1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Nematode-Trapping Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Xiangzhi Jiang1, Meichun Xiang2, Xingzhong Liu3
  • Editors: Joseph Heitman4, Pedro W. Crous5, Timothy Y. James6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; 2: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; 3: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; 4: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 5: CBS-KNAW Fungal Diversity Centre, Royal Dutch Academy of Arts and Sciences, Utrecht, The Netherlands; 6: Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
  • Source: microbiolspec January 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0022-2016
  • Received 07 July 2016 Accepted 17 November 2016 Published 27 January 2017
  • Xingzhong Liu, Liuxz@im.ac.cn
image of Nematode-Trapping Fungi
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Nematode-Trapping Fungi, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0022-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/1/FUNK-0022-2016-2.gif
  • Abstract:

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  • Citation: Jiang X, Xiang M, Liu X. 2017. Nematode-Trapping Fungi. Microbiol Spectrum 5(1):FUNK-0022-2016. doi:10.1128/microbiolspec.FUNK-0022-2016.

Key Concept Ranking

Fungal Signal Transduction
0.44609714
Cell Wall Proteins
0.4311557
0.44609714

References

1. Nordbring-Hertz B, Jansson HB, Tunlid A. 2006. Nematophagous Fungi. Wiley Blackwell, Hoboken, NJ.
2. Zhang Y, Li G, Zhang K. 2011. A review on the research of nematophagous fungal species. Mycosystema 30:836–845.
3. Siddiqui ZA, Mahmood I. 1996. Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol 58:229–239. http://dx.doi.org/10.1016/S0960-8524(96)00122-8
4. Jatala P. 1986. Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24:453–489. http://dx.doi.org/10.1146/annurev.py.24.090186.002321
5. Zhang L, Zhou Z, Guo Q, Fokkens L, Miskei M, Pócsi I, Zhang W, Chen M, Wang L, Sun Y, Donzelli BG, Gibson DM, Nelson DR, Luo JG, Rep M, Liu H, Yang S, Wang J, Krasnoff SB, Xu Y, Molnár I, Lin M. 2016. Insights into adaptations to a near-obligate nematode endoparasitic lifestyle from the finished genome of Drechmeria coniospora. Sci Rep 6:23122. http://dx.doi.org/10.1038/srep23122
6. Mankau R. 1980. Biocontrol: fungi as nematode control agents. J Nematol 12:244–252. [PubMed]
7. Swe A, Jeewon R, Pointing SB, Hyde KD. 2009. Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. Biodivers Conserv 18:1695–1714. http://dx.doi.org/10.1007/s10531-008-9553-7
8. Hyde KD, Swe A, Zhang KQ. 2014. Nematode-trapping fungi, p 1–12. In Zhang KQ, Hyde KD (ed), Nematode-Trapping Fungi. Springer, Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-017-8730-7_1
9. Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J. 2015. Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 31:371–378.
10. Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci USA 109:10960–10965. http://dx.doi.org/10.1073/pnas.1120915109
11. Yang Y, Yang E, An Z, Liu XZ. 2007. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci USA 104:8379–8384. [PubMed]
12. Ahrén D, Tunlid A. 2003. Evolution of parasitism in nematode-trapping fungi. J Nematol 35:194–197. [PubMed]
13. Hao Y, Mo M, Su H, Zhang KQ. 2005. Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquat Microb Ecol 40:175–181. http://dx.doi.org/10.3354/ame040175
14. Jaffee B, Strong D. 2005. Strong bottom-up and weak top-down effects in soil: nematode-parasitized insects and nematode-trapping fungi. Soil Biol Biochem 37:1011–1021. http://dx.doi.org/10.1016/j.soilbio.2004.05.026
15. Gray N. 1983. Ecology of nematophagous fungi: distribution and habitat. Ann Appl Biol 102:501–509. http://dx.doi.org/10.1111/j.1744-7348.1983.tb02721.x
16. Li L, Ma M, Liu Y, Zhou J, Qu Q, Lu K, Fu D, Zhang K. 2011. Induction of trap formation in nematode-trapping fungi by a bacterium. FEMS Microbiol Lett 322:157–165. http://dx.doi.org/10.1111/j.1574-6968.2011.02351.x [PubMed]
17. Zhang Y, Zhang KQ, Hyde KD. 2014. The ecology of nematophagous fungi in natural environments, p 211–230. In Zhang KQ, Hyde KD (ed), Nematode-Trapping Fungi. Springer, Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-017-8730-7_4
18. Pramer D. 1964. Nematode-trapping fungi. Science 144:382–388. http://dx.doi.org/10.1126/science.144.3617.382
19. Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed. CAB International, Wallingford, UK.
