1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Amyloid Prions in Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Sven J. Saupe1, Daniel F. Jarosz2, Heather L. True3
  • Editors: Joseph Heitman4, Eva Holtgrewe Stukenbrock5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France; 2: Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA; 3: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; 4: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 5: Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany, and Max Planck Institute for Evolutionary Biology, Plön, Germany
  • Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.FUNK-0029-2016
  • Received 20 September 2016 Accepted 04 October 2016 Published 09 December 2016
  • Sven J. Saupe, sven.saupe@ibgc.cnrs.fr
image of Amyloid Prions in Fungi
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Amyloid Prions in Fungi, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/FUNK-0029-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/FUNK-0029-2016-2.gif
  • Abstract:

    Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the “protein-only” nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.

  • Citation: Saupe S, Jarosz D, True H. 2016. Amyloid Prions in Fungi. Microbiol Spectrum 4(6):FUNK-0029-2016. doi:10.1128/microbiolspec.FUNK-0029-2016.

Key Concept Ranking

Spindle Pole Bodies
0.41154623
0.41154623

References

1. Wickner RB. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569. http://dx.doi.org/10.1126/science.7909170 [PubMed] [PubMed]
2. Patino MM, Liu JJ, Glover JR, Lindquist S. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626. http://dx.doi.org/10.1126/science.273.5275.622 [PubMed]
3. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. 1997. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819. http://dx.doi.org/10.1016/S0092-8674(00)80264-0
4. Eichner T, Radford SE. 2011. A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43:8–18. http://dx.doi.org/10.1016/j.molcel.2011.05.012 [PubMed][CrossRef]
5. Prusiner SB. 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–144. http://dx.doi.org/10.1126/science.6801762 [PubMed]
6. Aguzzi A. 2009. Cell biology: beyond the prion principle. Nature 459:924–925. http://dx.doi.org/10.1038/459924a [PubMed]
7. Brown JC, Lindquist S. 2009. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332. http://dx.doi.org/10.1101/gad.1839109 [PubMed]
8. Roberts BT, Wickner RB. 2003. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev 17:2083–2087. http://dx.doi.org/10.1101/gad.1115803 [PubMed]
9. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter JM, Riek R, Saupe SJ. 2003. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081. http://dx.doi.org/10.1093/emboj/cdg213 [PubMed]
10. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158. http://dx.doi.org/10.1016/j.cell.2009.02.044 [PubMed][CrossRef]
11. Rizet G. 1952. Les phenomenes de barrage chez Podospora anserina. I. Analyse de barrage entre les souches s et S. Rev Cytol Biol Veg 13:51–92.
12. Cox BS. 1965. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521. http://dx.doi.org/10.1038/hdy.1965.65
13. Aigle M, Lacroute F. 1975. Genetical aspects of [URE3], a non-mitochondrial, cytoplasmically inherited mutation in yeast. Mol Gen Genet 136:327–335. http://dx.doi.org/10.1007/BF00341717
14. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519. [PubMed]
15. Garcia DM, Jarosz DF. 2014. Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 14:136–147. http://dx.doi.org/10.1111/1567-1364.12116 [PubMed]
16. Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222. http://dx.doi.org/10.1016/j.cell.2014.01.063 [PubMed]
17. Chakrabortee S, Kayatekin C, Newby GA, Mendillo ML, Lancaster A, Lindquist S. 2016. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci USA 113:6065–6070. http://dx.doi.org/10.1073/pnas.1604478113 [PubMed]
18. Masison DC, Wickner RB. 1995. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95. http://dx.doi.org/10.1126/science.270.5233.93 [PubMed]
19. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15:3127–3134. [PubMed]
20. Coustou-Linares V, Maddelein ML, Bégueret J, Saupe SJ. 2001. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol 42:1325–1335. http://dx.doi.org/10.1046/j.1365-2958.2001.02707.x [PubMed]
