1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Helen N. Fones1, Matthew C. Fisher2, Sarah J. Gurr3
  • Editors: Joseph Heitman6, Barbara J. Howlett7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom; 2: Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, St Mary’s Hospital, London W2 1PG, United Kingdom; 3: Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom; 4: University of Utrecht, 3584 CH, Utrecht, The Netherlands; 5: Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom; 6: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 7: School of Biosciences, The University of Melbourne, Victoria, NSW 3010, Australia
  • Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
  • Received 15 September 2016 Accepted 14 December 2016 Published 31 March 2017
  • Helen N. Fones, h.n.eyles@exeter.ac.uk; Sarah J. Gurr, s.j.gurr@exeter.ac.uk
image of Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0027-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0027-2016-2.gif
  • Abstract:

    While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.

  • Citation: Fones H, Fisher M, Gurr S. 2017. Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiol Spectrum 5(2):FUNK-0027-2016. doi:10.1128/microbiolspec.FUNK-0027-2016.

Key Concept Ranking

Chronic Pulmonary Aspergillosis
0.4336052
Allergic Bronchopulmonary Aspergillosis
0.41536605
Single Nucleotide Polymorphism
0.40247008
0.4336052

References

1. Leonard KJ, Szabo LJ. 2005. Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111. http://dx.doi.org/10.1111/j.1364-3703.2005.00273.x [PubMed]
2. Chester KS. 1946. The Nature and Prevention of the Cereal Rusts as Exemplified in the Leaf Rust of Wheat. Chronica Botanica Company, Waltham, MA. [PubMed]
3. Tudzynski P, Scheffer J. 2004. Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol Plant Pathol 5:377–388. http://dx.doi.org/10.1111/j.1364-3703.2004.00237.x [PubMed]
4. Woolf A. 2000. Witchcraft or mycotoxin? The Salem witch trials. J Toxicol Clin Toxicol 38:457–460. http://dx.doi.org/10.1081/CLT-100100958
5. Rudge FM. 1907. Orders of St. Anthony. The Catholic Encyclopedia. Robert Appleton Company, New York, NY. http://www.newadvent.org/cathen/01555a.htm.
6. Fuller J. 1969. The Day of St Anthony’s Fire. Hutchison, London, United Kingdom.
7. Urga K, Debella A, Agata N, Bayu A, Zewdie W. 2002. Laboratory studies on the outbreak of gangrenous ergotism associated with consumption of contaminated barley in Arsi, Ethiopia. Ethiop J Health Dev 16:317–323. http://dx.doi.org/10.4314/ejhd.v16i3.9800
8. Matossian MK. 1982. Ergot and the Salem witchcraft affair. Am Sci 70:355–357. [PubMed]
9. Caporael LR. 1976. Ergotism: the satan loosed in Salem? Science 192:21–26. http://dx.doi.org/10.1126/science.769159 [PubMed]
10. Alm T. 2003. The witch trials of Finnmark, Northern Norway, during the 17th century: evidence for ergotism as a contributing factor. Econ Bot 57:403–416. http://dx.doi.org/10.1663/0013-0001(2003)057[0403:TWTOFN]2.0.CO;2
11. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544. http://dx.doi.org/10.1016/j.tree.2004.07.021
12. Isard SA, Gage SH, Comtois P, Russo JM. 2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. Biosci 55:851–861. http://dx.doi.org/10.1641/0006-3568(2005)055[0851:POTAPF]2.0.CO;2
13. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486. http://dx.doi.org/10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
14. Orwig DA. 2002. Ecosystem to regional impacts of introduced pests and pathogens: historical context, questions and issues. J Biogeogr 29:1471–1474. http://dx.doi.org/10.1046/j.1365-2699.2002.00787.x
15. Smith KG, Rodewald PG, Withgott J. 2000. Red-headed woodpecker (Melanerpes erythrocephalus), p 518. In Poole A, Gill F (ed), The Birds of North America. Academy of Natural Sciences, Philadelphia, PA.
16. Opler PA. 1978. Insects of American chestnut: possible importance and conservation concern. The American Chestnut Symposium, West Virginia University Press, Morgantown, WV.
17. Dutech C, Barrès B, Bridier J, Robin C, Milgroom MG, Ravigné V. 2012. The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol Ecol 21:3931–3946. http://dx.doi.org/10.1111/j.1365-294X.2012.05575.x
