1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungi that Infect Humans

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Julia R. Köhler1, Bernhard Hube2, Rosana Puccia3, Arturo Casadevall4, John R. Perfect5
  • Editors: Joseph Heitman6, Barbara J. Howlett7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115; 2: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany; 3: Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil; 4: Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; 5: Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710; 6: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 7: School of Biosciences, The University of Melbourne, Victoria, NSW 3010, Australia
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0014-2016
  • Received 01 June 2016 Accepted 02 March 2017 Published 09 June 2017
  • Julia R. Köhler, julia.koehler@childrens.harvard.edu
image of Fungi that Infect Humans
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Fungi that Infect Humans, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0014-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0014-2016-2.gif
  • Abstract:

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as and ; the spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients—, , and spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  • Citation: Köhler J, Hube B, Puccia R, Casadevall A, Perfect J. 2017. Fungi that Infect Humans. Microbiol Spectrum 5(3):FUNK-0014-2016. doi:10.1128/microbiolspec.FUNK-0014-2016.

Key Concept Ranking

Fungal Infections
0.5131963
Upper Respiratory Tract Infections
0.44931787
Fungal Proteins
0.4309376
0.5131963

References

1. Robert VA, Casadevall A. 2009. Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis 200:1623–1626 http://dx.doi.org/10.1086/644642. [PubMed]
2. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550 http://dx.doi.org/10.1128/AEM.71.9.5544-5550.2005.
3. Blackwell M. 2011. The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438 http://dx.doi.org/10.3732/ajb.1000298.
4. Bowman BH, White TJ, Taylor JW. 1996. Human pathogeneic fungi and their close nonpathogenic relatives. Mol Phylogenet Evol 6:89–96 http://dx.doi.org/10.1006/mpev.1996.0061.
5. Read DJ, Ducket JG, Francis R, Ligron R, Russell A. 2000. Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830.
6. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133 http://dx.doi.org/10.1126/science.1061457.
7. Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ. 2010. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103 http://dx.doi.org/10.1038/ncomms1105.
8. Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Sederoff HW, Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong GK, Oldroyd GE, Ané JM. 2015. Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci USA 112:13390–13395 http://dx.doi.org/10.1073/pnas.1515426112.
9. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298:1581 http://dx.doi.org/10.1126/science.1072191.
10. Paszkowski U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370 http://dx.doi.org/10.1016/j.pbi.2006.05.008. [PubMed]
11. Rodriguez R, Redman R. 2008. More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114 http://dx.doi.org/10.1093/jxb/erm342.
12. Mandyam KG, Jumpponen A. 2015. Mutualism-parasitism paradigm synthesized from results of root-endophyte models. Front Microbiol 5:776 http://dx.doi.org/10.3389/fmicb.2014.00776.
13. Dickman MB, de Figueiredo P. 2011. Comparative pathobiology of fungal pathogens of plants and animals. PLoS Pathog 7:e1002324 http://dx.doi.org/10.1371/journal.ppat.1002324. [PubMed]
14. Sharon A, Shlezinger N. 2013. Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog 9:e1003517 http://dx.doi.org/10.1371/journal.ppat.1003517. [PubMed]
15. Perovic-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Muller IM, Muller WE. 2004. A (1-->3)-beta-D-glucan recognition protein from the sponge Suberites domuncula. Mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937. [PubMed]
16. Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. 2015. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 6:19 http://dx.doi.org/10.3389/fmicb.2015.00019.
17. Ortiz-Urquiza A, Luo Z, Keyhani NO. 2015. Improving mycoinsecticides for insect biological control. Appl Microbiol Biotechnol 99:1057–1068 http://dx.doi.org/10.1007/s00253-014-6270-x.
18. Shang Y, Feng P, Wang C. 2015. Fungi that infect insects: altering host behavior and beyond. PLoS Pathog 11:e1005037 http://dx.doi.org/10.1371/journal.ppat.1005037.
19. Yanong RP. 2003. Fungal diseases of fish. Vet Clin North Am Exot Anim Pract 6:377–400 http://dx.doi.org/10.1016/S1094-9194(03)00005-7.
20. Bagy MM, Hemida SK, Mahmoud UM. 1993. Terrestrial fungi inhabiting certain species of Nile fishes in Egypt. Zentralbl Mikrobiol 148:289–297. [PubMed]
21. Fernando N, Hui SW, Tsang CC, Leung SY, Ngan AH, Leung RW, Groff JM, Lau SK, Woo PC. 2015. Fatal Fusarium solani species complex infections in elasmobranchs: the first case report for black spotted stingray (Taeniura melanopsila) and a literature review. Mycoses 58:422–431 http://dx.doi.org/10.1111/myc.12342.
22. Liu YJ, Hodson MC, Hall BD. 2006. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:74 http://dx.doi.org/10.1186/1471-2148-6-74.
23. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871 http://dx.doi.org/10.3852/mycologia.98.6.860.
24. Bellard C, Genovesi P, Jeschke JM. 2016. Global patterns in threats to vertebrates by biological invasions. Proc Biol Sci 283:20152454. doi:10.1098/rspb.2015.2454. [PubMed]
25. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119 http://dx.doi.org/10.1016/j.cbpa.2015.10.018.
26. Bergman A, Casadevall A. 2010. Mammalian endothermy optimally restricts fungi and metabolic costs. MBio 1:e00212-10 http://dx.doi.org/10.1128/mBio.00212-10. [PubMed]
27. Garcia-Solache MA, Casadevall A. 2010. Global warming will bring new fungal diseases for mammals. MBio 1:e00061-10 http://dx.doi.org/10.1128/mBio.00061-10. [PubMed]
28. Casadevall A. 2012. Fungi and the rise of mammals. PLoS Pathog 8:e1002808 http://dx.doi.org/10.1371/journal.ppat.1002808. [PubMed]
29. Inglis D, Johnson DL, Goettel MS. 1996. Effects of temperature on thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biol Control 7:131–139 http://dx.doi.org/10.1006/bcon.1996.0076.
30. Elliot SL, Blanford S, Thomas MB. 2002. Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc Biol Sci 269:1599–1607 http://dx.doi.org/10.1098/rspb.2002.2067.
31. Cannom RR, French SW, Johnston D, Edwards JE Jr, Filler SG. 2002. Candida albicans stimulates local expression of leukocyte adhesion molecules and cytokines in vivo. J Infect Dis 186:389–396 http://dx.doi.org/10.1086/341660.
32. Liu Y, Shetty AC, Schwartz JA, Bradford LL, Xu W, Phan QT, Kumari P, Mahurkar A, Mitchell AP, Ravel J, Fraser CM, Filler SG, Bruno VM. 2015. New signaling pathways govern the host response to C. albicans infection in various niches. Genome Res 25:679–689 http://dx.doi.org/10.1101/gr.187427.114.
33. Pizzo PA, Robichaud KJ, Gill FA, Witebsky FG. 1982. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am J Med 72:101–111 http://dx.doi.org/10.1016/0002-9343(82)90594-0.
34. Casadevall A. 2016. Thermal restriction as an antimicrobial function of fever. PLoS Pathog 12:e1005577 http://dx.doi.org/10.1371/journal.ppat.1005577. [PubMed][CrossRef]
35. de Oliveira HC, da Silva JF, Scorzoni L, Marcos CM, Rossi SA, de Paula E Silva AC, Assato PA, da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJ. 2015. Importance of adhesins in virulence of Paracoccidioides spp. Front Microbiol 6:303.
36. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA. 2007. Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077 http://dx.doi.org/10.1098/rspb.2007.1067.
37. Stefanini I, Dapporto L, Berná L, Polsinelli M, Turillazzi S, Cavalieri D. 2016. Social wasps are a Saccharomyces mating nest. Proc Natl Acad Sci USA 113:2247–2251 http://dx.doi.org/10.1073/pnas.1516453113. [PubMed]
38. Sukroongreung S, Kitiniyom K, Nilakul C, Tantimavanich S. 1998. Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. Med Mycol 36:419–424 http://dx.doi.org/10.1080/02681219880000661. [PubMed][CrossRef]
39. Lücking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT. 2009. Fungi evolved right on track. Mycologia 101:810–822 http://dx.doi.org/10.3852/09-016. [PubMed]
40. Redecker D, Kodner R, Graham LE. 2000. Glomalean fungi from the Ordovician. Science 289:1920–1921 http://dx.doi.org/10.1126/science.289.5486.1920. [PubMed]
41. Nehls U. 2008. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108 http://dx.doi.org/10.1093/jxb/erm334. [PubMed][CrossRef]
42. Hoyer LL, Green CB, Oh SH, Zhao X. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family: a sticky pursuit. Med Mycol 46:1–15 http://dx.doi.org/10.1080/13693780701435317.
43. Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748 http://dx.doi.org/10.1038/nrmicro2636. [PubMed]
44. Brand A. 2012. Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529 http://dx.doi.org/10.1155/2012/517529. [PubMed]
45. de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481 http://dx.doi.org/10.1128/EC.00364-12. [PubMed]
46. Neilson JB, Ivey MH, Bulmer GS. 1978. Cryptococcus neoformans: pseudohyphal forms surviving culture with Acanthamoeba polyphaga. Infect Immun 20:262–266. [PubMed]
47. Allen PG, Dawidowicz EA. 1990. Phagocytosis in Acanthamoeba. I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145:508–513 http://dx.doi.org/10.1002/jcp.1041450317. [PubMed]
48. Dzik JM. 2010. The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol 57:443–466. [PubMed]
49. Buchmann K. 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol 5:459 http://dx.doi.org/10.3389/fimmu.2014.00459. [PubMed]
50. Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 http://dx.doi.org/10.1016/S0092-8674(00)80358-X. [PubMed]
51. Krysan DJ, Sutterwala FS, Wellington M. 2014. Catching fire: Candida albicans, macrophages, and pyroptosis. PLoS Pathog 10:e1004139 http://dx.doi.org/10.1371/journal.ppat.1004139. [PubMed]
52. Wellington M, Koselny K, Sutterwala FS, Krysan DJ. 2014. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell 13:329–340 http://dx.doi.org/10.1128/EC.00336-13. [PubMed]
53. O’Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. 2015. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun 6:6741 http://dx.doi.org/10.1038/ncomms7741. [PubMed]
54. Brennan MA, Cookson BT. 2000. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40 http://dx.doi.org/10.1046/j.1365-2958.2000.02103.x.
55. Cookson BT, Brennan MA. 2001. Pro-inflammatory programmed cell death. Trends Microbiol 9:113–114 http://dx.doi.org/10.1016/S0966-842X(00)01936-3.