21. Derkatch IL, Bradley ME, Zhou P, Liebman SW. 1999. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr Genet 35:59–67. http://dx.doi.org/10.1007/s002940050433 [PubMed]
22. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386. [PubMed]
23. Aguzzi A, Heikenwalder M, Polymenidou M. 2007. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8:552–561. http://dx.doi.org/10.1038/nrm2204 [PubMed]
24. Zhou P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. 1999. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 18:1182–1191. http://dx.doi.org/10.1093/emboj/18.5.1182 [PubMed]
25. Kochneva-Pervukhova NV, Chechenova MB, Valouev IA, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. 2001. [Psi(+)] prion generation in yeast: characterization of the ‘strain’ difference. Yeast 18:489–497. http://dx.doi.org/10.1002/yea.700 [PubMed]
26. Uptain SM, Sawicki GJ, Caughey B, Lindquist S. 2001. Strains of [PSI(+)] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J 20:6236–6245. http://dx.doi.org/10.1093/emboj/20.22.6236
27. Toyama BH, Kelly MJ, Gross JD, Weissman JS. 2007. The structural basis of yeast prion strain variants. Nature 449:233–237. http://dx.doi.org/10.1038/nature06108 [PubMed]
28. Schlumpberger M, Prusiner SB, Herskowitz I. 2001. Induction of distinct [URE3] yeast prion strains. Mol Cell Biol 21:7035–7046. http://dx.doi.org/10.1128/MCB.21.20.7035-7046.2001 [PubMed]
29. Brachmann A, Baxa U, Wickner RB. 2005. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082–3092. http://dx.doi.org/10.1038/sj.emboj.7600772 [PubMed]
30. Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW. 2002. Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 99(Suppl 4):16392–16399. http://dx.doi.org/10.1073/pnas.152330699 [PubMed]
31. Huang VJ, Stein KC, True HL. 2013. Spontaneous variants of the [RNQ+] prion in yeast demonstrate the extensive conformational diversity possible with prion proteins. PLoS One 8:e79582. http://dx.doi.org/10.1371/journal.pone.0079582
32. Westergard L, True HL. 2014. Wild yeast harbour a variety of distinct amyloid structures with strong prion-inducing capabilities. Mol Microbiol 92:183–193. http://dx.doi.org/10.1111/mmi.12543
33. Kabir ME, Safar JG. 2014. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 8:111–116. http://dx.doi.org/10.4161/pri.27661
34. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH. 2008. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526. http://dx.doi.org/10.1126/science.1151839 [PubMed]
35. King CY. 2001. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J Mol Biol 307:1247–1260. http://dx.doi.org/10.1006/jmbi.2001.4542 [PubMed]
36. Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M. 2010. Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 6:225–230. http://dx.doi.org/10.1038/nchembio.306 [PubMed]
37. DiSalvo S, Serio TR. 2011. Insights into prion biology: integrating a protein misfolding pathway with its cellular environment. Prion 5:76–83. http://dx.doi.org/10.4161/pri.5.2.16413
38. Verges KJ, Smith MH, Toyama BH, Weissman JS. 2011. Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Nat Struct Mol Biol 18:493–499. http://dx.doi.org/10.1038/nsmb.2030 [PubMed][CrossRef]
39. Stein KC, True HL. 2014. Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions. PLoS Genet 10:e1004337. http://dx.doi.org/10.1371/journal.pgen.1004337
40. Ross ED, Baxa U, Wickner RB. 2004. Scrambled prion domains form prions and amyloid. Mol Cell Biol 24:7206–7213. http://dx.doi.org/10.1128/MCB.24.16.7206-7213.2004 [PubMed]
41. Ross ED, Edskes HK, Terry MJ, Wickner RB. 2005. Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102:12825–12830. http://dx.doi.org/10.1073/pnas.0506136102 [PubMed]
42. Tompa P, Schad E, Tantos A, Kalmar L. 2015. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59. http://dx.doi.org/10.1016/j.sbi.2015.08.009 [PubMed]
43. Li L, Lindquist S. 2000. Creating a protein-based element of inheritance. Science 287:661–664. http://dx.doi.org/10.1126/science.287.5453.661 [PubMed]
44. Masison DC, Maddelein ML, Wickner RB. 1997. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 94:12503–12508. http://dx.doi.org/10.1073/pnas.94.23.12503 [PubMed]