20. Li Y, Jeewon R, Hyde KD, Mo MH, Zhang KQ. 2006. Two new species of nematode-trapping fungi: relationships inferred from morphology, rDNA and protein gene sequence analyses. Mycol Res 110:790–800. http://dx.doi.org/10.1016/j.mycres.2006.04.011
21. Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang K. 2005. Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046. http://dx.doi.org/10.3852/mycologia.97.5.1034
22. Ahrén D, Ursing BM, Tunlid A. 1998. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 158:179–184. http://dx.doi.org/10.1016/S0378-1097(97)00519-3 [PubMed]
23. Liou GY, Tzean SS. 1997. Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89:876–884. http://dx.doi.org/10.2307/3761108
24. Norvell LL. 2011. Fungal nomenclature. 1. Melbourne approves a new Code. Mycotaxon 116:481–490. http://dx.doi.org/10.5248/116.481
25. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ. 2011. The Amsterdam declaration on fungal nomenclature. Mycotaxon 116:491–500. http://dx.doi.org/10.5598/imafungus.2011.02.01.14 [PubMed]
26. Jaffee BA. 2004. Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275. [PubMed]
27. Gomes AP, Vasconcellos RS, Ramos ML, Guimarães MP, Yatsuda AP, Vieira-Bressan MC. 2001. In vitro interaction of Brazilian strains of the nematode-trapping fungi Arthrobotrys spp. on Panagrellus sp. and Cooperia punctata. Mem Inst Oswaldo Cruz 96:861–864. http://dx.doi.org/10.1590/S0074-02762001000600021
28. Fernández AS, Larsen M, Wolstrup J, Grønvold J, Nansen P, Bjørn H. 1999. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures. Parasitol Res 85:661–668. http://dx.doi.org/10.1007/s004360050611
29. Jaffee BA, Ferris H, Scow KM. 1998. Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 88:344–350. http://dx.doi.org/10.1094/PHYTO.1998.88.4.344 [PubMed]
30. Mitsui Y. 1985. Distribution and ecology of nematode-trapping fungi in Japan. Jpn Agric Res Q 18:182–193.
31. Cooke RC. 1962. The ecology of nematode-trapping fungi in the soil. Ann Appl Biol 50:507–513. http://dx.doi.org/10.1111/j.1744-7348.1962.tb06045.x
32. Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95. http://dx.doi.org/10.1146/annurev-phyto-080614-120336
33. Liu K, Zhang W, Lai Y, Xiang M, Wang X, Zhang X, Liu X. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 15:114. http://dx.doi.org/10.1186/1471-2164-15-114
34. Andersson KM, Kumar D, Bentzer J, Friman E, Ahrén D, Tunlid A. 2014. Interspecific and host-related gene expression patterns in nematode-trapping fungi. BMC Genomics 15:968. http://dx.doi.org/10.1186/1471-2164-15-968 [PubMed]
35. Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahrén D. 2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet 9:e1003909. http://dx.doi.org/10.1371/journal.pgen.1003909 [PubMed]
36. Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ. 2011. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:e1002179. http://dx.doi.org/10.1371/journal.ppat.1002179
37. Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23:83–86. http://dx.doi.org/10.1016/j.cub.2012.11.035 [PubMed]
38. Zhao X, Wang Y, Zhao Y, Huang Y, Zhang KQ, Yang J. 2014. Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Appl Microbiol Biotechnol 98:2555–2563. http://dx.doi.org/10.1007/s00253-013-5432-6 [PubMed]
39. Liang L, Wu H, Liu Z, Shen R, Gao H, Yang J, Zhang K. 2013. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 97:8683–8692. http://dx.doi.org/10.1007/s00253-013-5178-1 [PubMed]
40. Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y, Zhang KQ. 2014. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 5:5776. http://dx.doi.org/10.1038/ncomms6776
41. Lalošević V, Jarak M, Hristov N. 2012. Nematode-trapping fungi. International Conference on BioScience: Biotechnology and Biodiversity: Step in the Future. 4th Joint UNS-PSU Conf, Novi Sad, Serbia, 18–20 June 2012. Book of Proceedings. [PubMed]
42. Pramer D. 1964. Nematode-trapping fungi: an intriguing group of carnivorous plants inhabit the microbial world. Science 144:382–388. http://dx.doi.org/10.1126/science.144.3617.382
43. Kumar TK, Healy R, Spatafora JW, Blackwell M, McLaughlin DJ. 2012. Orbilia ultrastructure, character evolution and phylogeny of Pezizomycotina. Mycologia 104:462–476. http://dx.doi.org/10.3852/11-213
44. Luo J, Qiu H, Cai G, Wagner NE, Bhattacharya D, Zhang N. 2015. Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales. Sci Rep 5:9448. http://dx.doi.org/10.1038/srep09448
45. Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL. 2006. A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028. http://dx.doi.org/10.3852/mycologia.98.6.1018
46. Zhang Y, Yu ZF, Baral H, Qiao M, Zhang KQ. 2007. Pseudorbilia gen. nov.(Orbiliaceae) from Yunnan, China. Fungal Divers 26:305–312.
47. Eriksson O, Baral H, Currah R, Hansen K, Kurtzman C, Ramblod G, Laessøe T. 2003. Notes on ascomycete systematics Nos 3580-3623. Myconet 9:91–103.
48. Baral HO. 1994. Comments on “Outline of the ascomycetes-1993”. Systema Ascomycetum 13:113–128.
49. Yu ZF, Qiao M, Zhang Y, Qin L, Zhang KQ. 2011. Pseudotripoconidium, a new anamorph genus connected to Orbilia. Mycologia 103:164–173. http://dx.doi.org/10.3852/10-102 [PubMed]
50. Pfister DH. 1994. Orbilia fimicola, a nematophagous discomycete and its Arthrobotrys anamorph. Mycologia 1:451–453. http://dx.doi.org/10.2307/3760578
51. Tzean S, Liou J. 1993. Nematophagous resupinate basidiomycetous fungi. Phytopathology 83:1015–1020. http://dx.doi.org/10.1094/Phyto-83-1015
52. Zhang KQ, Liu XZ, Li TF. 2001. Biology of Nematophagous Fungi. Chinese Scientific & Technological Publication, Beijing, China.
53. Luo H, Mo M, Huang X, Li X, Zhang K. 2004. Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 96:1218–1224. http://dx.doi.org/10.2307/3762137
54. Luo H, Liu Y, Fang L, Li X, Tang N, Zhang K. 2007. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl Environ Microbiol 73:3916–3923. http://dx.doi.org/10.1128/AEM.02770-06
55. Morikawa C, Saikawa M, Barron GL. 1993. Fungal predators of rotifers: a comparative study of Zoophagus, Lecophagus and Cephaliophora. Mycol Res 97:421–428. http://dx.doi.org/10.1016/S0953-7562(09)80129-9
56. Saikawa M, Yamaguchi K, Morikawa C. 1988. Capture of rotifers by Acaulopage pectospora, and further evidence of its similarity to Zoophagus insidians. Mycologia 80:880–884. http://dx.doi.org/10.2307/3807574
57. Barron G, Dierkes Y. 1977. Nematophagous fungi: Hohenbuehelia, the perfect state of Nematoctonus. Can J Bot 55:3054–3062. http://dx.doi.org/10.1139/b77-345
58. Drechsler C. 1941. Four hyphomycetes destructive to nematodes and rhizopods. Mycologia 33:248–269. http://dx.doi.org/10.2307/3754760
59. Luo H, Li X, Li G, Pan Y, Zhang K. 2006. Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl Environ Microbiol 72:2982–2987. http://dx.doi.org/10.1128/AEM.72.4.2982-2987.2006