56. Raper JR, Miles PG. 1958. The genetics of Schizophyllum commune. Genetics 43:530–546. [PubMed]
57. Burge HA. 2002. An update on pollen and fungal spore aerobiology. J Allergy Clin Immunol 110:544–552 http://dx.doi.org/10.1067/mai.2002.128674. [PubMed]
58. Griffin DW. 2004. Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia 20:135–140 http://dx.doi.org/10.1023/B:AERO.0000032948.84077.12.
59. Sudbery P, Gow N, Berman J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324 http://dx.doi.org/10.1016/j.tim.2004.05.008. [PubMed]
60. Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538. [PubMed]
61. Sanglard D, Hube B, Monod M, Odds FC, Gow NA. 1997. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546. [PubMed]
62. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S, Nozawa Y, Ghannoum MA. 1998. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 273:26078–26086 http://dx.doi.org/10.1074/jbc.273.40.26078. [PubMed]
63. Theiss S, Ishdorj G, Brenot A, Kretschmar M, Lan CY, Nichterlein T, Hacker J, Nigam S, Agabian N, Köhler GA. 2006. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol 296:405–420 http://dx.doi.org/10.1016/j.ijmm.2006.03.003.
64. Fu Y, Ibrahim AS, Fonzi W, Zhou X, Ramos CF, Ghannoum MA. 1997. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology 143:331–340 http://dx.doi.org/10.1099/00221287-143-2-331.
65. Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. 2000. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174:362–374 http://dx.doi.org/10.1007/s002030000218.
66. Gácser A, Stehr F, Kröger C, Kredics L, Schäfer W, Nosanchuk JD. 2007. Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun 75:4710–4718 http://dx.doi.org/10.1128/IAI.00372-07. [PubMed]
67. Okeke CN, Müller J. 1991. Production of extracellular collagenolytic proteinases by Histoplasma capsulatum var. duboisii and Histoplasma capsulatum var. capsulatum in the yeast phase. Mycoses 34:453–460 http://dx.doi.org/10.1111/j.1439-0507.1991.tb00860.x.
68. Muotoe-Okafor FA, Gugnani HC, Obidoa OO. 1996. Extracellular proteolytic enzyme activity of Histoplasma capsulatum var. duboisii. Mycopathologia 133:129–133 http://dx.doi.org/10.1007/BF02373018.
69. Barata RA, Andrade MH, Rodrigues RD, Castro IM. 2002. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini. J Biosci Bioeng 94:304–308 http://dx.doi.org/10.1016/S1389-1723(02)80168-2.
70. Kogan TV, Jadoun J, Mittelman L, Hirschberg K, Osherov N. 2004. Involvement of secreted Aspergillus fumigatus proteases in disruption of the actin fiber cytoskeleton and loss of focal adhesion sites in infected A549 lung pneumocytes. J Infect Dis 189:1965–1973 http://dx.doi.org/10.1086/420850.
71. Whiston E, Taylor J. 2016. Comparative phylogenomics of pathogenic and nonpathogenic species. G3 (Bethesda) 6:235–244. [PubMed]
72. Dagenais TR, Keller NP. 2009. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22:447–465 http://dx.doi.org/10.1128/CMR.00055-08. [PubMed]
73. Hood MI, Skaar EP. 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537 http://dx.doi.org/10.1038/nrmicro2836.
74. Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, Verdonck A, Van Landuyt HW, Schneider YJ. 1993. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest 91:1979–1986 http://dx.doi.org/10.1172/JCI116419.
75. Ibrahim AS, Edwards JE Jr, Fu Y, Spellberg B. 2006. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J Antimicrob Chemother 58:1070–1073 http://dx.doi.org/10.1093/jac/dkl350. [PubMed]
76. Noble SM. 2013. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol 16:708–715 http://dx.doi.org/10.1016/j.mib.2013.09.006. [PubMed]
77. Kronstad JW, Hu G, Jung WH. 2013. An encapsulation of iron homeostasis and virulence in Cryptococcus neoformans. Trends Microbiol 21:457–465 http://dx.doi.org/10.1016/j.tim.2013.05.007. [PubMed]
78. Ding C, Festa RA, Sun TS, Wang ZY. 2014. Iron and copper as virulence modulators in human fungal pathogens. Mol Microbiol 93:10–23 http://dx.doi.org/10.1111/mmi.12653. [PubMed]
79. Hwang LH, Mayfield JA, Rine J, Sil A. 2008. Histoplasma requires SID1, a member of an iron-regulated siderophore gene cluster, for host colonization. PLoS Pathog 4:e1000044 http://dx.doi.org/10.1371/journal.ppat.1000044.
80. Kornitzer D. 2009. Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 12:377–383 http://dx.doi.org/10.1016/j.mib.2009.05.005. [PubMed]
81. Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D. 2014. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 10:e1004407 http://dx.doi.org/10.1371/journal.ppat.1004407.
82. Bailão EF, Parente JA, Pigosso LL, de Castro KP, Fonseca FL, Silva-Bailão MG, Báo SN, Bailão AM, Rodrigues ML, Hernandez O, McEwen JG, Soares CM. 2014. Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated. PLoS Negl Trop Dis 8:e2856 http://dx.doi.org/10.1371/journal.pntd.0002856. [PubMed]
83. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H. 2004. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219 http://dx.doi.org/10.1084/jem.20041242. [PubMed]
84. Windus DW, Stokes TJ, Julian BA, Fenves AZ. 1987. Fatal Rhizopus infections in hemodialysis patients receiving deferoxamine. Ann Intern Med 107:678–680 http://dx.doi.org/10.7326/0003-4819-107-5-678. [PubMed]
85. Waterman SR, Hacham M, Hu G, Zhu X, Park YD, Shin S, Panepinto J, Valyi-Nagy T, Beam C, Husain S, Singh N, Williamson PR. 2007. Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 117:794–802 http://dx.doi.org/10.1172/JCI30006. [PubMed]
86. Ding C, Yin J, Tovar EM, Fitzpatrick DA, Higgins DG, Thiele DJ. 2011. The copper regulon of the human fungal pathogen Cryptococcus neoformans H99. Mol Microbiol 81:1560–1576 http://dx.doi.org/10.1111/j.1365-2958.2011.07794.x.
87. Gleason JE, Li CX, Odeh HM, Culotta VC. 2014. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. J Biol Inorg Chem 19:595–603. [PubMed]
88. Gleason JE, Galaleldeen A, Peterson RL, Taylor AB, Holloway SP, Waninger-Saroni J, Cormack BP, Cabelli DE, Hart PJ, Culotta VC. 2014. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Proc Natl Acad Sci USA 111:5866–5871 http://dx.doi.org/10.1073/pnas.1400137111.
89. de Oliveira HC, da Silva JF, Matsumoto MT, Marcos CM, Peres da Silva R, Moraes da Silva RA, Labate MT, Labate CA, Fusco Almeida AM, Mendes Giannini MJ. 2014. Alterations of protein expression in conditions of copper-deprivation for Paracoccidioides lutzii in the presence of extracellular matrix components. BMC Microbiol 14:302 http://dx.doi.org/10.1186/s12866-014-0302-7.
90. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 2009. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956 http://dx.doi.org/10.1074/jbc.M109.070201.
91. Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espín J, Capdevila M, Atrian S, Heitman J, Thiele DJ. 2013. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13:265–276 http://dx.doi.org/10.1016/j.chom.2013.02.002.
92. Sun TS, Ju X, Gao HL, Wang T, Thiele DJ, Li JY, Wang ZY, Ding C. 2014. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat Commun 5:5550 http://dx.doi.org/10.1038/ncomms6550.
93. Li CX, Gleason JE, Zhang SX, Bruno VM, Cormack BP, Culotta VC. 2015. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc Natl Acad Sci USA 112:E5336–E5342 http://dx.doi.org/10.1073/pnas.1513447112.
94. Davies B, Chattings LS, Edwards SW. 1991. Superoxide generation during phagocytosis by Acanthamoeba castellanii: similarities to the respiratory burst of immune phagocytes. J Gen Microbiol 137:705–710 http://dx.doi.org/10.1099/00221287-137-3-705.
95. Rohde JR, Cardenas ME. 2004. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279:53–72 http://dx.doi.org/10.1007/978-3-642-18930-2_4.
96. Cramer RA Jr, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. 2008. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 7:1085–1097 http://dx.doi.org/10.1128/EC.00086-08.
97. Kumamoto CA. 2008. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673 http://dx.doi.org/10.1038/nrmicro1960.
98. Bastidas RJ, Heitman J. 2009. Trimorphic stepping stones pave the way to fungal virulence. Proc Natl Acad Sci USA 106:351–352 http://dx.doi.org/10.1073/pnas.0811994106. [PubMed]
99. Herrero de Dios C, Román E, Monge RA, Pla J. 2010. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence. Curr Protein Pept Sci 11:693–703 http://dx.doi.org/10.2174/138920310794557655.
100. Ernst JF, Pla J. 2011. Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 301:378–383 http://dx.doi.org/10.1016/j.ijmm.2011.04.003. [PubMed]
101. Hogan DA, Muhlschlegel FA. 2011. Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Curr Opin Microbiol 14:682–686 http://dx.doi.org/10.1016/j.mib.2011.09.014.
102. Argimón S, Fanning S, Blankenship JR, Mitchell AP. 2011. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell 10:272–275 http://dx.doi.org/10.1128/EC.00133-10. [PubMed]
103. Shapiro RS, Ryan O, Boone C, Cowen LE. 2012. Regulatory circuitry governing morphogenesis in Saccharomyces cerevisiae and Candida albicans. Cell Cycle 11:4294–4295 http://dx.doi.org/10.4161/cc.22608.
104. Chen YL, Lehman VN, Lewit Y, Averette AF, Heitman J. 2013. Calcineurin governs thermotolerance and virulence of Cryptococcus gattii. G3 (Bethesda) 3:527–539 http://dx.doi.org/10.1534/g3.112.004242.
105. Grahl N, Demers EG, Lindsay AK, Harty CE, Willger SD, Piispanen AE, Hogan DA. 2015. Mitochondrial activity and Cyr1 are key regulators of Ras1 activation of C. albicans virulence pathways. PLoS Pathog 11:e1005133 http://dx.doi.org/10.1371/journal.ppat.1005133.
106. Swidergall M, van Wijlick L, Ernst JF. 2015. Signaling domains of mucin Msb2 in Candida albicans. Eukaryot Cell 14:359–370 http://dx.doi.org/10.1128/EC.00264-14.
107. Kwon-Chung KJ. 2012. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease:molecular mycologic perspectives. Clin Infect Dis 54(Suppl 1):S8–S15 http://dx.doi.org/10.1093/cid/cir864.