45. Sondheimer N, Lindquist S. 2000. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5:163–172. http://dx.doi.org/10.1016/S1097-2765(00)80412-8
46. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884. http://dx.doi.org/10.1126/science.7754373 [PubMed]
47. Glover JR, Lindquist S. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82. http://dx.doi.org/10.1016/S0092-8674(00)81223-4
48. Lum R, Tkach JM, Vierling E, Glover JR. 2004. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279:29139–29146. http://dx.doi.org/10.1074/jbc.M403777200 [PubMed]
49. Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A. 2004. Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11:607–615. http://dx.doi.org/10.1038/nsmb787 [PubMed]
50. Tipton KA, Verges KJ, Weissman JS. 2008. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 32:584–591. http://dx.doi.org/10.1016/j.molcel.2008.11.003 [PubMed][CrossRef]
51. Newnam GP, Birchmore JL, Chernoff YO. 2011. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 408:432–448. http://dx.doi.org/10.1016/j.jmb.2011.02.034 [PubMed]
52. Borchsenius AS, Müller S, Newnam GP, Inge-Vechtomov SG, Chernoff YO. 2006. Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr Genet 49:21–29. http://dx.doi.org/10.1007/s00294-005-0035-0
53. McGlinchey RP, Kryndushkin D, Wickner RB. 2011. Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci USA 108:5337–5341. http://dx.doi.org/10.1073/pnas.1102762108 [PubMed]
54. Fan Q, Park KW, Du Z, Morano KA, Li L. 2007. The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion. Genetics 177:1583–1593. http://dx.doi.org/10.1534/genetics.107.077982 [PubMed]
55. Kryndushkin D, Wickner RB. 2007. Nucleotide exchange factors for Hsp70s are required for [URE3] prion propagation in Saccharomyces cerevisiae. Mol Biol Cell 18:2149–2154. http://dx.doi.org/10.1091/mbc.E07-02-0128 [PubMed][CrossRef]
56. Kumar N, Gaur D, Gupta A, Puri A, Sharma D. 2015. Hsp90-associated immunophilin homolog Cpr7 is required for the mitotic stability of [URE3] prion in Saccharomyces cerevisiae. PLoS Genet 11:e1005567. http://dx.doi.org/10.1371/journal.pgen.1005567
57. Wickner RB, Bezsonov E, Bateman DA. 2014. Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc Natl Acad Sci USA 111:E2711–E2720. http://dx.doi.org/10.1073/pnas.1409582111 [PubMed]
58. Aron R, Higurashi T, Sahi C, Craig EA. 2007. J-protein co-chaperone Sis1 required for generation of [RNQ+] seeds necessary for prion propagation. EMBO J 26:3794–3803. http://dx.doi.org/10.1038/sj.emboj.7601811 [PubMed]
59. Sondheimer N, Lopez N, Craig EA, Lindquist S. 2001. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J 20:2435–2442. http://dx.doi.org/10.1093/emboj/20.10.2435 [PubMed]
60. Bardill JP, Dulle JE, Fisher JR, True HL. 2009. Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion. Prion 3:151–160. http://dx.doi.org/10.4161/pri.3.3.9662 [PubMed]
61. Douglas PM, Treusch S, Ren HY, Halfmann R, Duennwald ML, Lindquist S, Cyr DM. 2008. Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci USA 105:7206–7211. http://dx.doi.org/10.1073/pnas.0802593105
62. Higurashi T, Hines JK, Sahi C, Aron R, Craig EA. 2008. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci USA 105:16596–16601. http://dx.doi.org/10.1073/pnas.0808934105 [PubMed]
63. Malato L, Dos Reis S, Benkemoun L, Sabaté R, Saupe SJ. 2007. Role of Hsp104 in the propagation and inheritance of the [Het-s] prion. Mol Biol Cell 18:4803–4812. http://dx.doi.org/10.1091/mbc.E07-07-0657 [PubMed]
64. Taneja V, Maddelein ML, Talarek N, Saupe SJ, Liebman SW. 2007. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Mol Cell 27:67–77. http://dx.doi.org/10.1016/j.molcel.2007.05.027 [PubMed][CrossRef]
65. Speldewinde SH, Doronina VA, Grant CM. 2015. Autophagy protects against de novo formation of the [PSI+] prion in yeast. Mol Biol Cell 26:4541–4551. http://dx.doi.org/10.1091/mbc.E15-08-0548 [PubMed]
66. Wickner RB, Edskes HK, Gorkovskiy A, Bezsonov EE, Stroobant EE. 2016. Yeast and fungal prions: amyloid-handling systems, amyloid structure, and prion biology. Adv Genet 93:191–236. http://dx.doi.org/10.1016/bs.adgen.2015.12.003 [PubMed]
