1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Geomycology of Elemental Cycling and Transformations in the Environment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Geoffrey Michael Gadd1
  • Editors: Joseph Heitman2, Pedro W. Crous3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom and Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People’s Republic of China; 2: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 3: CBS-KNAW Fungal Diversity Centre, Royal Dutch Academy of Arts and Sciences, Utrecht, The Netherlands
  • Source: microbiolspec January 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0010-2016
  • Received 05 May 2016 Accepted 17 November 2016 Published 27 January 2017
  • Geoffrey Michael Gadd, g.m.gadd@dundee.ac.uk
image of The Geomycology of Elemental Cycling and Transformations in the Environment
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Geomycology of Elemental Cycling and Transformations in the Environment, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0010-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0010-2016-2.gif
  • Abstract:

    Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter decomposition is important for cycling of major biomass-associated elements, e.g., C, H, N, O, P, and S, as well as all other elements found in lower concentrations. Transformations of metals and minerals are central to geomicrobiology, and fungi affect changes in metal speciation, as well as mediate mineral formation or dissolution. Such mechanisms are components of biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks, and minerals, e.g., S, P, and metalloids. Fungi may have the greatest geochemical influence within the terrestrial environment. However, they are also important in the aquatic environment and are significant components of the deep subsurface, extreme environments, and habitats polluted by xenobiotics, metals, and radionuclides. Applications of geomycology include metal and radionuclide bioleaching, biorecovery, detoxification, bioremediation, and the production of biominerals or metal(loid) elements with catalytic or other properties. Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-based building materials (e.g., concrete), cultural heritage, metals, alloys, and related substances and adverse effects on radionuclide mobility and containment. The ubiquity and importance of fungi in the biosphere underline the importance of geomycology as a conceptual framework encompassing the environmental activities of fungi.

  • Citation: Gadd G. 2017. The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiol Spectrum 5(1):FUNK-0010-2016. doi:10.1128/microbiolspec.FUNK-0010-2016.

Key Concept Ranking

Bacteria and Archaea
1.0074462
Aspergillus niger
0.50797874
1.0074462

References

1. Ehrlich HL, Newman DK. 2009. Geomicrobiology, 5th ed. CRC Press, Boca Raton, FL.
2. Gadd GM. 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. http://dx.doi.org/10.1099/mic.0.037143-0 [PubMed]
3. Gadd GM. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49. http://dx.doi.org/10.1016/j.mycres.2006.12.001
4. Gadd GM. 2008. Fungi and their role in the biosphere, p 1709–1717. In Jorgensen SE, Fath B (ed), Encyclopedia of Ecology. Elsevier, Amsterdam, The Netherlands.
5. Gadd GM. 2008. Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6:278–284. http://dx.doi.org/10.1111/j.1472-4669.2007.00137.x [PubMed]
6. Kim BH, Gadd GM. 2008. Bacterial Physiology and Metabolism. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511790461
7. Druschel GK, Kappler A. 2015. Geomicrobiology and microbial geochemistry. Elements 11:389–394. http://dx.doi.org/10.2113/gselements.11.6.389
8. Reitner J, Schumann G, Pedersen K. 2006. Fungi in subterranean environments, p 377–403. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511550522.017
9. Gorbushina AA. 2007. Life on the rocks. Environ Microbiol 9:1613–1631. http://dx.doi.org/10.1111/j.1462-2920.2007.01301.x [PubMed]
10. Vázquez-Campos X, Kinsela AS, Waite TD, Collins RN, Neilan BA. 2014. Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia. Mycologia 106:1073–1089. http://dx.doi.org/10.3852/14-013
11. Ivarsson M, Bengtson S, Neubeck A. 2016. The igneous oceanic crust: Earth’s largest fungal habitat? Fungal Ecol 20:249–255. http://dx.doi.org/10.1016/j.funeco.2016.01.009
12. Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387. http://dx.doi.org/10.1016/j.tim.2009.05.004 [PubMed]
13. Scheerer S, Ortega-Morales O, Gaylarde C. 2009. Microbial deterioration of stone monuments: an updated overview. Adv Appl Microbiol 66:97–139. http://dx.doi.org/10.1016/S0065-2164(08)00805-8 [PubMed]
14. Cutler N, Viles H. 2010. Eukaryotic microorganisms and stone biodeterioration. Geomicrobiol J 27:630–646. http://dx.doi.org/10.1080/01490451003702933