108. Prabhu RM, Patel R. 2004. Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment. Clin Microbiol Infect 10(Suppl 1):31–47 http://dx.doi.org/10.1111/j.1470-9465.2004.00843.x.
109. Echetebu CO, Ononogbu IC. 1982. Extracellular lipase and proteinase of Basidiobolus haptosporus: possible role in subcutaneous mycosis. Mycopathologia 80:171–177 http://dx.doi.org/10.1007/BF00437580.
110. Okafor JI, Gugnani HC, Testratke D, Yangoo BG. 1987. Extracellular enzyme activities by Basidiobolus and Conidiobolus isolates on solid media. Mykosen 30:404–407 http://dx.doi.org/10.1111/j.1439-0507.1987.tb03637.x.
111. Okafor JI, Gugnani HC. 1990. Lipase activity of Basidiobolus and Conidiobolus species. Mycoses 33:81–85. [PubMed]
112. Okafor JI. 1994. Purification and characterization of protease enzymes of Basidiobolus and Conidiobolus species. Mycoses 37:265–269 http://dx.doi.org/10.1111/j.1439-0507.1994.tb00424.x.
113. Comerio RM, Andorno AV, Botto EN. 2008. [Conidiobolus coronatus isolation from a pest aphids of chives (Allium schoenoprasum L.)]. Rev Iberoam Micol 25:193–195. (In Spanish.)
114. Gugnani HC. 1992. Entomophthoromycosis due to Conidiobolus. Eur J Epidemiol 8:391–396 http://dx.doi.org/10.1007/BF00158574.
115. Isa-Isa R, Arenas R, Fernández RF, Isa M. 2012. Rhinofacial conidiobolomycosis (entomophthoramycosis). Clin Dermatol 30:409–412 http://dx.doi.org/10.1016/j.clindermatol.2011.09.012.
116. Bittencourt AL, Marback R, Nossa LM. 2006. Mucocutaneous entomophthoramycosis acquired by conjunctival inoculation of the fungus. Am J Trop Med Hyg 75:936–938. [PubMed]
117. Ribes JA, Vanover-Sams CL, Baker DJ. 2000. Zygomycetes in human disease. Clin Microbiol Rev 13:236–301 http://dx.doi.org/10.1128/CMR.13.2.236-301.2000.
118. Raveenthiran V, Mangayarkarasi V, Kousalya M, Viswanathan P, Dhanalakshmi M, Anandi V. 2015. Subcutaneous entomophthoromycosis mimicking soft-tissue sarcoma in children. J Pediatr Surg 50:1150–1155 http://dx.doi.org/10.1016/j.jpedsurg.2014.11.031.
119. Zavasky DM, Samowitz W, Loftus T, Segal H, Carroll K. 1999. Gastrointestinal zygomycotic infection caused by Basidiobolus ranarum: case report and review. Clin Infect Dis 28:1244–1248 http://dx.doi.org/10.1086/514781.
120. Vikram HR, Smilack JD, Leighton JA, Crowell MD, De Petris G. 2012. Emergence of gastrointestinal basidiobolomycosis in the United States, with a review of worldwide cases. Clin Infect Dis 54:1685–1691 http://dx.doi.org/10.1093/cid/cis250.
121. El-Shabrawi MH, Arnaout H, Madkour L, Kamal NM. 2014. Entomophthoromycosis: a challenging emerging disease. Mycoses 57(Suppl 3):132–137 http://dx.doi.org/10.1111/myc.12248.
122. Queiroz-Telles F. 2015. Chromoblastomycosis: a neglected tropical disease. Rev Inst Med Trop São Paulo 57(Suppl 19):46–50 http://dx.doi.org/10.1590/S0036-46652015000700009. [PubMed]
123. Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, de Souza W, Rozental S. 2010. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10:80 http://dx.doi.org/10.1186/1471-2180-10-80.
124. Queiroz-Telles F, Nucci M, Colombo AL, Tobón A, Restrepo A. 2011. Mycoses of implantation in Latin America: an overview of epidemiology, clinical manifestations, diagnosis and treatment. Med Mycol 49:225–236 http://dx.doi.org/10.3109/13693786.2010.539631.
125. Fahal AH, Hassan MA. 1992. Mycetoma. Br J Surg 79:1138–1141 http://dx.doi.org/10.1002/bjs.1800791107.
126. van de Sande WW. 2012. Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales. PLoS One 7:e38654 http://dx.doi.org/10.1371/journal.pone.0038654.
127. de Hoog GS, Ahmed SA, Najafzadeh MJ, Sutton DA, Keisari MS, Fahal AH, Eberhardt U, Verkleij GJ, Xin L, Stielow B, van de Sande WW. 2013. Phylogenetic findings suggest possible new habitat and routes of infection of human eumyctoma. PLoS Negl Trop Dis 7:e2229 http://dx.doi.org/10.1371/journal.pntd.0002229.
128. Mhmoud NA, Fahal AH, van de Sande WW. 2013. The association between the interleukin-10 cytokine and CC chemokine ligand 5 polymorphisms and mycetoma granuloma formation. Med Mycol 51:527–533 http://dx.doi.org/10.3109/13693786.2012.745201.
129. Geneugelijk K, Kloezen W, Fahal AH, van de Sande WW. 2014. Active matrix metalloprotease-9 is associated with the collagen capsule surrounding the Madurella mycetomatis grain in mycetoma. PLoS Negl Trop Dis 8:e2754 http://dx.doi.org/10.1371/journal.pntd.0002754.
130. Verwer PE, Notenboom CC, Eadie K, Fahal AH, Verbrugh HA, van de Sande WW. 2015. A polymorphism in the Chitotriosidase gene associated with risk of mycetoma due to Madurella mycetomatis mycetoma: a retrospective study. PLoS Negl Trop Dis 9:e0004061 http://dx.doi.org/10.1371/journal.pntd.0004061. [PubMed]
131. Ahmed SA, Kloezen W, Duncanson F, Zijlstra EE, de Hoog GS, Fahal AH, van de Sande WW. 2014. Madurella mycetomatis is highly susceptible to ravuconazole. PLoS Negl Trop Dis 8:e2942 http://dx.doi.org/10.1371/journal.pntd.0002942.
132. Untereiner WA, Scott JA, Naveau FA, Sigler L, Bachewich J, Angus A. 2004. The Ajellomycetaceae, a new family of vertebrate-associated Onygenales. Mycologia 96:812–821 http://dx.doi.org/10.2307/3762114.
133. Bagagli E, Theodoro RC, Bosco SM, McEwen JG. 2008. Paracoccidioides brasiliensis: phylogenetic and ecological aspects. Mycopathologia 165:197–207 http://dx.doi.org/10.1007/s11046-007-9050-7.
134. Lacy GH, Swatek FE. 1974. Soil ecology of Coccidioides immitis at Amerindian middens in California. Appl Microbiol 27:379–388. [PubMed]
135. Taylor ML, Chávez-Tapia CB, Vargas-Yañez R, Rodríguez-Arellanes G, Peña-Sandoval GR, Toriello C, Pérez A, Reyes-Montes MR. 1999. Environmental conditions favoring bat infection with Histoplasma capsulatum in Mexican shelters. Am J Trop Med Hyg 61:914–919. [PubMed]
136. Vidal MS, de Melo NT, Garcia NM, Del Negro GM, de Assis CM, Heins-Vaccari EM, Naiff RD, Mendes RP, Lacaz CS. 1995. Paracoccidioides brasiliensis. A mycologic and immunochemical study of a sample isolated from an armadillo (Dasipus novencinctus). Rev Inst Med Trop São Paulo 37:43–49 http://dx.doi.org/10.1590/S0036-46651995000100007.
137. Corredor GG, Castaño JH, Peralta LA, Díez S, Arango M, McEwen J, Restrepo A. 1999. Isolation of Paracoccidioides brasiliensis from the nine-banded armadillo Dasypus novemcinctus, in an endemic area for paracoccidioidomycosis in Colombia. Rev Iberoam Micol 16:216–220. [PubMed]
138. Queiroz-Telles F, Escuissato DL. 2011. Pulmonary paracoccidioidomycosis. Semin Respir Crit Care Med 32:764–774 http://dx.doi.org/10.1055/s-0031-1295724.
139. Marques SA. 2012. Paracoccidioidomycosis. Clin Dermatol 30:610–615 http://dx.doi.org/10.1016/j.clindermatol.2012.01.006.
140. Bradsher RW, Chapman SW, Pappas PG. 2003. Blastomycosis. Infect Dis Clin North Am 17:21–40, vii http://dx.doi.org/10.1016/S0891-5520(02)00038-7.
141. Kauffman CA. 2007. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev 20:115–132 http://dx.doi.org/10.1128/CMR.00027-06.
142. Nguyen VQ, Sil A. 2008. Temperature-induced switch to the pathogenic yeast form of Histoplasma capsulatum requires Ryp1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885 http://dx.doi.org/10.1073/pnas.0710448105.
143. Edwards JA, Chen C, Kemski MM, Hu J, Mitchell TK, Rappleye CA. 2013. Histoplasma yeast and mycelial transcriptomes reveal pathogenic-phase and lineage-specific gene expression profiles. BMC Genomics 14:695 http://dx.doi.org/10.1186/1471-2164-14-695.
144. Inglis DO, Voorhies M, Hocking Murray DR, Sil A. 2013. Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states. Eukaryot Cell 12:828–852 http://dx.doi.org/10.1128/EC.00069-13.
145. Nemecek JC, Wüthrich M, Klein BS. 2006. Global control of dimorphism and virulence in fungi. Science 312:583–588 http://dx.doi.org/10.1126/science.1124105.
146. Webster RH, Sil A. 2008. Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci USA 105:14573–14578 http://dx.doi.org/10.1073/pnas.0806221105.
147. Cain CW, Lohse MB, Homann OR, Sil A, Johnson AD. 2012. A conserved transcriptional regulator governs fungal morphology in widely diverged species. Genetics 190:511–521 http://dx.doi.org/10.1534/genetics.111.134080.
148. Beyhan S, Gutierrez M, Voorhies M, Sil A. 2013. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol 11:e1001614 http://dx.doi.org/10.1371/journal.pbio.1001614.
149. Gilmore SA, Voorhies M, Gebhart D, Sil A. 2015. Genome-wide reprogramming of transcript architecture by temperature specifies the developmental states of the human pathogen Histoplasma. PLoS Genet 11:e1005395 http://dx.doi.org/10.1371/journal.pgen.1005395.