18. Gibbs J, Brasier CM, Webber J. 1994. Dutch Elm Disease in Britain. Great Britain, Forestry Authority, Research Division, Farnham, United Kingdom.
19. Brasier CM. 1991. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161. http://dx.doi.org/10.1007/BF00462219
20. Brasier CM, Kirk SA. 2010. Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol 59:186–199. http://dx.doi.org/10.1111/j.1365-3059.2009.02157.x
21. Sutrave S, Scoglio C, Isard SA, Hutchinson JM, Garrett KA. 2012. Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. PLoS One 7:e37793. http://dx.doi.org/10.1371/journal.pone.0037793
22. Isard SA, Gage SH, Comtois P, Russo JM. 2005. Principles of the atmospheric pathway for invasive species applied to soybean rust. Biosci 55:851–861. http://dx.doi.org/10.1641/0006-3568(2005)055[0851:POTAPF]2.0.CO;2
23. Yorinori JT, Paiva WM, Frederick RD, Costamilan LM, Bertagnolli PF, Hartman GE, Godoy CV, Nunes J Jr. 2005. Epidemics of soybean rust (Phakopsora pachyrhizi) in Brazil and Paraguay from 2001 to 2003. Plant Dis 89:675–677. http://dx.doi.org/10.1094/PD-89-0675
24. Pivonia S, Yang XB. 2004. Assessment of the potential year-round establishment of soybean rust throughout the world. Plant Dis 88:523–529. http://dx.doi.org/10.1094/PDIS.2004.88.5.523
25. Del Ponte EM, Godoy CV, Li X, Yang XB. 2006. Predicting severity of Asian soybean rust epidemics with empirical rainfall models. Phytopathology 96:797–803. http://dx.doi.org/10.1094/PHYTO-96-0797 [PubMed]
26. Zadoks JC, van den Bosch F. 1994. On the spread of plant disease: a theory on foci. Annu Rev Phytopathol 32:503–521. http://dx.doi.org/10.1146/annurev.py.32.090194.002443 [PubMed]
27. Peterson PD. 2013. “The Barberry or Bread”: The Public Campaign to Eradicate Common Barberry in the United States in the Early 20th Century. APS Features. doi:10.1094/APSFeature-2013-08. 10.1094/APSFeature-2013-08.
28. Visser B, Herselman L, Park RF, Karaoglu H, Bender CM, Pretorius ZA. 2011. Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa. Euphytica 179:119–127. http://dx.doi.org/10.1007/s10681-010-0269-x
29. Peterson PD, Leonard KJ, Miller JD, Laudon RJ, Sutton TB. 2005. Prevalence and distribution of common barberry, the alternate host of Puccinia graminis, in Minnesota. Plant Dis 89:159–163. http://dx.doi.org/10.1094/PD-89-0159
30. Nagarajan S, Singh H, Joshi LM, Saari EE. 1976. Meteorological conditions associated with long distance dissemination and deposition of Puccinia graminis tritici uredospores in India. Phytopathology 66:198–203. http://dx.doi.org/10.1094/Phyto-66-198
31. Sibikeev SN, Markelova TS, Baukenova EA, Druzhin AE. 2016. Likely threat of the spread of race UG99 of Puccinia graminis f. sp. tritici on wheat in southeastern Russia. Russ Agric Sci 42:145–148. http://dx.doi.org/10.3103/S1068367416020154
32. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481. http://dx.doi.org/10.1146/annurev-phyto-072910-095423
33. Sarr MP, Ndiaye M, Groenewald JZ, Crous PW. 2014. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol Mediterr 53:163–173.
34. Arora P, Dilbaghi N, Chaudhury A. 2012. Opportunistic invasive fungal pathogen Macrophomina phaseolina prognosis from immunocompromised humans to potential mitogenic RBL with an exceptional and novel antitumor and cytotoxic effect. Eur J Clin Microbiol Infect Dis 31:101–107. http://dx.doi.org/10.1007/s10096-011-1275-1
35. Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JA, Alam M. 2012. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. http://dx.doi.org/10.1186/1471-2164-13-493
36. Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB. 2012. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38:136–151. http://dx.doi.org/10.3109/1040841X.2011.640977
37. Su G, Suh SO, Schneider RW, Russin JS. 2001. Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91:120–126. http://dx.doi.org/10.1094/PHYTO.2001.91.2.120 [PubMed]
38. Walters DR, Havis ND, Oxley SJ. 2008. Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Lett 279:1–7. http://dx.doi.org/10.1111/j.1574-6968.2007.00986.x [PubMed]
39. Fountaine JM, Fraaije BA. 2009. Development of QoI resistant alleles in populations of Ramularia collo-cygni. Asp Appl Biol 92:123–126.