60. Rubner A. 1996. Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud Mycol 39:1–134.
61. Ahrén D, Ursing BM, Tunlid A. 1998. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 158:179–184. http://dx.doi.org/10.1016/S0378-1097(97)00519-3 [PubMed]
62. Pfister DH. 1997. Castor, Pollux and life histories of fungi. Mycologia 89:1–23. http://dx.doi.org/10.2307/3761168
63. Liu B, Liu XZ, Zhuang WY. 2005. Orbilia querci sp. nov. and its knob-forming nematophagous anamorph. FEMS Microbiol Lett 245:99–105. http://dx.doi.org/10.1016/j.femsle.2005.02.027 [PubMed]
64. Chen J, Xu LL, Liu B, Liu XZ. 2007. Taxonomy of Dactylella complex and Vermispora. I. Generic concepts based on morphology and ITS sequences data. Fungal Divers 26:73–83.
65. Henriksen SA, Larsen M, Grønvold J, Nansen P, Wolstrup J. 1997. Nematode-trapping fungi in biological control of Dictyocaulus viviparus. Acta Vet Scand 38:175–179. [PubMed]
66. Grønvold J, Wolstrup J, Nansen P, Henriksen SA, Larsen M, Bresciani J. 1993. Biological control of nematode parasites in cattle with nematode-trapping fungi: a survey of Danish studies. Vet Parasitol 48:311–325. http://dx.doi.org/10.1016/0304-4017(93)90165-J [PubMed]
67. Grønvold J, Wolstrup J, Nansen P, Henriksen SA. 1993. Nematode-trapping fungi against parasitic cattle nematodes. Parasitol Today 9:137–140. http://dx.doi.org/10.1016/0169-4758(93)90179-J [PubMed]
68. Tosi S, Casado B, Gerdol R, Caretta G. 2002. Fungi isolated from Antarctic mosses. Polar Biol 25:262–268.
69. Gray N, Lewis Smith RI. 1984. The distribution of nematophagous fungi in the maritime Antarctic. Mycopathologia 85:81–92. http://dx.doi.org/10.1007/BF00436707
70. Gray N, Wyborn C, Smith R. 1982. Nematophagous fungi from the maritime Antarctic. Oikos 38:194–201. http://dx.doi.org/10.2307/3544019
71. Gray N. 1985. Ecology of nematophagous fungi: effect of soil moisture, organic matter, pH and nematode density on distribution. Soil Biol Biochem 17:499–507. http://dx.doi.org/10.1016/0038-0717(85)90017-3
72. Gray N. 1987. Nematophagous fungi with particular reference to their ecology. Biol Rev Camb Philos Soc 62:245–304. http://dx.doi.org/10.1111/j.1469-185X.1987.tb00665.x
73. Gray N. 1988. Ecology of nematophagous fungi: effect of the soil nutrients N, P and K, and seven major metals on distribution. Plant Soil 108:286–290. http://dx.doi.org/10.1007/BF02375661
74. Burges N, Raw F. 1967. Soil Biology. Academic Press, London, United Kingdom.
75. Mo MH, Chen WM, Yang HR, Zhang KQ. 2008. Diversity and metal tolerance of nematode-trapping fungi in Pb-polluted soils. J Microbiol 46:16–22. http://dx.doi.org/10.1007/s12275-007-0174-8 [PubMed]
76. McSorley R, Wang K, Kokalis-Burelle N, Church G. 2006. Effects of soil type and steam on nematode biological control potential of the rhizosphere community. Nematropica 36:197–214.
77. Mankau R, McKenry M. 1976. Spatial-distribution of nematophagous fungi associated with Meloidogyne incognita on peach. Abstracts of Papers Presented at the Fifteenth Annual Meeting of the Society of Nematologists, Daytona Beach, Florida, 15-19 August 1976. J Nematol 8:294–295.