150. Quist EM, Belcher C, Levine G, Johnson M, Heatley JJ, Kiupel M, Giri D. 2011. Disseminated histoplasmosis with concurrent oral candidiasis in an Eclectus parrot (Eclectus roratus). Avian Pathol 40:207–211 http://dx.doi.org/10.1080/03079457.2011.554796.
151. Bauder B, Kübber-Heiss A, Steineck T, Kuttin ES, Kaufman L. 2000. Granulomatous skin lesions due to histoplasmosis in a badger (Meles meles) in Austria. Med Mycol 38:249–253 http://dx.doi.org/10.1080/mmy.38.3.249.253. [PubMed]
152. Brömel C, Sykes JE. 2005. Histoplasmosis in dogs and cats. Clin Tech Small Anim Pract 20:227–232 http://dx.doi.org/10.1053/j.ctsap.2005.07.003.
153. Aulakh HK, Aulakh KS, Troy GC. 2012. Feline histoplasmosis: a retrospective study of 22 cases (1986-2009). J Am Anim Hosp Assoc 48:182–187 http://dx.doi.org/10.5326/JAAHA-MS-5758.
154. Johnson L, Gaab EM, Sanchez J, Bui PQ, Nobile CJ, Hoyer KK, Peterson MW, Ojcius DM. 2014. Valley fever: danger lurking in a dust cloud. Microbes Infect 16:591–600 http://dx.doi.org/10.1016/j.micinf.2014.06.011.
155. Fisher MC, Koenig GL, White TJ, Taylor JW. 2002. Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia 94:73–84 http://dx.doi.org/10.2307/3761847.
156. Fraser JA, Stajich JE, Tarcha EJ, Cole GT, Inglis DO, Sil A, Heitman J. 2007. Evolution of the mating type locus: insights gained from the dimorphic primary fungal pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii. Eukaryot Cell 6:622–629 http://dx.doi.org/10.1128/EC.00018-07.
157. Ajello L. 1967. Comparative ecology of respiratory mycotic disease agents. Bacteriol Rev 31:6–24. [PubMed]
158. Ríos-Olivares EO. 1979. 1st human case of coccidioidomycosis in Nicaragua. Rev Latinoam Microbiol 21:215–218. (In Spanish.) [PubMed]
159. Wanke B, dos Santos Lazera M, Monteiro PC, Lima FC, Leal MJ, Ferreira Filho PL, Kaufman L, Pinner RW, Ajello L. 1999. Investigation of an outbreak of endemic coccidioidomycosis in Brazil’s northeastern state of Piauí with a review of the occurrence and distribution of Coccidioides immitis in three other Brazilian states. Mycopathologia 148:57–67 http://dx.doi.org/10.1023/A:1007183022761.
160. Campins H. 1970. Coccidioidomycosis in South America. A review of its epidemiology and geographic distribution. Mycopathol Mycol Appl 41:25–34 http://dx.doi.org/10.1007/BF02051481.
161. Hector RF, Laniado-Laborin R. 2005. Coccidioidomycosis: a fungal disease of the Americas. PLoS Med 2:e2 http://dx.doi.org/10.1371/journal.pmed.0020002.
162. Posadas A. 1892. Un nuevo caso de micosis fungoidea con posrospemias. An Circulo Med Argentino 15:585–597.
163. Nguyen C, Barker BM, Hoover S, Nix DE, Ampel NM, Frelinger JA, Orbach MJ, Galgiani JN. 2013. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 26:505–525 http://dx.doi.org/10.1128/CMR.00005-13.
164. Greene D, Koenig G, Fisher M, Taylor J. 2000. Soil isolation and molecular identification of Coccidioides immitis. Mycologia 92:406–410 http://dx.doi.org/10.2307/3761498.
165. Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW. 2009. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731 http://dx.doi.org/10.1101/gr.087551.108.
166. Whiston E, Taylor JW. 2014. Genomics in Coccidioides: insights into evolution, ecology, and pathogenesis. Med Mycol 52:149–155 http://dx.doi.org/10.1093/mmy/myt001. [PubMed]
167. Hector RF, Rutherford GW, Tsang CA, Erhart LM, McCotter O, Anderson SM, Komatsu K, Tabnak F, Vugia DJ, Yang Y, Galgiani JN. 2011. The public health impact of coccidioidomycosis in Arizona and California. Int J Environ Res Public Health 8:1150–1173 http://dx.doi.org/10.3390/ijerph8041150. [PubMed]
168. Smith CE. 1940. Epidemiology of acute coccidioidomycosis with erythema nodosum (“San Joaquin” or “valley fever”). Am J Public Health Nations Health 30:600–611 http://dx.doi.org/10.2105/AJPH.30.6.600.
169. Smith CE, Beard RR. 1946. Varieties of coccidioidal infection in relation to the epidemiology and control of the diseases. Am J Public Health Nations Health 36:1394–1402 http://dx.doi.org/10.2105/AJPH.36.12.1394.
170. Cox RA, Magee DM. 2004. Coccidioidomycosis: host response and vaccine development. Clin Microbiol Rev 17:804–839 http://dx.doi.org/10.1128/CMR.17.4.804-839.2004.
171. Cole GT, Hung CY, Sanderson SD, Hurtgen BJ, Wüthrich M, Klein BS, Deepe GS, Ostroff GR, Levitz SM. 2013. Novel strategies to enhance vaccine immunity against coccidioidomycosis. PLoS Pathog 9:e1003768 http://dx.doi.org/10.1371/journal.ppat.1003768.
172. Fisher MC, Koenig GL, White TJ, San-Blas G, Negroni R, Alvarez IG, Wanke B, Taylor JW. 2001. Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc Natl Acad Sci USA 98:4558–4562 http://dx.doi.org/10.1073/pnas.071406098.
173. Darling MI, Donoghue HD. 2014. Insights from paleomicrobiology into the indigenous peoples of pre-colonial America: a review. Mem Inst Oswaldo Cruz 109:131–139 http://dx.doi.org/10.1590/0074-0276140589.
174. Cordeiro RA, Roches de Castro e Silva KR, Brilhante RS, Moura FB, Duarte NF, Marques FJ, Cordeiro RA, Filho RE, Bezerra de Araújo RW, Bandeira TJ, Rocha MF, Sidrim JJ. 2012. Coccidioides posadasii infection in bats, Brazil. Emerg Infect Dis 18:668–670 http://dx.doi.org/10.3201/eid1804.111641.
175. Lewis ER, Bowers JR, Barker BM. 2015. Dust devil: the life and times of the fungus that causes valley fever. PLoS Pathog 11:e1004762 http://dx.doi.org/10.1371/journal.ppat.1004762.
176. Neafsey DE, Barker BM, Sharpton TJ, Stajich JE, Park DJ, Whiston E, Hung CY, McMahan C, White J, Sykes S, Heiman D, Young S, Zeng Q, Abouelleil A, Aftuck L, Bessette D, Brown A, FitzGerald M, Lui A, Macdonald JP, Priest M, Orbach MJ, Galgiani JN, Kirkland TN, Cole GT, Birren BW, Henn MR, Taylor JW, Rounsley SD. 2010. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:938–946 http://dx.doi.org/10.1101/gr.103911.109.
177. Wilken JA, Sondermeyer G, Shusterman D, McNary J, Vugia DJ, McDowell A, Borenstein P, Gilliss D, Ancock B, Prudhomme J, Gold D, Windham GC, Lee L, Materna BL. 2015. Coccidioidomycosis among workers constructing solar power farms, California, USA, 2011-2014. Emerg Infect Dis 21:1997–2005 http://dx.doi.org/10.3201/eid2111.150129.
178. Canteros CE, Madariaga MJ, Lee W, Rivas MC, Davel G, Iachini R. 2010. Endemic fungal pathogens in a rural setting of Argentina: seroepidemiological study in dogs. Rev Iberoam Micol 27:14–19 http://dx.doi.org/10.1016/j.riam.2009.11.002. (In Spanish.)
179. Duarte-Escalante E, Zúñiga G, Frías-De-León MG, Canteros C, Castañón-Olivares LR, Reyes-Montes MR. 2013. AFLP analysis reveals high genetic diversity but low population structure in Coccidioides posadasii isolates from Mexico and Argentina. BMC Infect Dis 13:411 http://dx.doi.org/10.1186/1471-2334-13-411.
180. Fisher MC, Koenig GL, White TJ, Taylor JW. 2000. Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. J Clin Microbiol 38:807–813. [PubMed]
181. Tamerius JD, Comrie AC. 2011. Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation. PLoS One 6:e21009 http://dx.doi.org/10.1371/journal.pone.0021009.
182. Vilela R, Rosa PS, Belone AF, Taylor JW, Diório SM, Mendoza L. 2009. Molecular phylogeny of animal pathogen Lacazia loboi inferred from rDNA and DNA coding sequences. Mycol Res 113:851–857 http://dx.doi.org/10.1016/j.mycres.2009.04.007.
183. Theodoro RC, Teixeira MM, Felipe MS, Paduan KS, Ribolla PM, San-Blas G, Bagagli E. 2012. Genus Paracoccidioides: species recognition and biogeographic aspects. PLoS One 7:e37694 http://dx.doi.org/10.1371/journal.pone.0037694.
184. Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA. 2011. Immunology of paracoccidioidomycosis. An Bras Dermatol 86:516–524 http://dx.doi.org/10.1590/S0365-05962011000300014. (In English, Portuguese.)
185. Marques SA. 2013. Paracoccidioidomycosis: epidemiological, clinical, diagnostic and treatment up-dating. An Bras Dermatol 88:700–711 http://dx.doi.org/10.1590/abd1806-4841.20132463.
186. Prado M, Silva MB, Laurenti R, Travassos LR, Taborda CP. 2009. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Mem Inst Oswaldo Cruz 104:513–521 http://dx.doi.org/10.1590/S0074-02762009000300019. [PubMed]
187. Colombo AL, Tobón A, Restrepo A, Queiroz-Telles F, Nucci M. 2011. Epidemiology of endemic systemic fungal infections in Latin America. Med Mycol 49:785–798.
188. Shankar J, Restrepo A, Clemons KV, Stevens DA. 2011. Hormones and the resistance of women to paracoccidioidomycosis. Clin Microbiol Rev 24:296–313 http://dx.doi.org/10.1128/CMR.00062-10.
189. Puccia R, Juliano MA, Juliano L, Travassos LR, Carmona AK. 1999. Detection of the basement membrane-degrading proteolytic activity of Paracoccidioides brasiliensis after SDS-PAGE using agarose overlays containing Abz-MKALTLQ-EDDnp. Braz J Med Biol Res 32:645–649 http://dx.doi.org/10.1590/S0100-879X1999000500019.