40. Havis ND, Nyman M, Oxley SJ. 2014. Evidence for seed transmission and symptomless growth of Ramularia collo-cygni in barley (Hordeum vulgare). Plant Pathol 63:929–936. http://dx.doi.org/10.1111/ppa.12162
41. Havis ND, Brown JK, Clemente G, Frei P, Jedryczka M, Kaczmarek J, Kaczmarek M, Matusinsky P, McGrann GR, Pereyra S, Piotrowska M, Sghyer H, Tellier A, Hess M. 2015. Ramularia collo-cygni: an emerging pathogen of barley crops. Phytopathology 105:895–904. http://dx.doi.org/10.1094/PHYTO-11-14-0337-FI [PubMed]
42. Fisher MC, Garner TWJ, Walker SF. 2009. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310. http://dx.doi.org/10.1146/annurev.micro.091208.073435 [PubMed]
43. Garner TWJ, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AC, Weldon C, Fisher MC, Bosch J. 2016. Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc B 371: 20160207. doi:10.1098/rstb.2016.0207. [PubMed]
44. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TW, Weaver G, Fisher MC, Bd Mapping Group. 2013. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802. http://dx.doi.org/10.1371/journal.pone.0056802
45. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lötters S, Wombwell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F. 2014. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631. http://dx.doi.org/10.1126/science.1258268
46. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Pond SL, Shahar-Golan R, Henk DA, Fisher MC. 2011. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci USA 108:18732–18736. http://dx.doi.org/10.1073/pnas.1111915108
47. Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III. 2007. Amphibian conservation action plan. IUCN/SSC Amphibian Specialist Group, The World Conservation Union (IUCN), Gland, Switzerland.
48. Lips K. 2016. Overview of chytrid emergence and impacts on amphibians. Philos Trans R Soc B 371:20150465. doi:10.1098/rstb.2015.0465. [PubMed]
49. Langwig KE, Voyles J, Wilber MQ, Frick WF, Murray KA, Bolker BM, Collins JP, Cheng TL, Fisher MC, Hoyt JR, Lindner DL, McCallum HI, Puschendorf R, Rosenblum EB, Toothman M, Willis CKR, Briggs CJ, Kilpatrick AM. 2015. Context-dependent conservation responses to emerging wildlife diseases. Front Ecol Environ 13:195–202. http://dx.doi.org/10.1890/140241
50. Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TWJ. 2015. Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett 11:20150874. http://dx.doi.org/10.1098/rsbl.2015.0874
51. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036. http://dx.doi.org/10.1073/pnas.95.15.9031
52. Lorch JM, Meteyer CU, Behr MJ, Boyles JG, Cryan PM, Hicks AC, Ballmann AE, Coleman JTH, Redell DN, Reeder DM, Blehert DS. 2011. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480:376–378. http://dx.doi.org/10.1038/nature10590
53. Langwig KE, Frick WF, Hoyt JR, Pariseb KL, Drees KP, Kunz TH, Foster JT, Kilpatrick AM. 2016. Drivers of variation in species impacts for a multi-host fungal disease of bats. Philos Trans R Soc B 371:20150456. doi:10.1098/rstb.2015.0456. [PubMed]
54. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH. 2010. An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682. http://dx.doi.org/10.1126/science.1188594
55. Rajkumar SS, Li X, Rudd RJ, Okoniewski JC, Xu J, Chaturvedi S, Chaturvedi V. 2011. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg Infect Dis 17:1273–1276. http://dx.doi.org/10.3201/eid1707.102056 [PubMed]
56. May RC, Stone NRH, Wiesner DL, Bicanic T, Nielsen K. 2016. Cryptococcus: from environmental saprophyte to global pathogen. Nat Rev Microbiol 14:106–117. http://dx.doi.org/10.1038/nrmicro.2015.6 [PubMed]
57. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530. http://dx.doi.org/10.1097/QAD.0b013e328322ffac
58. Pyrgos V, Seitz AE, Steiner CA, Prevots DR, Williamson PR. 2013. Epidemiology of cryptococcal meningitis in the US: 1997–2009. PLoS One 8:e56269. http://dx.doi.org/10.1371/journal.pone.0056269 [PubMed]
59. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. 2015. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48. http://dx.doi.org/10.1016/j.fgb.2015.02.009
60. Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. 2010. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6:e1000850. http://dx.doi.org/10.1371/journal.ppat.1000850