67. Wickner RB, Edskes HK, Bateman D, Kelly AC, Gorkovskiy A. 2011. The yeast prions [PSI+] and [URE3] are molecular degenerative diseases. Prion 5:258–262. http://dx.doi.org/10.4161/pri.5.4.17748 [PubMed]
68. Halfmann R, Alberti S, Lindquist S. 2010. Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol 20:125–133. http://dx.doi.org/10.1016/j.tcb.2009.12.003 [PubMed]
69. Byers JS, Jarosz DF. 2014. Pernicious pathogens or expedient elements of inheritance: the significance of yeast prions. PLoS Pathog 10:e1003992. http://dx.doi.org/10.1371/journal.ppat.1003992 [PubMed]
70. Coustou V, Deleu C, Saupe S, Begueret J. 1997. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778. http://dx.doi.org/10.1073/pnas.94.18.9773
71. Watts JC, Balachandran A, Westaway D. 2006. The expanding universe of prion diseases. PLoS Pathog 2:e26. http://dx.doi.org/10.1371/journal.ppat.0020026 [PubMed]
72. Espinosa Angarica V, Ventura S, Sancho J. 2013. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14:316. http://dx.doi.org/10.1186/1471-2164-14-316
73. Holmes DL, Lancaster AK, Lindquist S, Halfmann R. 2013. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153:153–165. http://dx.doi.org/10.1016/j.cell.2013.02.026 [PubMed]
74. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. 2012. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368. http://dx.doi.org/10.1038/nature10875
75. True HL, Lindquist SL. 2000. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483. http://dx.doi.org/10.1038/35035005
76. King CY, Diaz-Avalos R. 2004. Protein-only transmission of three yeast prion strains. Nature 428:319–323. http://dx.doi.org/10.1038/nature02391 [PubMed][CrossRef]
77. True HL, Berlin I, Lindquist SL. 2004. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431:184–187. http://dx.doi.org/10.1038/nature02885
78. Shorter J, Lindquist S. 2005. Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450. http://dx.doi.org/10.1038/nrg1616 [PubMed]
79. Lancaster AK, Masel J. 2009. The evolution of reversible switches in the presence of irreversible mimics. Evolution 63:2350–2362. http://dx.doi.org/10.1111/j.1558-5646.2009.00729.x [PubMed]
80. Rajon E, Masel J. 2011. Evolution of molecular error rates and the consequences for evolvability. Proc Natl Acad Sci USA 108:1082–1087. http://dx.doi.org/10.1073/pnas.1012918108 [PubMed]
81. Tyedmers J, Madariaga ML, Lindquist S. 2008. Prion switching in response to environmental stress. PLoS Biol 6:e294. http://dx.doi.org/10.1371/journal.pbio.0060294 [PubMed]
82. Tapia H, Koshland DE. 2014. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766. http://dx.doi.org/10.1016/j.cub.2014.10.005 [PubMed]
83. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF. 1996. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383:685–690. http://dx.doi.org/10.1038/383685a0
84. Wickner RB, Edskes HK, Shewmaker F, Kryndushkin D, Nemecek J. 2009. Prion variants, species barriers, generation and propagation. J Biol 8:47. http://dx.doi.org/10.1186/jbiol148 [PubMed]
85. Diaz-Avalos R, King CY, Wall J, Simon M, Caspar DL. 2005. Strain-specific morphologies of yeast prion amyloid fibrils. Proc Natl Acad Sci USA 102:10165–10170. http://dx.doi.org/10.1073/pnas.0504599102 [PubMed]
86. Tessier PM, Lindquist S. 2007. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447:556–561. http://dx.doi.org/10.1038/nature05848
87. Harrison LB, Yu Z, Stajich JE, Dietrich FS, Harrison PM. 2007. Evolution of budding yeast prion-determinant sequences across diverse fungi. J Mol Biol 368:273–282. http://dx.doi.org/10.1016/j.jmb.2007.01.070 [PubMed]
88. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB. 2005. Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci USA 102:10575–10580. http://dx.doi.org/10.1073/pnas.0504882102 [PubMed]
89. Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB. 2012. Sex, prions, and plasmids in yeast. Proc Natl Acad Sci USA 109:E2683–E2690. http://dx.doi.org/10.1073/pnas.1213449109 [PubMed]
90. Jung G, Jones G, Wegrzyn RD, Masison DC. 2000. A role for cytosolic hsp70 in yeast [PSI(+)] prion propagation and [PSI(+)] as a cellular stress. Genetics 156:559–570. [PubMed]
91. Tsai IJ, Bensasson D, Burt A, Koufopanou V. 2008. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci USA 105:4957–4962. http://dx.doi.org/10.1073/pnas.0707314105 [PubMed]