190. Puccia R, McEwen JG, Cisalpino PS. 2008. Diversity in Paracoccidioides brasiliensis. The PbGP43 gene as a genetic marker. Mycopathologia 165:275–287 http://dx.doi.org/10.1007/s11046-007-9055-2.
191. Puccia R, Vallejo MC, Matsuo AL, Longo LV. 2011. The Paracoccidioides cell wall: past and present layers toward understanding interaction with the host. Front Microbiol 2:257 http://dx.doi.org/10.3389/fmicb.2011.00257.
192. Bagagli E, Bosco SM, Theodoro RC, Franco M. 2006. Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. Infect Genet Evol 6:344–351 http://dx.doi.org/10.1016/j.meegid.2005.12.002. [PubMed]
193. Richini-Pereira VB, Bosco SM, Theodoro RC, Macoris SA, Bagagli E. 2009. Molecular approaches for eco-epidemiological studies of Paracoccidioides brasiliensis. Mem Inst Oswaldo Cruz 104:636–643 http://dx.doi.org/10.1590/S0074-02762009000400018.
194. Foley NM, Springer MS, Teeling EC. 2016. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci 371:20150140 http://dx.doi.org/10.1098/rstb.2015.0140.
195. Steinberger B, Torsvik TH. 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620–623 http://dx.doi.org/10.1038/nature06824.
196. de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva AC, Da Silva JF, Singulani JL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJ. 2015. Paracoccidioides-host interaction: an overview on recent advances in the paracoccidioidomycosis. Front Microbiol 6:1319 http://dx.doi.org/10.3389/fmicb.2015.01319.
197. Parente JA, Salem-Izacc SM, Santana JM, Pereira M, Borges CL, Bailão AM, Soares CM. 2010. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins. BMC Microbiol 10:292 http://dx.doi.org/10.1186/1471-2180-10-292.
198. Castilho DG, Chaves AF, Xander P, Zelanis A, Kitano ES, Serrano SM, Tashima AK, Batista WL. 2014. Exploring potential virulence regulators in Paracoccidioides brasiliensis isolates of varying virulence through quantitative proteomics. J Proteome Res 13:4259–4271 http://dx.doi.org/10.1021/pr5002274.
199. Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, Migaud M, Taibi L, Ammar-Khodja A, Boudghene Stambouli O, Guellil B, Jacobs F, Goffard JC, Schepers K, del Marmol V, Boussofara L, Denguezli M, Larif M, Bachelez H, Michel L, Lefranc G, Hay R, Jouvion G, Chretien F, Fraitag S, Bougnoux ME, Boudia M, Abel L, Lortholary O, Casanova JL, Picard C, Grimbacher B, Puel A. 2013. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med 369:1704–1714 http://dx.doi.org/10.1056/NEJMoa1208487.
200. Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SM, Constantino-Silva RN, Casanova JL, Puel A. 2015. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol 35:486–490 http://dx.doi.org/10.1007/s10875-015-0170-4.
201. Gradisar H, Friedrich J, Krizaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426 http://dx.doi.org/10.1128/AEM.71.7.3420-3426.2005.
202. Eckhart L, Dalla Valle L, Jaeger K, Ballaun C, Szabo S, Nardi A, Buchberger M, Hermann M, Alibardi L, Tschachler E. 2008. Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci USA 105:18419–18423 http://dx.doi.org/10.1073/pnas.0805154105.
203. Wu Y, Yang J, Yang F, Liu T, Leng W, Chu Y, Jin Q. 2009. Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes. BMC Genomics 10:238 http://dx.doi.org/10.1186/1471-2164-10-238.
204. Cafarchia C, Iatta R, Latrofa MS, Gräser Y, Otranto D. 2013. Molecular epidemiology, phylogeny and evolution of dermatophytes. Infect Genet Evol 20:336–351 http://dx.doi.org/10.1016/j.meegid.2013.09.005.
205. Ahmadi B, Mirhendi H, Makimura K, de Hoog GS, Shidfar MR, Nouripour-Sisakht S, Jalalizand N. 2016. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene. Med Mycol 54:500–514 http://dx.doi.org/10.1093/mmy/myw004.
206. Ameen M. 2010. Epidemiology of superficial fungal infections. Clin Dermatol 28:197–201 http://dx.doi.org/10.1016/j.clindermatol.2009.12.005.
207. Weitzman I, Summerbell RC. 1995. The dermatophytes. Clin Microbiol Rev 8:240–259. [PubMed]
208. Dahl MV. 1993. Suppression of immunity and inflammation by products produced by dermatophytes. J Am Acad Dermatol 28:S19–S23 http://dx.doi.org/10.1016/S0190-9622(09)80303-4.
209. Blake JS, Dahl MV, Herron MJ, Nelson RD. 1991. An immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum. J Invest Dermatol 96:657–661 http://dx.doi.org/10.1111/1523-1747.ep12470582.
210. Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. 2006. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 55:1175–1185 http://dx.doi.org/10.1099/jmm.0.46632-0.
211. Molez JF. 1998. The historical question of acquired immunodeficiency syndrome in the 1960s in the Congo River basin area in relation to cryptococcal meningitis. Am J Trop Med Hyg 58:273–276. [PubMed]
212. Marrazzo JM, del Rio C, Holtgrave DR, Cohen MS, Kalichman SC, Mayer KH, Montaner JS, Wheeler DP, Grant RM, Grinsztejn B, Kumarasamy N, Shoptaw S, Walensky RP, Dabis F, Sugarman J, Benson CA, International Antiviral Society-USA Panel. 2014. HIV prevention in clinical care settings: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 312:390–409 http://dx.doi.org/10.1001/jama.2014.7999.
213. Elion R, Coleman M. 2016. The preexposure prophylaxis revolution: from clinical trials to routine practice: implementation view from the USA. Curr Opin HIV AIDS 11:67–73 http://dx.doi.org/10.1097/COH.0000000000000222.
214. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530 http://dx.doi.org/10.1097/QAD.0b013e328322ffac.
215. Springer DJ, Chaturvedi V. 2010. Projecting global occurrence of Cryptococcus gattii. Emerg Infect Dis 16:14–20 http://dx.doi.org/10.3201/eid1601.090369.
216. Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, Allen A, Stajich JE, Dietrich FS, Perfect JR, Heitman J. 2005. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:1360–1364 http://dx.doi.org/10.1038/nature04220.
217. Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. 2010. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6:e1000850 http://dx.doi.org/10.1371/journal.ppat.1000850.
218. Springer DJ, Phadke S, Billmyre B, Heitman J. 2012. Cryptococcus gattii, no longer an accidental pathogen? Curr Fungal Infect Rep 6:245–256 http://dx.doi.org/10.1007/s12281-012-0111-0.
219. Krockenberger MB, Canfield PJ, Malik R. 2002. Cryptococcus neoformans in the koala (Phascolarctos cinereus): colonization by C n. var. gattii and investigation of environmental sources. Med Mycol 40:263–272 http://dx.doi.org/10.1080/mmy.40.3.263.272.
220. Miller WG, Padhye AA, van Bonn W, Jensen E, Brandt ME, Ridgway SH. 2002. Cryptococcosis in a bottlenose dolphin (Tursiops truncatus) caused by Cryptococcus neoformans var. gattii. J Clin Microbiol 40:721–724 http://dx.doi.org/10.1128/JCM.40.2.721-724.2002.
221. Raso TF, Werther K, Miranda ET, Mendes-Giannini MJ. 2004. Cryptococcosis outbreak in psittacine birds in Brazil. Med Mycol 42:355–362 http://dx.doi.org/10.1080/13693780410001712061.
222. Santos WR, Meyer W, Wanke B, Costa SP, Trilles L, Nascimento JL, Medeiros R, Morales BP, Bezerra CC, Macêdo RC, Ferreira SO, Barbosa GG, Perez MA, Nishikawa MM, Lazéra MS. 2008. Primary endemic Cryptococcosis gattii by molecular type VGII in the state of Pará, Brazil. Mem Inst Oswaldo Cruz 103:813–818 http://dx.doi.org/10.1590/S0074-02762008000800012.
223. McGill S, Malik R, Saul N, Beetson S, Secombe C, Robertson I, Irwin P. 2009. Cryptococcosis in domestic animals in Western Australia: a retrospective study from 1995-2006. Med Mycol 47:625–639 http://dx.doi.org/10.1080/13693780802512519.
224. Speed B, Dunt D. 1995. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 21:28–34; discussion 35–26.
225. Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ. 2008. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 14:755–762 http://dx.doi.org/10.3201/eid1405.071312.
226. Choi YH, Ngamskulrungroj P, Varma A, Sionov E, Hwang SM, Carriconde F, Meyer W, Litvintseva AP, Lee WG, Shin JH, Kim EC, Lee KW, Choi TY, Lee YS, Kwon-Chung KJ. 2010. Prevalence of the VNIc genotype of Cryptococcus neoformans in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Res 10:769–778 http://dx.doi.org/10.1111/j.1567-1364.2010.00648.x.
227. Chau TT, Mai NH, Phu NH, Nghia HD, Chuong LV, Sinh DX, Duong VA, Diep PT, Campbell JI, Baker S, Hien TT, Lalloo DG, Farrar JJ, Day JN. 2010. A prospective descriptive study of cryptococcal meningitis in HIV uninfected patients in Vietnam: high prevalence of Cryptococcus neoformans var grubii in the absence of underlying disease. BMC Infect Dis 10:199 http://dx.doi.org/10.1186/1471-2334-10-199.
228. Casadevall A, Pirofski L. 2001. Host-pathogen interactions: the attributes of virulence. J Infect Dis 184:337–344 http://dx.doi.org/10.1086/322044.
229. Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, Bennett JE, Holland SM, Browne SK, Kwon-Chung KJ. 2014. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio 5:e00912-14 http://dx.doi.org/10.1128/mBio.00912-14.
230. Xu J, Vilgalys R, Mitchell TG. 2000. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol Ecol 9:1471–1481 http://dx.doi.org/10.1046/j.1365-294x.2000.01021.x.
231. Simwami SP, Khayhan K, Henk DA, Aanensen DM, Boekhout T, Hagen F, Brouwer AE, Harrison TS, Donnelly CA, Fisher MC. 2011. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog 7:e1001343 http://dx.doi.org/10.1371/journal.ppat.1001343.
232. May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. 2016. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 14:106–117 http://dx.doi.org/10.1038/nrmicro.2015.6.
233. Lin X, Hull CM, Heitman J. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:1017–1021 http://dx.doi.org/10.1038/nature03448.
234. Chen M, Zeng J, De Hoog GS, Stielow B, Gerrits Van Den Ende AH, Liao W, Lackner M. 2016. The ‘species complex’ issue in clinically relevant fungi: a case study in Scedosporium apiospermum. Fungal Biol 120:137–146 http://dx.doi.org/10.1016/j.funbio.2015.09.003.