61. Meis J, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. 2016. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B 371:20150460. doi:10.1098/rstb.2015.0460.
62. Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, Meis JF, Armstrong-James D, Fisher MC. 2015. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio 6:e00536. doi:10.1128/mBio.00536-15.
63. van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ, Kuijper EJ, Van Tiel FH, Melchers WJ, Verweij PE. 2011. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis 17:1846–1854. http://dx.doi.org/10.3201/eid1710.110226
64. Netea MG, Latz E, Mills KH, O’Neill LA. 2015. Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol 16:675–679. http://dx.doi.org/10.1038/ni.3178 [PubMed]
65. Misra BB, Chaturvedi R. 2015. When plants brace for the emerging pathogens. Physiol Mol Plant Pathol 92:181–185. http://dx.doi.org/10.1016/j.pmpp.2015.03.004
66. Piotrowska MJ, Ennos RA, Fountaine JM, Burnett FJ, Kaczmarek M, Hoebe PN. 2016. Development and use of microsatellite markers to study diversity, reproduction and population genetic structure of the cereal pathogen Ramularia collo-cygni. Fungal Genet Biol 87:64–71. http://dx.doi.org/10.1016/j.fgb.2016.01.007 [PubMed]
67. Ahmed S, de Labrouhe DT, Delmotte F. 2012. Emerging virulence arising from hybridisation facilitated by multiple introductions of the sunflower downy mildew pathogen Plasmopara halstedii. Fungal Genet Biol 49:847–855. http://dx.doi.org/10.1016/j.fgb.2012.06.012
68. Stukenbrock EH. 2013. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol 199:895–907. http://dx.doi.org/10.1111/nph.12374 [PubMed]
69. Linde CC, Zhan J, McDonald BA. 2002. Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology 92:946–955. http://dx.doi.org/10.1094/PHYTO.2002.92.9.946
70. Fones H, Gurr S. 2015. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7. http://dx.doi.org/10.1016/j.fgb.2015.04.004 [PubMed]
71. Suffert F, Sache I, Lannou C. 2011. Early stages of Septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathol 60:166–177. http://dx.doi.org/10.1111/j.1365-3059.2010.02369.x
72. Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, Stukenbrock EH. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin 8:41. http://dx.doi.org/10.1186/s13072-015-0033-5
73. Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. 2011. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 21:2157–2166. http://dx.doi.org/10.1101/gr.118851.110
74. Croll D, McDonald BA. 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog 8:e1002608. http://dx.doi.org/10.1371/journal.ppat.1002608 [PubMed]
75. Dhillon B, Gill N, Hamelin RC, Goodwin SB. 2014. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC Genomics 15:1132. http://dx.doi.org/10.1186/1471-2164-15-1132
76. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD. 2009. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618. http://dx.doi.org/10.1371/journal.pgen.1000618
77. Stukenbrock EH. 2013. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol 199:895–907. http://dx.doi.org/10.1111/nph.12374 [PubMed]
78. Stukenbrock EH, McDonald BA. 2008. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100. http://dx.doi.org/10.1146/annurev.phyto.010708.154114 [PubMed]
79. Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430. [PubMed]
80. Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, Taylor JM. 2015. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol 7:1613–1627. http://dx.doi.org/10.1093/gbe/evv092 [PubMed]
81. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x
82. Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35:57–65. http://dx.doi.org/10.1016/j.gde.2015.09.001 [PubMed]
83. Ma LJ, et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. http://dx.doi.org/10.1038/nature08850 [PubMed]
84. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711. http://dx.doi.org/10.1111/j.1365-294X.2007.03225.x
85. Nunes MJL. 2011. Magnaporthe oryzae, the blast pathogen: current status and options for its control. Plant Sci Rev 264:233–240.
86. Malaker PK, Barma NC, Tiwari TP, Collis WJ, Duveiller E, Singh PK, Joshi AK, Singh RP, Braun HJ, Peterson GL, Pedley KF. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis 100:2330. http://dx.doi.org/10.1094/PDIS-05-16-0666-PDN