78. Jansson HB, Lopez-Llorca L. 2001. Biology of nematophagous fungi, p 145–173. In Misra JK, Horn BW (ed), Mycology: Trichomycetes, Other Fungal Groups and Mushrooms. Science Publishers, Enfield, CT. [PubMed]
79. Gray N, Bailey F. 1985. Ecology of nematophagous fungi: vertical distribution in a deciduous woodland. Plant Soil 86:217–223. http://dx.doi.org/10.1007/BF02182896
80. Peterson E, Katznelson H. 1964. Occurrence of nematode-trapping fungi in the rhizosphere. Nature 204:1111–1112. http://dx.doi.org/10.1038/2041111b0
81. Persson C, Olsson S, Jansson H. 2000. Growth of Arthrobotrys superba from a birch wood resource base into soil determined by radioactive tracing. FEMS Microbiol Ecol 31:47–51. http://dx.doi.org/10.1111/j.1574-6941.2000.tb00670.x [PubMed]
82. Oka Y. 2010. Mechanisms of nematode suppression by organic soil amendments: a review. Appl Soil Ecol 44:101–115. http://dx.doi.org/10.1016/j.apsoil.2009.11.003
83. Jaffee BA. 2004. Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275. [PubMed]
84. Akhtar M, Malik A. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47. http://dx.doi.org/10.1016/S0960-8524(99)00154-6
85. Xu LL, Lai YL, Wang L, Liu XZ. 2011. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biol 115:97–101. http://dx.doi.org/10.1016/j.funbio.2010.10.006 [PubMed]
86. Robinson AF, Jaffee BA. 1996. Repulsion of Meloidogyne incognita by alginate pellets containing hyphae of Monacrosporium cionopagum, M. ellipsosporum, or Hirsutella rhossiliensis. J Nematol 28:133–147.
87. Bordallo J, Lopez-Llorca L, Jansson HB, Salinas J, Persmark L, Asensio L. 2002. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499. http://dx.doi.org/10.1046/j.1469-8137.2002.00399.x
88. Kerry BR. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441. http://dx.doi.org/10.1146/annurev.phyto.38.1.423 [CrossRef]
89. Barron GL. 2003. Predatory fungi, wood decay, and the carbon cycle. Biodiversity 4:3–9. http://dx.doi.org/10.1080/14888386.2003.9712621
90. Morton OC, Hirsch PR, Kerry BR. 2004. Infection of plant-parasitic nematodes by nematophagous fungi: a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170. http://dx.doi.org/10.1163/1568541041218004
91. Davies KG. 2005. Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78. http://dx.doi.org/10.1016/S0065-2164(05)57002-3 [PubMed]
92. Jansson HB, Nordbring-Hertz B. 1980. Interactions between nematophagous fungi and plant-parasitic nematodes: attraction, induction of trap formation and capture. Nematologica 26:383–389. http://dx.doi.org/10.1163/187529280X00323
93. Nordbring-Hertz B. 1973. Peptide-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol Plant 29:223–233. http://dx.doi.org/10.1111/j.1399-3054.1973.tb03097.x
94. Nordbring-Hertz B. 1977. Nematode-induced morphogenesis in the predacious fungus Arthrobotrys oligospora. Nematologica 23:443–451. http://dx.doi.org/10.1163/187529277X00372
95. Borrebaeck CA, Mattiasson B, Nordbring-Hertz B. 1984. Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J Bacteriol 159:53–56. [PubMed]
96. Rosenzweig WD, Ackroyd D. 1983. Binding characteristics of lectins involved in the trapping of nematodes by fungi. Appl Environ Microbiol 46:1093–1096. [PubMed]
97. Nordbring-Hertz B, Mattiasson B. 1979. Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature 281:477–479. http://dx.doi.org/10.1038/281477a0
98. Nordbring-Hertz B, Chet I. 1986. Fungal lectins and agglutinins, p 393–408. In Mirelman D (ed), Microbial Lectins and Agglutinins: Properties and Biological Activity. Wiley, New York, NY.