15. Gadd GM. Geomicrobiology of the built environment. Nat Microbiol In press.
16. Burford EP, Fomina M, Gadd GM. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155. http://dx.doi.org/10.1180/0026461036760154
17. Miyata N, Tani Y, Iwahori K, Soma M. 2004. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47:101–109. http://dx.doi.org/10.1016/S0168-6496(03)00251-4 [PubMed]
18. Fomina M, Burford EP, Gadd GM. 2005. Toxic metals and fungal communities, p 733–758. In Dighton J, White JF, Oudemans P (ed), The Fungal Community. Its Organization and Role in the Ecosystem. CRC Press, Boca Raton, FL. http://dx.doi.org/10.1201/9781420027891.ch37
19. Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, Aoyagi N, Waite TD. 2015. Uranium binding mechanisms of the acid-tolerant fungus Coniochaeta fodinicola. Environ Sci Technol 49:8487–8496. http://dx.doi.org/10.1021/acs.est.5b01342
20. Horiike T, Yamashita M. 2015. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Appl Environ Microbiol 81:3062–3068. http://dx.doi.org/10.1128/AEM.00300-15 [PubMed]
21. Gadd GM. 2004. Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70. http://dx.doi.org/10.1017/S0269915X04002022
22. Braissant O, Cailleau G, Aragno M, Verrecchia EP. 2004. Biologically induced mineralization in the tree Milicia excelsa Moraceae: its causes and consequences to the environment. Geobiol 2:59–66. http://dx.doi.org/10.1111/j.1472-4677.2004.00019.x
23. Wainwright M, Ali TA, Barakah F. 1993. A review of the role of oligotrophic microorganisms in biodeterioration. Int Biodet Biodeg 31:1–13. http://dx.doi.org/10.1016/0964-8305(93)90010-Y
24. Sterflinger K. 2000. Fungi as geologic agents. Geomicrobiol J 17:97–124. http://dx.doi.org/10.1080/01490450050023791
25. Gorbushina AA, Krumbein WE, Hamman R, Panina L, Soukharjevsky S, Wollenzien U. 1993. On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221. http://dx.doi.org/10.1080/01490459309377952
26. Ivarsson M. 2012. The subseafloor basalts as fungal habitats. Biogeosciences 9:3625–3635. http://dx.doi.org/10.5194/bg-9-3625-2012
27. Nagano Y, Nagahama T. 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471. http://dx.doi.org/10.1016/j.funeco.2012.01.004
28. Orsi W, Biddle JF, Edgcomb V. 2013. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335. http://dx.doi.org/10.1371/journal.pone.0056335
29. Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K. 2010. Fungal diversity in deep-sea sediments: the presence of novel fungal groups. Fungal Ecol 3:316–325. http://dx.doi.org/10.1016/j.funeco.2010.01.002
30. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421. http://dx.doi.org/10.1128/AEM.00653-09 [PubMed]
31. Connell L, Barrett A, Templeton A, Staudigel H. 2009. Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605. http://dx.doi.org/10.1080/01490450903316174
32. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M. 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370. http://dx.doi.org/10.1111/j.1462-2920.2011.02507.x
33. Ivarsson M, Bengtson S, Skogby H, Lazor P, Broman C, Belivanova V, Marone F. 2015. A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS One 10:e0140106. http://dx.doi.org/10.1371/journal.pone.0140106
34. Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F, Stampanoni M. 2014. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology 12:489–496. http://dx.doi.org/10.1111/gbi.12100 [PubMed]
35. Schumann G, Manz W, Reitner J, Lustrino M. 2004. Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246. http://dx.doi.org/10.1080/01490450490438748
36. Gadd GM (ed). 2006. Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511550522
37. Boddy L. 2016. Fungi, ecosystems, and global change, p 361–400. In Watkinson SC, Boddy L, Money NP (ed), The Fungi. Elsevier, Amsterdam, The Netherlands. http://dx.doi.org/10.1016/B978-0-12-382034-1.00011-6
38. Gadd GM. 2000. Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127. http://dx.doi.org/10.1016/S0048-9697(00)00512-X
39. Cerniglia CE, Sutherland JB. 2001. Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi, p 136–187. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541780.008
40. Cerniglia CE, Sutherland JB. 2006. Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils, p 182–211. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511550522.009
41. Singleton I. 2001. Fungal remediation of soils contaminated with persistent organic pollutants, p 79–96. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541780.005
42. Gadd GM (ed). 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511541780
43. Sutherland JB. 2004. Degradation of hydrocarbons by yeasts and filamentous fungi, p 443–455. In Arora DK (ed), Fungal Biotechnology in Agricultural, Food, and Environmental Applications. Marcel Dekker, New York, NY.
44. Gadd GM, Burford EP, Fomina M, Melville K. 2007. Mineral transformations and biogeochemical cycles: a geomycological perspective, p 77–111. In Gadd GM, Dyer P, Watkinson S (ed), Fungi in the Environment. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541797.006
45. Hochella MF Jr. 2002. Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineral Mag 66:627–652. http://dx.doi.org/10.1180/0026461026650053
46. Kraemer SM, Cheah SF, Zapf R, Xu JD, Raymond KN, Sposito G. 1999. Effect of hydroxamate siderophores on Fe release and PbII. adsorption by goethite. Geochim Cosmochim Acta 63:3003–3008. http://dx.doi.org/10.1016/S0016-7037(99)00227-6
47. Vaughan DJ, Pattrick RAD, Wogelius RA. 2002. Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineral Mag 66:653–676. http://dx.doi.org/10.1180/0026461026650054
48. Burford EP, Kierans M, Gadd GM. 2003. Geomycology: fungi in mineral substrata. Mycologist 17:98–107. http://dx.doi.org/10.1017/S0269915X03003112
49. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K. 2002. Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol 217:459–477. http://dx.doi.org/10.1006/jtbi.2002.3048 [PubMed]
50. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K. 2003. Growth and function of fungal mycelia in heterogeneous environments. Bull Math Biol 65:447–477. http://dx.doi.org/10.1016/S0092-8240(03)00003-X [PubMed]
51. Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA. 2007. The development of fungal networks in complex environments. Bull Math Biol 69:605–634. http://dx.doi.org/10.1007/s11538-005-9056-6 [PubMed]
52. Verrecchia EP. 2000. Fungi and sediments, p 68–75. In Riding RE, Awramik SM (ed), Microbial Sediments. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-662-04036-2_9
53. Gadd GM. 1993. Interactions of fungi with toxic metals. New Phytol 124:25–60. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03796.x
54. Banfield JF, Barker WW, Welch SA, Taunton A. 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411. http://dx.doi.org/10.1073/pnas.96.7.3404
55. Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, Benning LG. 2009. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–618. http://dx.doi.org/10.1130/G25699A.1