87. Brown JK, Hovmøller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541. http://dx.doi.org/10.1126/science.1072678 [PubMed]
88. Nagarajan S, Singh H, Joshi LM, Saari EE. 1976. Meteorological conditions associated with long distance dissemination and deposition of Puccinia graminis tritici uredospores in India. Phytopathology 66:198–203. http://dx.doi.org/10.1094/Phyto-66-198
89. Heuch J. 2014. What lessons need to be learnt from the outbreak of Ash Dieback Disease, Chalara fraxinea in the United Kingdom? Arboricult J 36:32–44. http://dx.doi.org/10.1080/03071375.2014.913361
90. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143. http://dx.doi.org/10.1890/110198
91. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ, Sniezko R, Brasier C. 2014. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front Ecol Environ 12:457–465. http://dx.doi.org/10.1890/130240
92. U.S. Fish and Wildlife Service. Listing salamanders as injurious due to risk of salamander chytrid fungus. https://www.fws.gov/injuriouswildlife/salamanders.html.
93. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. http://dx.doi.org/10.1038/nature10947 [PubMed]
94. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T, Hantula J, Holdenrieder O, Jankovsky L, Jung T, Jurc D, Kirisits T, Kunca A, Lygis V, Malecka M, Marcais B, Schmitz S, Schumacher J, Solheim H, Solla A, Szabò I, Tsopelas P, Vannini A, Vettraino AM, Webber J, Woodward S, Stenlid J. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250. http://dx.doi.org/10.1111/j.1469-8137.2012.04364.x [PubMed]
95. Stukenbrock EH, Bataillon T. 2012. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog 8:e1002893. http://dx.doi.org/10.1371/journal.ppat.1002893 [PubMed][CrossRef]
96. Langwig KE, Feng J, Parise KL, Kath J, Kirk D, Frick WF, Foster JT, Kilpatrick AM. 2015. Invasion dynamics of white-nose syndrome fungus, midwestern United States, 2012–2014. Emerg Infect Dis 21:1023–1026. [PubMed]
97. Woolhouse ME, Haydon DT, Antia R. 2005. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol Evol 20:238–244. http://dx.doi.org/10.1016/j.tree.2005.02.009 [PubMed]
98. Bartoli C, Lamichhane JR, Berge O, Guilbaud C, Varvaro L, Balestra GM, Vinatzer BA, Morris CE. 2015. A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol Plant Pathol 16:137–149. http://dx.doi.org/10.1111/mpp.12167 [PubMed]
99. Bebber DP, Ramotowski MA, Gurr SJ. 2013. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 3:985–988. http://dx.doi.org/10.1038/nclimate1990
100. Bebber DP, Holmes T, Gurr SJ. 2014. The global spread of crop pests and pathogens. Glob Ecol Biogeogr 23:1398–1407. http://dx.doi.org/10.1111/geb.12214
101. Clare FC, Halder JB, Daniel O, Bielby J, Semenov MA, Jombart T, Loyau A, Schmeller DS, Cunningham AA, Rowcliffe M, Garner TWJ, Bosch J, Fisher MC. 2016. Climate forcing of an emerging pathogenic fungus across a montane multihost community. Philos Trans R Soc B 371:20150454. doi:10.1098/rstb.2015.0454.
102. Ploetz RC. 2000. Panama disease: a classic and destructive disease of banana. Plant Health Prog 10:1–7.
103. Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, Thomma BP, Ploetz RC, Kema GH. 2015. Worse comes to worst: bananas and Panama disease – when plant and pathogen clones meet. PLoS Pathog 11:e1005197. http://dx.doi.org/10.1371/journal.ppat.1005197
104. García-Bastidas F, Ordóñez N, Konkol J, Al-Qasim M, Naser Z, Abdelwali M, Salem N, Waalwijk C, Ploetz RC, Kema GH. 2016. First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Dis 98:694–694.
105. Chavez VA, Parnell S, Bosch FVD. 2015. Designing strategies for epidemic control in a tree nursery: the case of ash dieback in the UK. Forests 6:4135–4145. http://dx.doi.org/10.3390/f6114135
106. Pautasso M, Aas G, Queloz V, Holdenrieder O. 2013. European ash (Fraxinus excelsior) dieback: a conservation biology challenge. Biol Conserv 158:37–49. http://dx.doi.org/10.1016/j.biocon.2012.08.026
107. Mitchell RJ, Pakeman RJ, Broome A, Beaton JK, Bellamy PE, Brooker RW, Ellis CJ, Hester AJ, Hodgetts NG, Iason GR, Littlewood NA, Pozsgai G, Ramsay S, Riach D, Stockan JA, Taylor AFS, Woodward S. 2016. How to replicate the functions and biodiversity of a threatened tree species? The case of Fraxinus excelsior in Britain. Ecosys 19:573. http://dx.doi.org/10.1007/s10021-015-9953-y