235. Farrer RA, Desjardins CA, Sakthikumar S, Gujja S, Saif S, Zeng Q, Chen Y, Voelz K, Heitman J, May RC, Fisher MC, Cuomo CA. 2015. Genome evolution and innovation across the four major lineages of Cryptococcus gattii. MBio 6:e00868-15 http://dx.doi.org/10.1128/mBio.00868-15. [PubMed]
236. Litvintseva AP, Mitchell TG. 2012. Population genetic analyses reveal the African origin and strain variation of Cryptococcus neoformans var. grubii. PLoS Pathog 8:e1002495 http://dx.doi.org/10.1371/journal.ppat.1002495.
237. Fang W, Fa Z, Liao W. 2015. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol 78:7–15 http://dx.doi.org/10.1016/j.fgb.2014.10.017.
238. Janbon G, et al. 2014. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 10:e1004261 http://dx.doi.org/10.1371/journal.pgen.1004261.
239. Nielsen K, De Obaldia AL, Heitman J. 2007. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell 6:949–959 http://dx.doi.org/10.1128/EC.00097-07.
240. Kidd SE, Bach PJ, Hingston AO, Mak S, Chow Y, MacDougall L, Kronstad JW, Bartlett KH. 2007. Cryptococcus gattii dispersal mechanisms, British Columbia, Canada. Emerg Infect Dis 13:51–57 http://dx.doi.org/10.3201/eid1301.060823.
241. Hagen F, Ceresini PC, Polacheck I, Ma H, van Nieuwerburgh F, Gabaldón T, Kagan S, Pursall ER, Hoogveld HL, van Iersel LJ, Klau GW, Kelk SM, Stougie L, Bartlett KH, Voelz K, Pryszcz LP, Castañeda E, Lazera M, Meyer W, Deforce D, Meis JF, May RC, Klaassen CH, Boekhout T. 2013. Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS One 8:e71148 http://dx.doi.org/10.1371/journal.pone.0071148.
242. Ellis DH, Pfeiffer TJ. 1990. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol 28:1642–1644. [PubMed]
243. Fortes ST, Lazéra MS, Nishikawa MM, Macedo RC, Wanke B. 2001. First isolation of Cryptococcus neoformans var. gattii from a native jungle tree in the Brazilian Amazon rainforest. Mycoses 44:137–140 http://dx.doi.org/10.1046/j.1439-0507.2001.00651.x.
244. Kidd SE, Sorrell TC, Meyer W. 2003. Isolation of two molecular types of Cryptococcus neoformans var. gattii from insect frass. Med Mycol 41:171–176.
245. Randhawa HS, Kowshik T, Chowdhary A, Preeti Sinha K, Khan ZU, Sun S, Xu J. 2008. The expanding host tree species spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India. Med Mycol 46:823–833 http://dx.doi.org/10.1080/13693780802124026.
246. Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL, Kozel TR, Lendvai N, Mukherjee J, Pirofski LA, Rivera J, Rosas AL, Scharff MD, Valadon P, Westin K, Zhong Z. 1998. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 42:1437–1446. [PubMed]
247. O’Meara TR, Alspaugh JA. 2012. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25:387–408 http://dx.doi.org/10.1128/CMR.00001-12.
248. Wang Y, Aisen P, Casadevall A. 1995. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136. [PubMed]
249. Nosanchuk JD, Casadevall A. 2006. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50:3519–3528 http://dx.doi.org/10.1128/AAC.00545-06.
250. Perfect JR. 2006. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6:463–468 http://dx.doi.org/10.1111/j.1567-1364.2006.00051.x.
251. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6:48–59 http://dx.doi.org/10.1128/EC.00318-06.
252. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A. 2008. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7:58–67 http://dx.doi.org/10.1128/EC.00370-07.
253. Steenbergen JN, Shuman HA, Casadevall A. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98:15245–15250 http://dx.doi.org/10.1073/pnas.261418798.
254. Tucker SC, Casadevall A. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 99:3165–3170 http://dx.doi.org/10.1073/pnas.052702799.
255. Kronstad JW, Attarian R, Cadieux B, Choi J, D’Souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J. 2011. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9:193–203 http://dx.doi.org/10.1038/nrmicro2522.
256. Broxton CN, Culotta VC. 2016. SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathog 12:e1005295 http://dx.doi.org/10.1371/journal.ppat.1005295.
257. Nicola AM, Robertson EJ, Albuquerque P, Derengowski LS, Casadevall A. 2011. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. MBio 2:e00167-11 http://dx.doi.org/10.1128/mBio.00167-11.
258. Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. 2010. Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945 http://dx.doi.org/10.1371/journal.ppat.1000945.
259. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K. 2010. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6:e1000953 http://dx.doi.org/10.1371/journal.ppat.1000953.
260. Alanio A, Vernel-Pauillac F, Sturny-Leclère A, Dromer F. 2015. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy. MBio 6:e02580-14 http://dx.doi.org/10.1128/mBio.02580-14.
261. Bouklas T, Fries BC. 2015. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future Microbiol 10:191–197 http://dx.doi.org/10.2217/fmb.14.124.
262. Jain N, Cook E, Xess I, Hasan F, Fries D, Fries BC. 2009. Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. Eukaryot Cell 8:858–866 http://dx.doi.org/10.1128/EC.00017-09.
263. Chen Y, Toffaletti DL, Tenor JL, Litvintseva AP, Fang C, Mitchell TG, McDonald TR, Nielsen K, Boulware DR, Bicanic T, Perfect JR. 2014. The Cryptococcus neoformans transcriptome at the site of human meningitis. MBio 5:e01087-e13 http://dx.doi.org/10.1128/mBio.01087-13.
264. Hu G, Wang J, Choi J, Jung WH, Liu I, Litvintseva AP, Bicanic T, Aurora R, Mitchell TG, Perfect JR, Kronstad JW. 2011. Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12:526 http://dx.doi.org/10.1186/1471-2164-12-526.
265. Sionov E, Chang YC, Kwon-Chung KJ. 2013. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob Agents Chemother 57:5127–5130 http://dx.doi.org/10.1128/AAC.00694-13.
266. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135:174–188 http://dx.doi.org/10.1016/j.cell.2008.07.046.
267. Chun CD, Brown JC, Madhani HD. 2011. A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe 9:243–251 http://dx.doi.org/10.1016/j.chom.2011.02.003.
268. Dumesic PA, Homer CM, Moresco JJ, Pack LR, Shanle EK, Coyle SM, Strahl BD, Fujimori DG, Yates JR III, Madhani HD. 2015. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160:204–218 http://dx.doi.org/10.1016/j.cell.2014.11.039.
269. Derengowski LS, Paes HC, Albuquerque P, Tavares AH, Fernandes L, Silva-Pereira I, Casadevall A. 2013. The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host. Eukaryot Cell 12:761–774 http://dx.doi.org/10.1128/EC.00073-13.
270. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, Longley N, Harrison TS, Kozel TR. 2011. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis 53:1019–1023 http://dx.doi.org/10.1093/cid/cir613.
271. Butler G, et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662 http://dx.doi.org/10.1038/nature08064.
272. Browne SG. 1954. Moniliasis following antibiotic therapy. Lancet 263:393–395 http://dx.doi.org/10.1016/S0140-6736(54)90929-0.
273. Zimmerman LE. 1955. Fatal fungus infections complicating other diseases. Am J Clin Pathol 25:46–65 http://dx.doi.org/10.1093/ajcp/25.1.46.
274. Wright PW, Crutcher JE, Holiday DB. 1995. Selection of skin test antigens to evaluate PPD anergy. J Fam Pract 41:59–64. [PubMed]
275. Waight PA, Andrews NJ, Ladhani NJ, Sheppard CL, Slack MP, Miller E. 2015. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis 15:535–543 http://dx.doi.org/10.1016/S1473-3099(15)70044-7.
276. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138 http://dx.doi.org/10.1016/j.cell.2011.10.048.
277. Pérez JC, Johnson AD. 2013. Regulatory circuits that enable proliferation of the fungus Candida albicans in a mammalian host. PLoS Pathog 9:e1003780 http://dx.doi.org/10.1371/journal.ppat.1003780.
278. Pande K, Chen C, Noble SM. 2013. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet 45:1088–1091 http://dx.doi.org/10.1038/ng.2710.
279. Neville BA, d’Enfert C, Bougnoux ME. 2015. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res 15:fov081 http://dx.doi.org/10.1093/femsyr/fov081.
280. Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, Tirrell M, Tiedje J, Gilbert JA, Zaborina O, Alverdy JC. 2014. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio 5:e01361-14 http://dx.doi.org/10.1128/mBio.01361-14.
281. Shen J, Cowen LE, Griffin AM, Chan L, Köhler JR. 2008. The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation. Proc Natl Acad Sci USA 105:20918–20923 http://dx.doi.org/10.1073/pnas.0809147105.
282. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828 http://dx.doi.org/10.1371/journal.ppat.1000828.
283. Staab JF, Bradway SD, Fidel PL, Sundstrom P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538 http://dx.doi.org/10.1126/science.283.5407.1535.
284. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. 2016. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:64–68 http://dx.doi.org/10.1038/nature17625.
285. Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ, Naglik JR. 2010. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225–235 http://dx.doi.org/10.1016/j.chom.2010.08.002.
286. Almeida RS, Wilson D, Hube B. 2009. Candida albicans iron acquisition within the host. FEMS Yeast Res 9:1000–1012 http://dx.doi.org/10.1111/j.1567-1364.2009.00570.x.
287. Brown AJ, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou ER, Childers DS, Shahana S, Leach MD. 2014. Stress adaptation in a pathogenic fungus. J Exp Biol 217:144–155 http://dx.doi.org/10.1242/jeb.088930.
288. Vylkova S, Lorenz MC. 2014. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog 10:e1003995 http://dx.doi.org/10.1371/journal.ppat.1003995.
289. Seider K, Heyken A, Lüttich A, Miramón P, Hube B. 2010. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13:392–400 http://dx.doi.org/10.1016/j.mib.2010.05.001.
290. Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. 2008. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol 6:e110 http://dx.doi.org/10.1371/journal.pbio.0060110.
291. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang YM, Su CH, Bennett RJ, Wang Y, Berman J. 2013. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494:55–59 http://dx.doi.org/10.1038/nature11865.
292. Selmecki A, Forche A, Berman J. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–370 http://dx.doi.org/10.1126/science.1128242.