56. Li L, Liu L, Chen J, Teng HH. 2016. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44:319–322.
57. Bowen AD, Davidson FA, Keatch R, Gadd GM. 2007. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44:484–491. http://dx.doi.org/10.1016/j.fgb.2006.11.012
58. Burgstaller W, Schinner F. 1993. Leaching of metals with fungi. J Biotechnol 27:91–116. http://dx.doi.org/10.1016/0168-1656(93)90101-R
59. Gadd GM. 1999. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92. http://dx.doi.org/10.1016/S0065-2911(08)60165-4
60. Ehrlich HL. 1998. Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60. http://dx.doi.org/10.1016/S0012-8252(98)00034-8
61. Gharieb MM, Sayer JA, Gadd GM. 1998. Solubilization of natural gypsum (CaSO4.2H2O.) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102:825–830. http://dx.doi.org/10.1017/S0953756297005510
62. Adeyemi AO, Gadd GM. 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281. http://dx.doi.org/10.1007/s10534-005-1539-2 [PubMed]
63. Strasser H, Burgstaller W, Schinner F. 1994. High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiol Lett 119:365–370. http://dx.doi.org/10.1111/j.1574-6968.1994.tb06914.x [PubMed]
64. Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM. 1999. Lead mineral transformation by fungi. Curr Biol 9:691–694. http://dx.doi.org/10.1016/S0960-9822(99)80309-1 [PubMed]
65. Fomina MA, Alexander IJ, Hillier S, Gadd GM. 2004. Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366. http://dx.doi.org/10.1080/01490450490462066
66. Fomina MA, Alexander IJ, Colpaert JV, Gadd GM. 2005. Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866. http://dx.doi.org/10.1016/j.soilbio.2004.10.013
67. Gadd GM. 1993. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316. http://dx.doi.org/10.1111/j.1574-6976.1993.tb00003.x
68. Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279. http://dx.doi.org/10.1016/S0958-1669(00)00095-1
69. Gadd GM. 2001. Accumulation and transformation of metals by microorganisms, p 225–264. In Rehm H-J, Reed G, Puhler A, Stadler P (ed), Biotechnology: A Multi-Volume Comprehensive Treatise. Vol. 10. Special Processes. Wiley-VCH Verlag GmbH, Weinheim, Germany.
70. Gadd GM. 2001. Metal transformations, p 359–382. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541780.014
71. Gadd GM. 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28. http://dx.doi.org/10.1002/jctb.1999
72. Baldrian P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. http://dx.doi.org/10.1016/S0141-0229(02)00245-4
73. Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM. 2007. Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710. http://dx.doi.org/10.1111/j.1462-2920.2007.01288.x [PubMed]
74. Fomina M, Charnock J, Bowen AD, Gadd GM. 2007. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321. http://dx.doi.org/10.1111/j.1462-2920.2006.01139.x
75. Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM. 2007. Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653. http://dx.doi.org/10.1080/01490450701672240
76. Fomina M, Gadd GM. 2014. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. http://dx.doi.org/10.1016/j.biortech.2013.12.102 [PubMed]
77. Gadd GM, Raven JA. 2010. Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J 27:491–519. http://dx.doi.org/10.1080/01490451003703006
78. Gadd GM, Rhee YJ, Stephenson K, Wei Z. 2012. Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296. http://dx.doi.org/10.1111/j.1758-2229.2011.00283.x [PubMed]
79. Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X. 2014. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55. http://dx.doi.org/10.1016/j.fbr.2014.05.001
80. Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM. 2015. Uranium phosphate biomineralization by fungi. Environ Microbiol 17:2064–2075. http://dx.doi.org/10.1111/1462-2920.12771 [PubMed]
81. Liang X, Kierans M, Ceci A, Hillier S, Gadd GM. 2016. Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18:219–231. http://dx.doi.org/10.1111/1462-2920.13003 [PubMed]
82. Liang X, Csetenyi L, Gadd GM. 2016. Lead bioprecipitation by yeasts utilizing organic phosphorus substrates. Geomicrobiol J 33:294–307. http://dx.doi.org/10.1080/01490451.2015.1051639
83. Lloyd JR, Pearce CI, Coker VS, Pattrick RADP, van der Laan G, Cutting R, Vaughan DJ, Paterson-Beedle M, Mikheenko IP, Yong P, Macaskie LE. 2008. Biomineralization: linking the fossil record to the production of high value functional materials. Geobiology 6:285–297. http://dx.doi.org/10.1111/j.1472-4669.2008.00162.x
84. Rosling A, Roose T, Herrmann AM, Davidson FA, Finlay RD, Gadd GM. 2009. Approaches to modelling mineral weathering by fungi. Fungal Biol Rev 23:138–144. http://dx.doi.org/10.1016/j.fbr.2009.09.003
85. Smits MM. 2009. Scale matters? Exploring the effect of scale on fungal-mineral interactions. Fungal Biol Rev 23:132–137. http://dx.doi.org/10.1016/j.fbr.2009.11.002
86. Hutchens E. 2009. Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23:115–121. http://dx.doi.org/10.1016/j.fbr.2009.10.002
87. Adamo P, Violante P. 2000. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256. http://dx.doi.org/10.1016/S0169-1317(99)00056-3
88. Cockell CS, Herrera A. 2008. Why are some microorganisms boring? Trends Microbiol 16:101–106. http://dx.doi.org/10.1016/j.tim.2007.12.007
89. Lian B, Wang B, Pan M, Liu C, Teng HH. 2008. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98. http://dx.doi.org/10.1016/j.gca.2007.10.005
90. Golubic S, Radtke G, Le Campion-Alsumard T. 2005. Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235. http://dx.doi.org/10.1016/j.tim.2005.03.007 [PubMed]
91. Kolo K, Keppens E, Preat A, Claeys P. 2007. Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res 112:G01007. http://dx.doi.org/10.1029/2006JG000203
92. Verrecchia EP, Dumont J-L, Rolko KE. 1990. Do fungi building limestones exist in semi-arid regions? Naturwissenschaften 77:584–586. http://dx.doi.org/10.1007/BF01133728
93. Burford EP, Hillier S, Gadd GM. 2006. Biomineralization of fungal hyphae with calcite (CaCO3.) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611. http://dx.doi.org/10.1080/01490450600964375
94. Li Q, Csetenyi L, Gadd GM. 2014. Biomineralization of metal carbonates by Neurospora crassa. Environ Sci Technol 48:14409–14416. http://dx.doi.org/10.1021/es5042546 [PubMed]
95. Li Q, Csetenyi L, Paton GI, Gadd GM. 2015. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17:3082–3097. http://dx.doi.org/10.1111/1462-2920.12954 [PubMed]
96. Kumari D, Qian X-Y, Pan X, Achal V, Li Q, Gadd GM. 2016. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108. http://dx.doi.org/10.1016/bs.aambs.2015.12.002 [PubMed][CrossRef]
97. Rhee YJ, Hillier S, Gadd GM. 2016. A new lead hydroxycarbonate produced during transformation of lead metal by the soil fungus Paecilomyces javanicus. Geomicrobiol J 33:250–260.
98. Adamo P, Vingiani S, Violante P. 2002. Lichen-rock interactions and bioformation of minerals. Dev Soil Sci 28:377–391. http://dx.doi.org/10.1016/S0166-2481(02)80032-0
99. Pinzari F, Zotti M, De Mico A, Calvini P. 2010. Biodegradation of inorganic components in paper documents: formation of calcium oxalate crystals as a consequence of Aspergillus terreus Thom growth. Int Biodet Biodegrad 64:499–505. http://dx.doi.org/10.1016/j.ibiod.2010.06.001
100. Arnott HJ. 1995. Calcium oxalate in fungi, p 73–111. In Khan SR (ed), Calcium Oxalate in Biological Systems. CRC Press, Boca Raton, FL.