108. Gross A, Hosoya T, Queloz V. 2014. Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960. http://dx.doi.org/10.1111/mec.12792
109. Kraj W, Zarek M, Kowalski T. 2012. Genetic variability of Chalara fraxinea, dieback cause of European ash (Fraxinus excelsior L.). Mycol Prog 11:37–45. http://dx.doi.org/10.1007/s11557-010-0724-z
110. Burokiene D, Prospero S, Jung E, Marciulyniene D, Moosbrugger K, Norkute G, Rigling D, Lygis V, Schoebel CN. 2015. Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biol Invas 17:2743–2756. http://dx.doi.org/10.1007/s10530-015-0911-6
111. Gross A, Sieber TN. 2016. Virulence of Hymenoscyphus albidus and native and introduced Hymenoscyphus fraxineus on Fraxinus excelsior and Fraxinus pennsylvanica. Plant Pathol 65:655–663. http://dx.doi.org/10.1111/ppa.12450
112. Gross A, Han JG. 2015. Hymenoscyphus fraxineus and two new Hymenoscyphus species identified in Korea. Mycol Prog 14:19. http://dx.doi.org/10.1007/s11557-015-1035-1
113. Gross A, Hosoya T, Zhao YJ, Baral HO. 2015. Hymenoscyphus linearis sp. nov: another close relative of the ash dieback pathogen H. fraxineus. Mycol Prog 14:20. http://dx.doi.org/10.1007/s11557-015-1041-3
114. Carrari E, Capretti P, Santini A, Luchi N. 2015. Hymenoscyphus fraxineus mycelial growth on media containing leaf extracts of different Oleaceae. For Pathol 45:540–543. http://dx.doi.org/10.1111/efp.12238
115. Friday JB, Keith L, Hughes F. 2015. Rapid ‘Ōhi’a death (ceratocystis wilt of ‘Ōhi’a). 1University of Hawaii College of Tropical Agriculture. http://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-107.pdf
116. Keith LM, Hughes RF, Sugiyama LS, Heller WP, Bushe BC, Friday JB. 2015. First report of ceratocystis wilt on ‘Ōhi’a (Metrosideros polymorpha). Plant Dis 99:1276. http://dx.doi.org/10.1094/PDIS-12-14-1293-PDN
117. Mueller-Dombois D. 1988. Community organization and ecosystem theory. Can J Bot 66:2620–2625. http://dx.doi.org/10.1139/b88-357
118. West Hawaii Today. 2015. Lava-loving ohia lehua: a pioneer plant in peril. http://westhawaiitoday.com/news/volcano-update/lava-loving-ohia-lehua-pioneer-plant-peril.
119. Jacobs DF, Selig MF, Severeid LR. 2009. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. For Ecol Manag 258:288–294.
120. Smith KG, Lips KR, Chase J. 2009. Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas. Ecol Lett 12:1069–1078. http://dx.doi.org/10.1111/j.1461-0248.2009.01363.x
121. Boyles JG, Cryan PM, McCracken GF, Kunz TH. 2011. Economic importance of bats in agriculture. Science 332:41–42. http://dx.doi.org/10.1126/science.1201366 [PubMed]
122. Brown JK, Kema GH, Forrer HR, Verstappen EC, Arraiano LS, Brading PA, Foster EM, Fried PM, Jenny E. 2001. Resistance of wheat cultivars and breeding lines to Septoria tritici blotch caused by isolates of Mycosphaerella graminicola in field trials. Plant Pathol 50:325–338. http://dx.doi.org/10.1046/j.1365-3059.2001.00565.x
123. Torriani SF, Melichar JP, Mills C, Pain N, Sierotzki H, Courbot M. 2015. Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genet Biol 79:8–12. http://dx.doi.org/10.1016/j.fgb.2015.04.010 [PubMed]
124. Snelders E, Huis In ’t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. 2009. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75:4053–4057. http://dx.doi.org/10.1128/AEM.00231-09
125. Andrade AC, Del Sorbo G, Van Nistelrooy JG, De Waard MA. 2000. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146:1987–1997. http://dx.doi.org/10.1099/00221287-146-8-1987
126. Gauthier GM, Keller NP. 2013. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 61:146–157. http://dx.doi.org/10.1016/j.fgb.2013.08.016 [PubMed]
127. Kilaru S, Schuster M, Latz M, Das Gupta S, Steinberg N, Fones H, Gurr SJ, Talbot NJ, Steinberg G. 2015. A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genet Biol 79:118–124. [PubMed]
128. Fones HN, Mardon C, Gurr SJ. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci Rep 6:34638. http://dx.doi.org/10.1038/srep34638
microbiolspec.FUNK-0027-2016.citations
cm/5/2
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0027-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0027-2016
2017-03-31
2017-07-21