92. Griswold CK, Masel J. 2009. Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex. PLoS Genet 5:e1000517. http://dx.doi.org/10.1371/journal.pgen.1000517 [PubMed]
93. Masel J, Griswold CK. 2009. The strength of selection against the yeast prion [PSI+]. Genetics 181:1057–1063. http://dx.doi.org/10.1534/genetics.108.100297 [PubMed]
94. Baudin-Baillieu A, Legendre R, Kuchly C, Hatin I, Demais S, Mestdagh C, Gautheret D, Namy O. 2014. Genome-wide translational changes induced by the prion [PSI+]. Cell Rep 8:439–448. http://dx.doi.org/10.1016/j.celrep.2014.06.036 [PubMed]
95. Koch AL. 1972. Enzyme evolution. I. The importance of untranslatable intermediates. Genetics 72:297–316. [PubMed]
96. Patel BK, Gavin-Smyth J, Liebman SW. 2009. The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11:344–349. http://dx.doi.org/10.1038/ncb1843 [PubMed]
97. Ball AJ, Wong DK, Elliott JJ. 1976. Glucosamine resistance in yeast. I. A preliminary genetic analysis. Genetics 84:311–317. [PubMed]
98. Kunz BA, Ball AJ. 1977. Glucosamine resistance in yeast. II. Cytoplasmic determinants conferring resistance. Mol Gen Genet 153:169–177. [PubMed]
99. Jarosz DF, Brown JC, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S. 2014. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158:1083–1093. http://dx.doi.org/10.1016/j.cell.2014.07.025
100. Jarosz DF, Lancaster AK, Brown JC, Lindquist S. 2014. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 158:1072–1082. http://dx.doi.org/10.1016/j.cell.2014.07.024 [PubMed]
101. Baxa U, Wickner RB, Steven AC, Anderson DE, Marekov LN, Yau WM, Tycko R. 2007. Characterization of beta-sheet structure in Ure2p1-89 yeast prion fibrils by solid-state nuclear magnetic resonance. Biochemistry 46:13149–13162. http://dx.doi.org/10.1021/bi700826b
102. Mathur V, Seuring C, Riek R, Saupe SJ, Liebman SW. 2012. Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 32:139–153. http://dx.doi.org/10.1128/MCB.06125-11 [PubMed]
103. Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. 2012. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10:e1001451. http://dx.doi.org/10.1371/journal.pbio.1001451 [PubMed][CrossRef]
104. Daskalov A, Paoletti M, Ness F, Saupe SJ. 2012. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS One 7:e34854. http://dx.doi.org/10.1371/journal.pone.0034854
105. Daskalov A, Habenstein B, Martinez D, Debets AJ, Sabaté R, Loquet A, Saupe SJ. 2015. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol 13:e1002059. http://dx.doi.org/10.1371/journal.pbio.1002059 [PubMed]
106. Daskalov A, Habenstein B, Sabaté R, Berbon M, Martinez D, Chaignepain S, Coulary-Salin B, Hofmann K, Loquet A, Saupe SJ. 2016. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc Natl Acad Sci USA 113:2720–2725. http://dx.doi.org/10.1073/pnas.1522361113
107. Habenstein B, Loquet A. 2016. Solid-state NMR: an emerging technique in structural biology of self-assemblies. Biophys Chem 210:14–26. http://dx.doi.org/10.1016/j.bpc.2015.07.003 [PubMed]
108. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D. 2005. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778. http://dx.doi.org/10.1038/nature03680 [PubMed]
109. Tycko R. 2014. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23:1528–1539. http://dx.doi.org/10.1002/pro.2544 [PubMed]
110. Kajava AV, Steven AC. 2006. Beta-rolls, beta-helices, and other beta-solenoid proteins. Adv Protein Chem 73:55–96. http://dx.doi.org/10.1016/S0065-3233(06)73003-0 [PubMed]
111. Ritter C, Maddelein ML, Siemer AB, Lührs T, Ernst M, Meier BH, Saupe SJ, Riek R. 2005. Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848. http://dx.doi.org/10.1038/nature03793 [PubMed]
112. Sen A, Baxa U, Simon MN, Wall JS, Sabate R, Saupe SJ, Steven AC. 2007. Mass analysis by scanning transmission electron microscopy and electron diffraction validate predictions of stacked beta-solenoid model of HET-s prion fibrils. J Biol Chem 282:5545–5550. http://dx.doi.org/10.1074/jbc.M611464200 [PubMed]
113. Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH. 2010. Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775. http://dx.doi.org/10.1021/ja104213j