101. Sayer JA, Gadd GM. 1997. Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661. http://dx.doi.org/10.1017/S0953756296003140
102. Jarosz-Wilkołazka A, Gadd GM. 2003. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547. http://dx.doi.org/10.1016/S0045-6535(03)00235-2
103. Wei Z, Hillier S, Gadd GM. 2012. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14:1744–1753. http://dx.doi.org/10.1111/j.1462-2920.2012.02776.x [PubMed]
104. Verrecchia EP, Braissant O, Cailleau G. 2006. The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria, p 289–310. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511550522.013
105. Kolo K, Claeys P. 2005. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2:277–293. http://dx.doi.org/10.5194/bg-2-277-2005
106. Miyata N, Tani Y, Sakata M, Iwahori K. 2007. Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8. http://dx.doi.org/10.1263/jbb.104.1 [PubMed]
107. Saratovsky I, Gurr SJ, Hayward MA. 2009. The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73:3291–3300. http://dx.doi.org/10.1016/j.gca.2009.03.005
108. Grote G, Krumbein WE. 1992. Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57. http://dx.doi.org/10.1080/01490459209377903
109. Eckhardt FEW. 1985. Solubilisation, transport, and deposition of mineral cations by microorganisms: efficient rock-weathering agents, p 161–173. In Drever J (ed), The Chemistry of Weathering, vol 149. Nato Asi Ser C. D. Reidel Publishing, Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-009-5333-8_10
110. Whitelaw MA, Harden TJ, Helyar KR. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665. http://dx.doi.org/10.1016/S0038-0717(98)00130-8
111. Rhee YJ, Hillier S, Gadd GM. 2012. Lead transformation to pyromorphite by fungi. Curr Biol 22:237–241. http://dx.doi.org/10.1016/j.cub.2011.12.017 [PubMed][CrossRef]
112. Rhee YJ, Hillier S, Pendlowski H, Gadd GM. 2014. Pyromorphite formation in a fungal biofilm community growing on lead metal. Environ Microbiol 16:1441–1451. http://dx.doi.org/10.1111/1462-2920.12416 [PubMed]
113. Rhee YJ, Hillier S, Pendlowski H, Gadd GM. 2014. Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere 113:17–21. http://dx.doi.org/10.1016/j.chemosphere.2014.03.085 [PubMed]
114. Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM. 2008. Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:R375–R377. http://dx.doi.org/10.1016/j.cub.2008.03.011 [PubMed]
115. Gadd GM, Fomina M. 2011. Uranium and fungi. Geomicrobiol J 28:471–482. http://dx.doi.org/10.1080/01490451.2010.508019
116. Brehm U, Gorbushina A, Mottershead D. 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr Palaeoclimatol Palaeoecol 219:117–129. http://dx.doi.org/10.1016/j.palaeo.2004.10.017
117. Barker WW, Banfield JF. 1996. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132:55–69. http://dx.doi.org/10.1016/S0009-2541(96)00041-1
118. Barker WW, Banfield JF. 1998. Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15:223–244. http://dx.doi.org/10.1080/01490459809378078
119. Arocena JM, Glowa KR, Massicotte HB, Lavkulich L. 1999. Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir Abies lasiocarpa Hook. Nutt. in the AE horizon of a Luvisol. Can J Soil Sci 79:25–35. http://dx.doi.org/10.4141/S98-037
120. Arocena JM, Zhu LP, Hall K. 2003. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surf Process Landf 28:1429–1437. http://dx.doi.org/10.1002/esp.591
121. Tazaki K. 2006. Clays, microorganisms, and biomineralization, p 477–497. In Bergaya F, Theng BKG, Lagaly G (ed), Handbook of Clay Science, Developments in Clay Science, vol 1. Elsevier, Amsterdam, The Netherlands. http://dx.doi.org/10.1016/S1572-4352(05)01014-7
122. Theng BKG, Yuan G. 2008. Nanoparticles in the soil environment. Elements 4:395–399. http://dx.doi.org/10.2113/gselements.4.6.395
123. Cromack K, Sollins P, Grausten WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL. 1979. Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468. http://dx.doi.org/10.1016/0038-0717(79)90003-8
124. de la Torre MA, Gomez-Alarcon G, Vizcaino C, Garcia MT. 1992. Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochem 19:129–147. http://dx.doi.org/10.1007/BF00000875
125. Bennett PC, Rogers JA, Choi WJ, Hiebert FK. 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19. http://dx.doi.org/10.1080/01490450151079734
126. Wei Z, Kierans M, Gadd GM. 2012. A model sheet mineral system to study fungal bioweathering of mica. Geomicrobiol J 29:323–331. http://dx.doi.org/10.1080/01490451.2011.558567
127. Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P, Gadd GM. 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15:2173–2186. http://dx.doi.org/10.1111/1462-2920.12089 [PubMed]
128. Gorbushina AA, Boettcher M, Brumsack H-J, Krumbein WE, Vendrell-Saz M. 2001. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems tepuis. of Venezuela. Geomicrobiol J 18:117–132. http://dx.doi.org/10.1080/01490450151079851
129. Ritz K, Young IM. 2004. Interaction between soil structure and fungi. Mycologist 18:52–59. http://dx.doi.org/10.1017/S0269915X04002010
130. Fomina M, Gadd GM. 2003. Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34. http://dx.doi.org/10.1002/jctb.736
131. Morley GF, Gadd GM. 1995. Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438. http://dx.doi.org/10.1016/S0953-7562(09)80789-2
132. Fomina M, Gadd GM. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol Res 106:107–117. http://dx.doi.org/10.1017/S0953756201004786