Abstract:

While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Mass mortalities of midwife toads, , caused by (photo: Matthew C. Fisher).

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Mass mortalities of little brown bats, (photo: Alan Hicks).

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Factors influencing the emergence of infectious diseases of crop plants. These include features of the pathogens themselves as well as changes forced by the opportunities given to and pressures placed upon pathogens externally, as a result of human activity. Pathogen features prompting the emergence of new diseases include specialized genomes, sexual reproduction, large populations, and plentiful variation, which contribute to evolutionary potential. Invasiveness is key to the appearance of new emerging infectious diseases. This pathogen trait has natural components including high virulence and the capacity to infect multiple hosts and to transmit vertically, as well as such traits as long-distance dispersal and a propensity to undergo host shifts and jumps. Such traits may be natural or appear as a result of opportunities provided by anthropogenic changes to the environment. Such anthropogenic opportunities include climate change and trade and transport, introducing pathogens to new places, niches, and hosts. They may also take the form of pressures placed on pathogens by the continuous cultivation of a single crop year-round leading to genetic uniformity of available hosts over large areas. Such elite varieties are the product of artificial selection, which is the main driver of host evolution when the host is a domesticated crop. Host evolution can then drive pathogen evolution, leading to the appearance of new emerging infectious diseases and subsequent selection of new, resistant elite varieties. In addition, during the domestication of a crop, pathogens may be directly domesticated, short-cutting their adaptation to a particular host.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The wheat pathogen, . Scanning electron micrograph showing (green) on the surface of a wheat leaf. False color image. Confocal fluorescence micrograph showing green-fluorescent protein-tagged (turquoise) beginning to colonize mesophyll tissues of a wheat leaf (purple). False-color image. Confocal fluorescence micrograph showing (turquoise) proliferating with a wheat leaf at a late stage of infection. The fungal mass on the right of the image is a nascent pycnidium, the structure in which sporulation takes place. Severely diseased wheat leaf showing symptoms, including mature pycnidia (black). Each black spot can release hundreds of spores. (Photos: Helen Fones; GFP-tagged : reference 127 .)

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

f. sp. race 4 (Panama disease). Culture on potato-dextrose agar in a laboratory, showing characteristic purple coloring. (Photo: Helen Fones.)

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

on ash. Left, hyphae (green; stained with fluorescein isothiocyanate-labeled wheat-germ agglutinin) of , visualized by confocal microscopy, growing over and out of the vascular tissue of an ash leaf (red; stained with propidium iodide). Right, ash die-back symptoms on an ash seedling under laboratory conditions. (Photos: Helen Fones.)

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error