99. Balogh J, Tunlid A, Rosén S. 2003. Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39:128–135. http://dx.doi.org/10.1016/S1087-1845(03)00023-9
100. Veenhuis M, Nordbring-Hertz B, Harder W. 1985. Development and fate of electron-dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek 51:399–407. http://dx.doi.org/10.1007/BF02275044
101. Veenhuis M, Van Wijk C, Wyss U, Nordbring-Hertz B, Harder W. 1989. Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Antonie van Leeuwenhoek 56:251–261. http://dx.doi.org/10.1007/BF00418937
102. Tunlid A, Johansson T, Nordbring-Hertz B. 1991. Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 137:1231–1240. [PubMed]
103. Veenhuis M, Nordbring-Hertz B, Harder W. 1985. An electron-microscopical analysis of capture and initial stages of penetration of nematodes by Arthrobotrys oligospora. Antonie van Leeuwenhoek 51:385–398. http://dx.doi.org/10.1007/BF02275043
104. Tunlid A, Rosén S, Ek B, Rask L. 1994. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology 140:1687–1695. http://dx.doi.org/10.1099/13500872-140-7-1687 [PubMed]
105. Schenck S, Chase T, Rosenzweig WD, Pramer D. 1980. Collagenase production by nematode-trapping fungi. Appl Environ Microbiol 40:567–570. [PubMed]
106. Tunlid A, Jansson S. 1991. Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 57:2868–2872. [PubMed]
107. Wang RB, Yang JK, Lin C, Zhang Y, Zhang KQ. 2006. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Lett Appl Microbiol 42:589–594. [PubMed]
108. Yang J, Tian B, Liang L, Zhang KQ. 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31. http://dx.doi.org/10.1007/s00253-007-0881-4
109. Persson C, Jansson HB. 1999. Rhizosphere colonization and control of Meloidogyne spp. by nematode-trapping fungi. J Nematol 31:164–171. [PubMed]
110. Barker KR, Koenning SR. 1998. Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205. http://dx.doi.org/10.1146/annurev.phyto.36.1.165 [PubMed]
111. Mittal N, Saxena G, Mukerji K. 1999. Biological control of root-knot nematode by nematode-destroying fungi, p 163–171. In Singh J, Aneja KR (ed), From Ethnomycology to Fungal Biotechnology. Springer US, New York, NY. http://dx.doi.org/10.1007/978-1-4615-4815-7_15
112. Kerry B. 1997. Biological control of nematodes: prospects and opportunities, p 79–92. In Maqbool MA, Kerry B (ed), Plant Nematode Problems and their Control in the Near East Region. FAO Plant Production and Protection Paper 144. Food and Agriculture Organization of the United Nations, Rome, Italy.
113. Burge M. 1988. Fungi in Biological Control Systems. Manchester University Press, Manchester, United Kingdom.
114. Tunlid A, Talbot NJ. 2002. Genomics of parasitic and symbiotic fungi. Curr Opin Microbiol 5:513–519. http://dx.doi.org/10.1016/S1369-5274(02)00355-7
115. Andersson K-M, Meerupati T, Levander F, Friman E, Ahrén D, Tunlid A. 2013. Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 79:4993–5004. http://dx.doi.org/10.1128/AEM.01390-13 [PubMed]
116. Scholler M, Hagedorn G, Rubner A. 1999. A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113.
microbiolspec.FUNK-0022-2016.citations
cm/5/1
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0022-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0022-2016
2017-01-27
2017-09-23

Abstract:

Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structures of traps in nematode-trapping fungi. Adhesive networks of . Bar, 20 μm. Constricting rings of . Bar, 20 μm. Adhesive knobs and nonconstricting rings of . Bar, 20 μm. Nematode trapped by . Bar, 40 μm. Adhesive columns of . Bar, 20 μm.

Source: microbiolspec January 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0022-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogeny of carnivorous Orbiliomycetes constructed by RAxML using five protein-coding genes. The bootstrap supports are marked on the branch. Trapping devices are drawn on the left.

Source: microbiolspec January 2017 vol. 5 no. 1 doi:10.1128/microbiolspec.FUNK-0022-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error