133. Kierans M, Staines AM, Bennett H, Gadd GM. 1991. Silver tolerance and accumulation in yeasts. Biol Met 4:100–106. http://dx.doi.org/10.1007/BF01135386 [PubMed]
134. Gharieb MM, Wilkinson SC, Gadd GM. 1995. Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14:300–311. http://dx.doi.org/10.1007/BF01569943
135. Gharieb MM, Kierans M, Gadd GM. 1999. Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305. http://dx.doi.org/10.1017/S0953756298007102
136. Cánovas D, Durán C, Rodríguez N, Amils R, de Lorenzo V. 2003. Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol 5:133–138. http://dx.doi.org/10.1046/j.1462-2920.2003.00386.x [PubMed]
137. Cánovas D, Mukhopadhyay R, Rosen BP, de Lorenzo V. 2003. Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp. P37. Environ Microbiol 5:1087–1093. http://dx.doi.org/10.1046/j.1462-2920.2003.00508.x
138. Hirsch P, Eckhardt FEW, Palmer RJ Jr. 1995. Methods for the study of rock inhabiting microorganisms: a mini review. J Microbiol Methods 23:143–167. http://dx.doi.org/10.1016/0167-7012(95)00017-F
139. Watling R, Harper DB. 1998. Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycol Res 102:769–787. http://dx.doi.org/10.1017/S0953756298006157
140. Redeker KR, Treseder KK, Allen MF. 2004. Ectomycorrhizal fungi:a new source of atmospheric methyl halides? Glob Change Biol 10:1009–1016. http://dx.doi.org/10.1111/j.1529-8817.2003.00782.x
141. Ban-nai T, Muramatsu Y, Amachi S. 2006. Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 65:2216–2222. http://dx.doi.org/10.1016/j.chemosphere.2006.05.047
142. Haas JR, Purvis OW. 2006. Lichen biogeochemistry, p 344–376. In Gadd GM (ed), Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511550522.016
143. Chen J, Blume H-P, Beyer L. 2000. Weathering of rocks induced by lichen colonization: a review. Catena 39:121–146. http://dx.doi.org/10.1016/S0341-8162(99)00085-5
144. Purvis OW, Pawlik-Skowronska B. 2008. Lichens and metals, p 175–200. In Avery SV, Stratford M, van West P (ed), Stress in Yeasts and Filamentous Fungi. Elsevier, Amsterdam, The Netherlands. http://dx.doi.org/10.1016/S0275-0287(08)80054-9
145. Purvis OW. 1996. Interactions of lichens with metals. Sci Prog 79:283–309.
146. Purvis OW, Halls C. 1996. A review of lichens in metal-enriched environments. Lichenologist 28:571–601. http://dx.doi.org/10.1017/S0024282996000758
147. Smith SE, Read DJ. 1997. Mycorrhizal Symbiosis, 2nd ed. Academic Press, San Diego, CA.
148. Wang B, Qiu Y-L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. http://dx.doi.org/10.1007/s00572-005-0033-6 [PubMed]
149. Lapeyrie F, Picatto C, Gerard J, Dexheimer J. 1990. TEM Study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166.
150. Lapeyrie F, Ranger J, Vairelles D. 1991. Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346. http://dx.doi.org/10.1139/b91-046
151. Blaudez D, Botton B, Chalot M. 2000. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117. http://dx.doi.org/10.1099/00221287-146-5-1109
152. Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM. 2006. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333. http://dx.doi.org/10.1007/s00248-006-9004-5 [PubMed]
153. Christie P, Li XL, Chen BD. 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217. http://dx.doi.org/10.1023/B:PLSO.0000035542.79345.1b
154. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181. http://dx.doi.org/10.1111/j.1574-6968.2005.00044.x [PubMed]
155. Finlay R, Wallander H, Smits M, Holmstrom S, Van Hees P, Lian B, Rosling A. 2009. The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106. http://dx.doi.org/10.1016/j.fbr.2010.03.002
156. Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR. 2012. Plant-driven weathering of apatite: the role of an ectomycorrhizal fungus. Geobiology 10:445–456. http://dx.doi.org/10.1111/j.1472-4669.2012.00331.x [PubMed]
157. McMaster TJ. 2012. Atomic force microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry. Curr Opin Biotechnol 23:562–569. http://dx.doi.org/10.1016/j.copbio.2012.05.006
158. Bonneville S, Morgan DJ, Schmalenberger A, Bray A, Brown A, Banwart SA, Benning LG. 2011. Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim Cosmochim Acta 75:6988–7005. http://dx.doi.org/10.1016/j.gca.2011.08.041
159. Rosling A, Lindahl BD, Taylor AFS, Finlay RD. 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37. http://dx.doi.org/10.1016/S0168-6496(03)00222-8 [PubMed]
160. Rosling A, Lindahl BD, Finlay RD. 2004. Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802. http://dx.doi.org/10.1111/j.1469-8137.2004.01080.x
161. Martino E, Perotto S, Parsons R, Gadd GM. 2003. Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141. http://dx.doi.org/10.1016/S0038-0717(02)00247-X
162. Jongmans AG, van Breemen N, Lundstrom US, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M. 1997. Rock-eating fungi. Nature 389:682–683. http://dx.doi.org/10.1038/39493
163. van Breemen N, Lundstrom US, Jongmans AG. 2000. Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94:163–171. http://dx.doi.org/10.1016/S0016-7061(99)00050-6
164. Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J. 2003. Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65. [PubMed]
165. Leyval C, Joner EJ. 2001. Bioavailability of heavy metals in the mycorrhizosphere, p 165–185. In Gobran GR, Wenzel WW, Lombi E (ed), Trace Elements in the Rhizosphere. CRC Press, Boca Raton, FL.