293. Hickman MA, Paulson C, Dudley A, Berman J. 2015. Parasexual ploidy reduction drives population heterogeneity through random and transient aneuploidy in Candida albicans. Genetics 200:781–794 http://dx.doi.org/10.1534/genetics.115.178020.
294. Perera TH, Gregory DW, Marshall D, Gow NA. 1997. Contact-sensing by hyphae of dermatophytic and saprophytic fungi. J Med Vet Mycol 35:289–293 http://dx.doi.org/10.1080/02681219780001301.
295. Bowen AD, Davidson FA, Keatch R, Gadd GM. 2007. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44:484–491 http://dx.doi.org/10.1016/j.fgb.2006.11.012.
296. Schmitt HJ, Blevins A, Sobeck K, Armstrong D. 1990. Aspergillus species from hospital air and from patients. Mycoses 33:539–541. [PubMed]
297. Latgé JP. 1999. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350. [PubMed]
298. Kothary MH, Chase T Jr, Macmillan JD. 1984. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice. Infect Immun 43:320–325. [PubMed]
299. Kwon-Chung KJ, Sugui JA. 2013. Aspergillus fumigatus: what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9:e1003743 http://dx.doi.org/10.1371/journal.ppat.1003743.
300. Heinekamp T, Thywißen A, Macheleidt J, Keller S, Valiante V, Brakhage AA. 2013. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 3:440 http://dx.doi.org/10.3389/fmicb.2012.00440.
301. Scharf DH, Heinekamp T, Brakhage AA. 2014. Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10:e1003859 http://dx.doi.org/10.1371/journal.ppat.1003859.
302. Scharf DH, Heinekamp T, Remme N, Hortschansky P, Brakhage AA, Hertweck C. 2012. Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93:467–472 http://dx.doi.org/10.1007/s00253-011-3689-1.
303. Levitz SM, Diamond RD. 1985. Mechanisms of resistance of Aspergillus fumigatus conidia to killing by neutrophils in vitro. J Infect Dis 152:33–42 http://dx.doi.org/10.1093/infdis/152.1.33.
304. Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ. 2003. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188:320–326 http://dx.doi.org/10.1086/376456.
305. Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, DeLeo FR. 2007. Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol 37:467–478 http://dx.doi.org/10.1002/eji.200636653.
306. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, Faro-Trindade I, Brown GD, Steele C. 2009. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 182:4938–4946 http://dx.doi.org/10.4049/jimmunol.0804250.
307. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121 http://dx.doi.org/10.1038/nature08264.
308. Hospenthal DR, Kwon-Chung KJ, Bennett JE. 1998. Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Med Mycol 36:165–168 http://dx.doi.org/10.1080/02681219880000241.
309. Mullins J, Harvey R, Seaton A. 1976. Sources and incidence of airborne Aspergillus fumigatus (Fres). Clin Allergy 6:209–217 http://dx.doi.org/10.1111/j.1365-2222.1976.tb01899.x.
310. Poole CJ, Wong M. 2013. Allergic bronchopulmonary aspergillosis in garden waste (compost) collectors: occupational implications. Occup Med (Lond) 63:517–519 http://dx.doi.org/10.1093/occmed/kqt097.
311. Torres HA, Rivero GA, Lewis RE, Hachem R, Raad II, Kontoyiannis DP. 2003. Aspergillosis caused by non-fumigatus Aspergillus species: risk factors and in vitro susceptibility compared with Aspergillus fumigatus. Diagn Microbiol Infect Dis 46:25–28 http://dx.doi.org/10.1016/S0732-8893(03)00013-0.
312. Nucci M, Anaissie E. 2007. Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695–704 http://dx.doi.org/10.1128/CMR.00014-07.
313. Quan C, Spellberg B. 2010. Mucormycosis, pseudallescheriasis, and other uncommon mold infections. Proc Am Thorac Soc 7:210–215 http://dx.doi.org/10.1513/pats.200906-033AL.
314. Lackner M, Hagen F, Meis JF, Gerrits van den Ende AH, Vu D, Robert V, Fritz J, Moussa TA, de Hoog GS. 2014. Susceptibility and diversity in the therapy-refractory genus scedosporium. Antimicrob Agents Chemother 58:5877–5885 http://dx.doi.org/10.1128/AAC.03211-14.
315. Ma LJ, et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373 http://dx.doi.org/10.1038/nature08850.
316. Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, Taylor JM. 2015. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol 7:1613–1627 http://dx.doi.org/10.1093/gbe/evv092.
317. Zhang Y, He J, Jia LJ, Yuan TL, Zhang D, Guo Y, Wang Y, Tang WH. 2016. Cellular tracking and gene profiling of Fusarium graminearum during maize stalk rot disease development elucidates its strategies in confronting phosphorus limitation in the host apoplast. PLoS Pathog 12:e1005485 http://dx.doi.org/10.1371/journal.ppat.1005485.
318. Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR. 2014. Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Eukaryot Cell 13:749–757 http://dx.doi.org/10.1128/EC.00004-14.
319. Chekabab SM, Harel J, Dozois CM. 2014. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 5:786–793 http://dx.doi.org/10.4161/viru.29307.
320. Liu K, Howell DN, Perfect JR, Schell WA. 1998. Morphologic criteria for the preliminary identification of Fusarium, Paecilomyces, and Acremonium species by histopathology. Am J Clin Pathol 109:45–54 http://dx.doi.org/10.1093/ajcp/109.1.45.
321. Smith RM, Schaefer MK, Kainer MA, Wise M, Finks J, Duwve J, Fontaine E, Chu A, Carothers B, Reilly A, Fiedler J, Wiese AD, Feaster C, Gibson L, Griese S, Purfield A, Cleveland AA, Benedict K, Harris JR, Brandt ME, Blau D, Jernigan J, Weber JT, Park BJ, Multistate Fungal Infection Outbreak Response Team. 2013. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med 369:1598–1609 http://dx.doi.org/10.1056/NEJMoa1213978.
322. Chagas C. 1909. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218 http://dx.doi.org/10.1590/S0074-02761909000200008.
323. Delanoë P, Delanoë M. 1912. Sur les rapports des kystes de Carini du poumon des rats avec le Trypanosoma lewisi. C R Acad Sci 155:658–661.
324. Guillot J, Demanche C, Hugot JP, Berthelemy M, Wakefield AE, Dei-Cas E, Chermette R. 2001. Parallel phylogenies of Pneumocystis species and their mammalian hosts. J Eukaryot Microbiol 48(Suppl):113s–115s http://dx.doi.org/10.1111/j.1550-7408.2001.tb00475.x.
325. Demanche C, Berthelemy M, Petit T, Polack B, Wakefield AE, Dei-Cas E, Guillot J. 2001. Phylogeny of Pneumocystis carinii from 18 primate species confirms host specificity and suggests coevolution. J Clin Microbiol 39:2126–2133 http://dx.doi.org/10.1128/JCM.39.6.2126-2133.2001.
326. Akbar H, Pinçon C, Aliouat-Denis CM, Derouiche S, Taylor ML, Pottier M, Carreto-Binaghi LH, González-González AE, Courpon A, Barriel V, Guillot J, Chabé M, Suarez-Alvarez RO, Aliouat M, Dei-Cas E, Demanche C. 2012. Characterizing Pneumocystis in the lungs of bats: understanding Pneumocystis evolution and the spread of Pneumocystis organisms in mammal populations. Appl Environ Microbiol 78:8122–8136 http://dx.doi.org/10.1128/AEM.01791-12.
327. Demanche C, Deville M, Michaux J, Barriel V, Pinçon C, Aliouat-Denis CM, Pottier M, Noël C, Viscogliosi E, Aliouat M, Dei-Cas E, Morand S, Guillot J. 2015. What do Pneumocystis organisms tell us about the phylogeography of their hosts? The case of the woodmouse Apodemus sylvaticus in continental Europe and western Mediterranean islands. PLoS One 10:e0120839 http://dx.doi.org/10.1371/journal.pone.0120839. (Erratum, 12:e0171282. doi:10.1371/journal.pone.0171282.)
328. Gigliotti F, Harmsen AG, Haidaris CG, Haidaris PJ. 1993. Pneumocystis carinii is not universally transmissible between mammalian species. Infect Immun 61:2886–2890. [PubMed]
329. Stringer JR, Stringer SL, Zhang J, Baughman R, Smulian AG, Cushion MT. 1993. Molecular genetic distinction of Pneumocystis carinii from rats and humans. J Eukaryot Microbiol 40:733–741 http://dx.doi.org/10.1111/j.1550-7408.1993.tb04468.x.
330. Frenkel JK. 1999. Pneumocystis pneumonia, an immunodeficiency-dependent disease (IDD): a critical historical overview. J Eukaryot Microbiol 46:89S–92S. [PubMed]
331. Stringer JR, Beard CB, Miller RF, Wakefield AE. 2002. A new name for Pneumocystis from humans and new perspectives on the host-pathogen relationship. Emerg Infect Dis 8:891–896 http://dx.doi.org/10.3201/eid0809.020096.
332. Burke BA, Good RA. 1973. Pneumocystis carinii infection. Medicine (Baltimore) 52:23–51 http://dx.doi.org/10.1097/00005792-197301000-00002.
333. Post C, Dutz W, Nasarian I. 1964. Endemic Pneumocystis carinii pneumonia in South Iran. Arch Dis Child 39:35–40 http://dx.doi.org/10.1136/adc.39.203.35.
334. Centers for Disease Control (CDC). 1981. Pneumocystis pneumonia: Los Angeles. MMWR Morb Mortal Wkly Rep 30:250–252. [PubMed]
335. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13 http://dx.doi.org/10.1126/scitranslmed.3004404.
336. Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML. 1988. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334:519–522 http://dx.doi.org/10.1038/334519a0.
337. Aliouat-Denis CM, Chabé M, Demanche C, Aliouat M, Viscogliosi E, Guillot J, Delhaes L, Dei-Cas E. 2008. Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol 8:708–726 http://dx.doi.org/10.1016/j.meegid.2008.05.001.
338. Millard PR, Wakefield AE, Hopkin JM. 1990. A sequential ultrastructural study of rat lungs infected with Pneumocystis carinii to investigate the appearances of the organism, its relationships and its effects on pneumocytes. Int J Exp Pathol 71:895–904. [PubMed]
339. Martinez A, Aliouat M, Standaert-Vitse A, Werkmeister E, Pottier M, Pinçon C, Dei-Cas E, Aliouat-Denis CM. 2011. Ploidy of cell-sorted trophic and cystic forms of Pneumocystis carinii. PLoS One 6:e20935 http://dx.doi.org/10.1371/journal.pone.0020935.