114. Daskalov A, Gantner M, Wälti MA, Schmidlin T, Chi CN, Wasmer C, Schütz A, Ceschin J, Clavé C, Cescau S, Meier B, Riek R, Saupe SJ. 2014. Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability. PLoS Pathog 10:e1004158. http://dx.doi.org/10.1371/journal.ppat.1004158
115. Wan W, Stubbs G. 2014. Fungal prion HET-s as a model for structural complexity and self-propagation in prions. Proc Natl Acad Sci USA 111:5201–5206. http://dx.doi.org/10.1073/pnas.1322933111 [PubMed]
116. Mizuno N, Baxa U, Steven AC. 2011. Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy. Proc Natl Acad Sci USA 108:3252–3257. http://dx.doi.org/10.1073/pnas.1011342108 [PubMed]
117. Shewmaker F, Wickner RB, Tycko R. 2006. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 103:19754–19759. http://dx.doi.org/10.1073/pnas.0609638103 [PubMed]
118. Wickner RB, Dyda F, Tycko R. 2008. Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure. Proc Natl Acad Sci USA 105:2403–2408. http://dx.doi.org/10.1073/pnas.0712032105 [PubMed]
119. Gorkovskiy A, Thurber KR, Tycko R, Wickner RB. 2014. Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci USA 111:E4615–E4622. http://dx.doi.org/10.1073/pnas.1417974111 [PubMed]
120. Baxa U, Taylor KL, Wall JS, Simon MN, Cheng N, Wickner RB, Steven AC. 2003. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J Biol Chem 278:43717–43727. http://dx.doi.org/10.1074/jbc.M306004200 [PubMed]
121. Chen B, Thurber KR, Shewmaker F, Wickner RB, Tycko R. 2009. Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci USA 106:14339–14344. http://dx.doi.org/10.1073/pnas.0907821106 [PubMed]
122. Kajava AV, Baxa U, Wickner RB, Steven AC. 2004. A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. Proc Natl Acad Sci USA 101:7885–7890. http://dx.doi.org/10.1073/pnas.0402427101 [PubMed]
123. Krishnan R, Lindquist SL. 2005. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772. http://dx.doi.org/10.1038/nature03679 [PubMed]
microbiolspec.FUNK-0029-2016.citations
cm/4/6
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0029-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0029-2016
2016-12-09
2017-11-19

Abstract:

Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the “protein-only” nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Natural situations of prion propagation in fungi. Prion propagation after hyphal anastomosis in a filamentous fungus (for instance, [Het-s] in ). The prion form is transmitted from a donor-infected strain (right) to a recipient strain (left). The prion form then converts the entire mycelium to the prion state due to cytoplasmic continuity throughout the thallus. Prion transmission also occurs in meiotic crosses with maternal inheritance (not depicted here). Prion propagation during mitotic cell divisions in yeast. Prion seeds are transmitted from mother to daughter cells during budding. Prion transmission during sexual crosses. In a cross between a [PRION] (left) and a [ ] strain (right), the resulting diploid is [PRION] and there is non-Mendelian segregation of the [PRION] character (often, but not always, with 4:0 segregation as in the example depicted here).

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.FUNK-0029-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure of HET-s prion-forming domain. Lateral view of a trimer of HET-s(218-289) in the prion amyloid conformation. Each monomer bears a different color, after pdb 2KJ3. View from the fibril axis of one HET-s(218-289) monomer; the N- and C-terminal ends are marked, after pdb 2KJ3. Structure of the two individual repeats of HET-s(218-289) marked R1 (position 226 to 246) and R2 (position 262 to 282) as well as the C-terminal semihydrophobic loop (position 283 to 289), after pdb 2KJ3. Amino acids are coded by chemical property (G in light gray, polar in green, hydrophobic in yellow, positively charged in red, negatively charged in blue, and aromatic in magenta). The sequence of HET-s(218-289) is given below with the same color coding in R1, R2 (underlined), and the C-terminal loop.

Source: microbiolspec December 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.FUNK-0029-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error