166. Kangwankraiphaisan T, Suntornvongsagul K, Sihanonth P, Klysubun W, Gadd GM. 2013. Influence of arbuscular mycorrhizal fungi (AMF) on zinc biogeochemistry in the rhizosphere of Lindenbergia philippensis growing in zinc-contaminated sediment. Biometals 26:489–505. http://dx.doi.org/10.1007/s10534-013-9634-2
167. Christie P, Li XL, Chen BD. 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217. http://dx.doi.org/10.1023/B:PLSO.0000035542.79345.1b
168. Turnau K, Gawroński S, Ryszka P, Zook D. 2012. Mycorrhizal-based phytostabilization of Zn–Pb tailings: lessons from the Trzebionka mining works Southern Poland, p 327–348. In Kothe E, Varma A (ed), Bio-Geo Interactions in Metal-Contaminated Soils. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-642-23327-2_16
169. Sand W. 1997. Microbial mechanisms of deterioration of inorganic substrates: a general mechanistic overview. Int Biodeter Biodeg 40:183–190. http://dx.doi.org/10.1016/S0964-8305(97)00048-6
170. Wright JS. 2002. Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct Surv 20:50–61. http://dx.doi.org/10.1108/02630800210433828
171. Gaylarde C, Morton G. 2002. Biodeterioration of mineral materials, p 516–528. In Bitton G (ed), Environmental Microbiology, vol 1. Wiley, New York, NY.
172. Seaward MRD. 2003. Lichens, agents of monumental destruction. Microbiol Today 30:110–112.
173. Lisci L, Monte M, Pacini E. 2003. Lichens and higher plants on stone: a review. Int Biodet Biodegrad 51:1–17. http://dx.doi.org/10.1016/S0964-8305(02)00071-9
174. Tiano P. 2002. Biodegradation of cultural heritage: decay mechanisms and control methods. Seminar article, New University of Lisbon, Department of Conservation and Restoration, 7–12 January. http://www.arcchip.cz/w09/w09_tiano.pdf.
175. Pinzari F, Tate J, Bicchieri M, Rhee YJ, Gadd GM. 2013. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis chessmen. Environ Microbiol 15:1050–1062. http://dx.doi.org/10.1111/1462-2920.12027
176. Gu JD, Ford TE, Berke NS, Mitchell R. 1998. Biodeterioration of concrete by the fungus Fusarium. Int Biodet Biodegrad 41:101–109. http://dx.doi.org/10.1016/S0964-8305(98)00034-1
177. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ. 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodet Biodegrad 46:61–68. http://dx.doi.org/10.1016/S0964-8305(00)00064-0
178. Gu JD. 2009. Corrosion, microbial, p 259–269. In Schaechter M (ed), Encyclopedia of Microbiology. Elsevier, Amsterdam, The Netherlands. http://dx.doi.org/10.1016/B978-012373944-5.00141-3
179. Brandl H. 2001. Heterotrophic leaching, p 383–423. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541780.015
180. Santhiya D, Ting YP. 2005. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol 116:171–184. http://dx.doi.org/10.1016/j.jbiotec.2004.10.011
181. Brandl H, Faramarzi MA. 2006. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuol 4:93–97. http://dx.doi.org/10.1016/S1672-2515(07)60244-9
182. de Rome L, Gadd GM. 1987. Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium italicum. Appl Microbiol Biotechnol 26:84–90. http://dx.doi.org/10.1007/BF00282153
183. Gadd GM, Mowll JL. 1985. Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Exp Mycol 9:0–40. http://dx.doi.org/10.1016/0147-5975(85)90019-2
184. Gadd GM, de Rome L. 1988. Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617. http://dx.doi.org/10.1007/BF00260993
185. Volesky B. 1990. Biosorption of Heavy Metals. CRC Press, Boca Raton, FL.
186. Volesky B. 2007. Biosorption and me. Water Res 41:4017–4029. http://dx.doi.org/10.1016/j.watres.2007.05.062 [PubMed]
187. Gadd GM, White C. 1989. Removal of thorium from simulated acid process streams by fungal biomass. Biotechnol Bioeng 33:592–597. http://dx.doi.org/10.1002/bit.260330512 [PubMed]
188. White C, Gadd GM. 1990. Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49:331–343. http://dx.doi.org/10.1002/jctb.280490406 [PubMed]
189. Gadd GM, White C. 1992. Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44. http://dx.doi.org/10.1002/jctb.280550107
190. Gadd GM, White C. 1993. Microbial treatment of metal pollution: a working biotechnology? Trends Biotechnol 11:353–359. http://dx.doi.org/10.1016/0167-7799(93)90158-6 [PubMed]
191. White C, Wilkinson SC, Gadd GM. 1995. The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeter Biodegrad 35:17–40. http://dx.doi.org/10.1016/0964-8305(95)00036-5
192. Wang J, Chen C. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451. http://dx.doi.org/10.1016/j.biotechadv.2006.03.001 [PubMed]
193. Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. http://dx.doi.org/10.1016/j.biotechadv.2008.11.002
194. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597. http://dx.doi.org/10.1038/338596a0
195. Li Q, Liu D, Jia Z, Csetenyi L, Gadd GM. 2016. Fungal biomineralization of manganese as a novel source of electrochemical materials. Curr Biol 26:950–955. http://dx.doi.org/10.1016/j.cub.2016.01.068 [PubMed]
196. Thomson-Eagle ET, Frankenberger WT. 1992. Bioremediation of soils contaminated with selenium, p 261–309. In Lal R, Stewart BA (ed), Advances in Soil Science. Springer, New York, NY.