340. Almeida JM, Cissé OH, Fonseca Á, Pagni M, Hauser PM. 2015. Comparative genomics suggests primary homothallism of Pneumocystis species. MBio 6:e02250-14 http://dx.doi.org/10.1128/mBio.02250-14.
341. Roach KC, Feretzaki M, Sun S, Heitman J. 2014. Unisexual reproduction. Adv Genet 85:255–305 http://dx.doi.org/10.1016/B978-0-12-800271-1.00005-6.
342. Ma L, Chen Z, Huang da W, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. 2016. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740. doi:10.1038/ncomms10740.
343. Rivero L, de la Horra C, Montes-Cano MA, Rodríguez-Herrera A, Respaldiza N, Friaza V, Morilla R, Gutiérrez S, Varela JM, Medrano FJ, Calderón EJ. 2008. Pneumocystis jirovecii transmission from immunocompetent carriers to infant. Emerg Infect Dis 14:1116–1118 http://dx.doi.org/10.3201/eid1407.071431.
344. Pifer LL, Hughes WT, Stagno S, Woods D. 1978. Pneumocystis carinii infection: evidence for high prevalence in normal and immunosuppressed children. Pediatrics 61:35–41. [PubMed]
345. Larsen HH, von Linstow ML, Lundgren B, Høgh B, Westh H, Lundgren JD. 2007. Primary pneumocystis infection in infants hospitalized with acute respiratory tract infection. Emerg Infect Dis 13:66–72 http://dx.doi.org/10.3201/eid1301.060315.
346. Morris A, Norris KA. 2012. Colonization by Pneumocystis jirovecii and its role in disease. Clin Microbiol Rev 25:297–317 http://dx.doi.org/10.1128/CMR.00013-12.
347. Ponce CA, Gallo M, Bustamante R, Vargas SL. 2010. Pneumocystis colonization is highly prevalent in the autopsied lungs of the general population. Clin Infect Dis 50:347–353 http://dx.doi.org/10.1086/649868.
348. Vestereng VH, Bishop LR, Hernandez B, Kutty G, Larsen HH, Kovacs JA. 2004. Quantitative real-time polymerase chain-reaction assay allows characterization of pneumocystis infection in immunocompetent mice. J Infect Dis 189:1540–1544 http://dx.doi.org/10.1086/382486.
349. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). 2011. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40 http://dx.doi.org/10.1016/S0140-6736(11)60679-X.
350. Beran D, Ewen M, Laing R. 2016. Constraints and challenges in access to insulin: a global perspective. Lancet Diabetes Endocrinol 4:275–285 http://dx.doi.org/10.1016/S2213-8587(15)00521-5.
351. Tuomilehto J. 2013. The emerging global epidemic of type 1 diabetes. Curr Diab Rep 13:795–804 http://dx.doi.org/10.1007/s11892-013-0433-5.
352. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, Sein M, Sein T, Chiou CC, Chu JH, Kontoyiannis DP, Walsh TJ. 2005. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41:634–653 http://dx.doi.org/10.1086/432579. [PubMed]
353. Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, Lass-Florl C, Bouza E, Klimko N, Gaustad P, Richardson M, Hamal P, Akova M, Meis JF, Rodriguez-Tudela JL, Roilides E, Mitrousia-Ziouva A, Petrikkos G, European Confederation of Medical Mycology Working Group on Zygomycosis. 2011. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect 17:1859–1867 http://dx.doi.org/10.1111/j.1469-0691.2010.03456.x.
354. Marty FM, Ostrosky-Zeichner L, Cornely OA, Mullane KM, Perfect JR, Thompson GR III, Alangaden GJ, Brown JM, Fredricks DN, Heinz WJ, Herbrecht R, Klimko N, Klyasova G, Maertens JA, Melinkeri SR, Oren I, Pappas PG, Ráčil Z, Rahav G, Santos R, Schwartz S, Vehreschild JJ, Young JA, Chetchotisakd P, Jaruratanasirikul S, Kanj SS, Engelhardt M, Kaufhold A, Ito M, Lee M, Sasse C, Maher RM, Zeiher B, Vehreschild MJ, VITAL and FungiScope Mucormycosis Investigators. 2016. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis 16:828–837 http://dx.doi.org/10.1016/S1473-3099(16)00071-2.
355. Bartnicki-Garcia S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108 http://dx.doi.org/10.1146/annurev.mi.22.100168.000511.
356. Dijksterhuis J, Samson RA. 2006. Zygomycetes, p 415–436. In Blackburn C de W (ed), Food Spoilage Microorganisms. CRC Press, Boca Raton, FL.
357. Dizbay M, Adisen E, Kustimur S, Sari N, Cengiz B, Yalcin B, Kalkanci A, Gonul II, Sugita T. 2009. Fungemia and cutaneous zygomycosis due to Mucor circinelloides in an intensive care unit patient: case report and review of literature. Jpn J Infect Dis 62:146–148. [PubMed]
358. Khan ZU, Ahmad S, Brazda A, Chandy R. 2009. Mucor circinelloides as a cause of invasive maxillofacial zygomycosis: an emerging dimorphic pathogen with reduced susceptibility to posaconazole. J Clin Microbiol 47:1244–1248 http://dx.doi.org/10.1128/JCM.02030-08.
359. Lee SC, Li A, Calo S, Heitman J. 2013. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 9:e1003625 http://dx.doi.org/10.1371/journal.ppat.1003625.
360. Kaerger K, Schwartze VU, Dolatabadi S, Nyilasi I, Kovács SA, Binder U, Papp T, Hoog S, Jacobsen ID, Voigt K. 2015. Adaptation to thermotolerance in Rhizopus coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility. Virulence 6:395–403 http://dx.doi.org/10.1080/21505594.2015.1029219.
361. Partida-Martinez LP, Hertweck C. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888 http://dx.doi.org/10.1038/nature03997.
362. Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C. 2007. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17:773–777 http://dx.doi.org/10.1016/j.cub.2007.03.039.
363. Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. 2014. Active invasion of bacteria into living fungal cells. eLife 3:e03007 http://dx.doi.org/10.7554/eLife.03007.
364. Ibrahim AS, Gebremariam T, Liu M, Chamilos G, Kontoyiannis D, Mink R, Kwon-Chung KJ, Fu Y, Skory CD, Edwards JE Jr, Spellberg B. 2008. Bacterial endosymbiosis is widely present among zygomycetes but does not contribute to the pathogenesis of mucormycosis. J Infect Dis 198:1083–1090 http://dx.doi.org/10.1086/591461.
365. Kaplan S, Hanauske AR, Pavlidis N, Bruntsch U, te Velde A, Wanders J, Heinrich B, Verweij J. 1996. Single agent activity of rhizoxin in non-small-cell lung cancer: a phase II trial of the EORTC Early Clinical Trials Group. Br J Cancer 73:403–405 http://dx.doi.org/10.1038/bjc.1996.70.
366. Spellberg B, Edwards J Jr, Ibrahim A. 2005. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 18:556–569 http://dx.doi.org/10.1128/CMR.18.3.556-569.2005.
367. Fu Y, Lee H, Collins M, Tsai HF, Spellberg B, Edwards JE Jr, Kwon-Chung KJ, Ibrahim AS. 2004. Cloning and functional characterization of the Rhizopus oryzae high affinity iron permease (rFTR1) gene. FEMS Microbiol Lett 235:169–176.
368. Ibrahim AS, Spellberg B, Edwards J Jr. 2008. Iron acquisition: a novel perspective on mucormycosis pathogenesis and treatment. Curr Opin Infect Dis 21:620–625 http://dx.doi.org/10.1097/QCO.0b013e3283165fd1.
369. Spellberg B, Andes D, Perez M, Anglim A, Bonilla H, Mathisen GE, Walsh TJ, Ibrahim AS. 2009. Safety and outcomes of open-label deferasirox iron chelation therapy for mucormycosis. Antimicrob Agents Chemother 53:3122–3125 http://dx.doi.org/10.1128/AAC.00361-09.
370. Ibrahim AS, Gebremariam T, Lin L, Luo G, Husseiny MI, Skory CD, Fu Y, French SW, Edwards JE Jr, Spellberg B. 2010. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol Microbiol 77:587–604 http://dx.doi.org/10.1111/j.1365-2958.2010.07234.x. [PubMed]
371. Ibrahim AS. 2011. Host cell invasion in mucormycosis: role of iron. Curr Opin Microbiol 14:406–411 http://dx.doi.org/10.1016/j.mib.2011.07.004.
372. Schwartze VU, Winter S, Shelest E, Marcet-Houben M, Horn F, Wehner S, Linde J, Valiante V, Sammeth M, Riege K, Nowrousian M, Kaerger K, Jacobsen ID, Marz M, Brakhage AA, Gabaldón T, Böcker S, Voigt K. 2014. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina). PLoS Genet 10:e1004496 http://dx.doi.org/10.1371/journal.pgen.1004496. (Erratum, 10:e1004496. doi:10.1371/journal.pgen.1004496.)
373. WHO. 2015. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. WHO, Geneva, Switzerland.
374. Dutta A, Barker C, Kallarakal A. 2015. The HIV treatment gap: estimates of the financial resources needed versus available for scale-up of antiretroviral therapy in 97 countries from 2015 to 2020. PLoS Med 12:e1001907; discussion e1001907. doi:10.1371/journal.pmed.1001907.
microbiolspec.FUNK-0014-2016.citations
cm/5/3
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0014-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0014-2016
2017-06-09
2017-12-16

Abstract:

Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as and ; the spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients—, , and spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Clusters of cells in brochoalveolar lavage fluid of an 8-year-old boy, post-lung transplant. Gomori methenamine silver (GMS) stain. Scale bar, 20 μm. Chest film of a 17-year-old boy living with HIV, with pneumonia due to . Biopsy of skin nodule of a 9-year-old boy with aplastic anemia, containing numerous yeasts. GMS stain. Posterior-anterior chest film (D) and axial computed tomography scan (E) of a 16-year-old previously healthy girl with cavitating cryptococcal pneumonia. sp. hyphae in bowel wall of an adolescent boy, post-liver transplant. GMS stain. Scale bar, 20 μm. in maxillary sinusitis and osteomyelitis of a young man, post-intestinal transplant. In the human host, aspergilli produce conidiophores (prominently visible in the image on the right) only in air-filled spaces. GMS stain. Scale bars, 20 μm. in bronchoalveolar lavage fluid of a 3-week-old neonate with adenosine deaminase deficiency. Scale bar, 20 μm. (All micrographs: Dr. Harry P. W. Kozakewich, Department of Pathology, Boston Children’s Hospital; Radiographs: Department of Radiology, Boston Children’s Hospital.)

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0014-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error