dx.doi.org/10.1016/S0958-1669(02)00328-2. [PubMed]
103. Landbo AK, Kaack K, Meyer AS. 2007. Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice. Innov Food Sci Emerg Technol 8:135–142 http://dx.doi.org/10.1016/j.ifset.2006.08.006. [PubMed]
104. Sarkar J, Khalil E, Solaiman M. 2014. Effect of enzyme washing combined with pumice stone on the physical, mechanical and color properties of denim garments. Int J Res Advent Technol 2:65–68.
105. Forth P, Merz T. June 2010. Laundry compositions and methods of use. European patent WO2010064086A1.
106. Schülein M. 1997. Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57:71–81 http://dx.doi.org/10.1016/S0168-1656(97)00090-4. [PubMed]
107. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. 2002. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206 http://dx.doi.org/10.1016/S0167-7799(02)01933-9. [PubMed]
108. Gasser CS, Fraley RT. 1989. Genetically engineering plants for crop improvement. Science 244:1293–1299 http://dx.doi.org/10.1126/science.244.4910.1293. [PubMed]
109. Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ. 1989. The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70:298–315 http://dx.doi.org/10.2307/1937535. [PubMed]
110. Khosla C, Bailey JE. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331:633–635 http://dx.doi.org/10.1038/331633a0. [PubMed]
111. Ito S, Kobayashi T, Hatada Y, Horikoshi K. 2005. Enzymes in modern detergents, p 151–161. In Barredo JL (ed), Microbial Enzymes and Biotransformations. Humana Press, Totowa, NJ. http://dx.doi.org/10.1385/1-59259-846-3:151 [CrossRef]
112. Ministry of Environment and Food of Denmark. Regulering af transport af GMO. http://mst.dk/virksomhed-myndighed/genteknologi/transport-af-gmo/regulering/.
113. Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA, Salamov AA, Grigoriev IV, Spatafora JW, Berbee ML. 2015. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7:1590–1601 http://dx.doi.org/10.1093/gbe/evv090. [PubMed]
114. Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A, Schneider P. 1996. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403 http://dx.doi.org/10.1007/BF02208621. [PubMed]
115. Jacobsen J, Lydolph M, Lange L. 2005. Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Methods 60:63–71 http://dx.doi.org/10.1016/j.mimet.2004.08.013. [PubMed]
116. Schulein M, Henriksen T, Andersen LN, Lassen SF, Kauppinen MS, Lange L, Nielsen RI, Takagi S, Ihara M. May 2010. Endoglucanases. US Patent 20100107342.
117. Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B. 2005. Directed evolution of enzyme stability. Biomol Eng 22:21–30 http://dx.doi.org/10.1016/j.bioeng.2004.12.003. [PubMed]
118. Ness JE, Kim S, Gottman A, Pak R, Krebber A, Borchert TV, Govindarajan S, Mundorff EC, Minshull J. 2002. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotechnol 20:1251–1255 http://dx.doi.org/10.1038/nbt754. [PubMed]
119. Cherry JR, Fidantsef AL. 2003. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443 http://dx.doi.org/10.1016/S0958-1669(03)00099-5. [PubMed]
120. Crameri A, Raillard SA, Bermudez E, Stemmer WP. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391:288–291 http://dx.doi.org/10.1038/34663. [PubMed]
121. Stemmer WP. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391 http://dx.doi.org/10.1038/370389a0. [PubMed]
122. Schuster SC. 2008. Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18 http://dx.doi.org/10.1038/nmeth1156. [PubMed]
microbiolspec.FUNK-0007-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0007-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0007-2016
2017-02-03
2017-03-23

Abstract:

Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently—in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A schematic overview of a biorefinery. The product portfolio from biorefineries is not only fuels and chemicals but also includes higher-value products such as food and feed ingredients, cosmetics, skin care, and new functional biomaterials; it is also expected that many types of biorefineries will be developed for improved resource efficiency: the yellow (straw, stover, and wood chips), the green (fresh grass, clover, leaves), the blue (seaweed and fish bycatch and waste), the gray (agroindustrial side streams), and a biorefinery for upgrade of household waste and sludge (the brown biorefinery). Adapted from reference 16 with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Enzymatic breakdown of cellulose polymer includes several glycohydrolases (at least one endoglucanase, at least two cellobiohydrolases, reducing end and non-reducing-end active, and at least one β-glucosidase). Further, the activity of a lytic polysaccharide monooxygenase acts in synergy with the endoglucanase in breaking down the crystallinity of the cellulose polymer. Adapted from reference 24 with permission. Hemicellulose is a very complex, highly branched and substituted polymer. The figure shows seven types of sugar components and lists the seven types of enzymes needed to break the linkages to such sugar moieties. However, enzyme hydrolysis of lignocellulose may not need the presence of all these seven hemicellulases because most of the standard pretreatment procedures will lead to the breakdown of several of the hemicellulose bonds. Adapted from reference 37 with permission.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

“Fungal Hall of Fame” illustrating the five most important players in industrial lignocellulose biorefinery processing and in research. , along with and , are the most widely used monocomponent enzyme production organisms. is included due to its exceptional secretion capacity; it is the preferred production host for enzyme blends specifically designed for efficient biomass conversion. is the organism of choice for production of ethanol from the biomass conversion-derived sugar platform. is the expression host most often used for producing laboratory-scale volumes of newly discovered enzymes to facilitate characterization and evaluation of the new enzymes for industrial potentials. , along with another thermophilic fungus, , represents alternatives to production of enzymes by species of . Credits: (A) Courtesy of Reinhard Wilting, Novozymes A/S; (B) from Read ND, (Mendgen K, Lesemann D-E, ed), Springer-Verlag, Berlin, Germany, 1991, with permission; (C) U.S. Department of Energy Office of Science (http://www.jgi.doe.gov/sequencing/why/Treesei.html); (D) Sciencephoto.com; (E) courtesy of Ronald de Vries, CBS-KNAW, Fungal Biodiversity Centre, The Netherlands.

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0007-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

A selection of well-studied lignocellulose degraders across the fungal kingdom

Source: microbiolspec February 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0007-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error