197. Rosén K, Weiliang Z, Mårtensson A. 2005. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Sci Total Environ 338:283–290. http://dx.doi.org/10.1016/j.scitotenv.2004.07.015 [PubMed]
198. Göhre V, Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. http://dx.doi.org/10.1007/s00425-006-0225-0 [PubMed]
199. Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. http://dx.doi.org/10.1146/annurev.arplant.49.1.643 [PubMed]
200. Leyval C, Turnau K, Haselwandter K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153. http://dx.doi.org/10.1007/s005720050174
201. Krupa P, Kozdroj J. 2004. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20:427–430. http://dx.doi.org/10.1023/B:WIBI.0000033067.64061.f3
202. Adriaensen K, Vrålstad T, Noben JP, Vangronsveld J, Colpaert JV. 2005. Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284. http://dx.doi.org/10.1128/AEM.71.11.7279-7284.2005 [PubMed]
203. González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. http://dx.doi.org/10.1016/j.envpol.2004.01.004
204. Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jakobsen I. 2004. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436. http://dx.doi.org/10.1016/j.envpol.2003.12.021
205. Chen BD, Jakobsen I, Roos P, Zhu YG. 2005. Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359. http://dx.doi.org/10.1007/s11104-005-2888-x
206. Chen B, Zhu YG, Zhang X, Jakobsen I. 2005. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12:325–331. http://dx.doi.org/10.1065/espr2005.06.267 [PubMed]
207. Bradley R, Burt AJ, Read DJ. 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292:335–337. http://dx.doi.org/10.1038/292335a0
208. Bradley B, Burt AJ, Read DJ. 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209. http://dx.doi.org/10.1111/j.1469-8137.1982.tb03306.x
209. Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. http://dx.doi.org/10.1093/jexbot/53.372.1351 [PubMed]
210. Cairney JWG, Meharg AA. 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740. http://dx.doi.org/10.1046/j.1351-0754.2003.0555.x
211. Ruby MV, Davis A, Nicholson A. 1994. In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28:646–654. http://dx.doi.org/10.1021/es00053a018 [PubMed]
212. Cotter-Howells J. 1996. Lead phosphate formation in soils. Environ Pollut 93:9–16. http://dx.doi.org/10.1016/0269-7491(96)00020-6
213. Cotter-Howells J, Caporn S. 1996. Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342. http://dx.doi.org/10.1016/0883-2927(95)00042-9
214. Ioannidis TA, Zouboulis AI. 2003. Detoxification of a highly toxic lead-loaded industrial solid waste by stabilization using apatites. J Hazard Mater 97:173–191. http://dx.doi.org/10.1016/S0304-3894(02)00258-3
215. Manning DAC. 2008. Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4:105–108. http://dx.doi.org/10.2113/GSELEMENTS.4.2.105
216. Oelkers EH, Montel J-M. 2008. Phosphates and nuclear waste storage. Elements 4:113–116. http://dx.doi.org/10.2113/GSELEMENTS.4.2.113
217. Ceci A, Rhee YJ, Kierans M, Hillier S, Pendlowski H, Gray N, Persiani AM, Gadd GM. 2015. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi. Environ Microbiol 17:2018–2034. http://dx.doi.org/10.1111/1462-2920.12612 [PubMed]
218. Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM. 2015. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol 81:4955–4964. http://dx.doi.org/10.1128/AEM.00726-15
219. Guggiari M, Bloque R, Aragno M, Verrecchia E, Job D, Junier P. 2011. Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. Int Biodet Biodegrad 65:803–809. http://dx.doi.org/10.1016/j.ibiod.2011.02.012
220. Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM. 2005. Role of oxalic acid overexcretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71:371–381. http://dx.doi.org/10.1128/AEM.71.1.371-381.2005 [PubMed]
221. Daghino S, Turci F, Tomatis M, Favier A, Perotto S, Douki T, Fubini B. 2006. Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40:5793–5798. http://dx.doi.org/10.1021/es060881v [PubMed]
microbiolspec.FUNK-0010-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0010-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0010-2016
2017-01-27
2017-06-29

Abstract:

Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter decomposition is important for cycling of major biomass-associated elements, e.g., C, H, N, O, P, and S, as well as all other elements found in lower concentrations. Transformations of metals and minerals are central to geomicrobiology, and fungi affect changes in metal speciation, as well as mediate mineral formation or dissolution. Such mechanisms are components of biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks, and minerals, e.g., S, P, and metalloids. Fungi may have the greatest geochemical influence within the terrestrial environment. However, they are also important in the aquatic environment and are significant components of the deep subsurface, extreme environments, and habitats polluted by xenobiotics, metals, and radionuclides. Applications of geomycology include metal and radionuclide bioleaching, biorecovery, detoxification, bioremediation, and the production of biominerals or metal(loid) elements with catalytic or other properties. Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-based building materials (e.g., concrete), cultural heritage, metals, alloys, and related substances and adverse effects on radionuclide mobility and containment. The ubiquity and importance of fungi in the biosphere underline the importance of geomycology as a conceptual framework encompassing the environmental activities of fungi.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error