1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Cell Biology of Hyphal Growth

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Gero Steinberg1, Miguel A. Peñalva3, Meritxell Riquelme4, Han A. Wösten5, Steven D. Harris6
  • Editors: Joseph Heitman7, Neil A. R. Gow8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom; 2: Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands; 3: Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain; 4: Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico; 5: Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands; 6: Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660; 7: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 8: School of Medical Sciences, University of Aberdeen, Fosterhill, Aberdeen, AB25 2ZD, United Kingdom
  • Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
  • Received 28 November 2016 Accepted 08 December 2016 Published 21 April 2017
  • Gero Steinberg, gsteinberg@exeter.ac.uk
image of Cell Biology of Hyphal Growth
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Cell Biology of Hyphal Growth, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0034-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0034-2016-2.gif
  • Abstract:

    Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.

  • Citation: Steinberg G, Peñalva M, Riquelme M, Wösten H, Harris S. 2017. Cell Biology of Hyphal Growth. Microbiol Spectrum 5(2):FUNK-0034-2016. doi:10.1128/microbiolspec.FUNK-0034-2016.

Key Concept Ranking

Fungal Proteins
0.46827978
Mitogen-Activated Protein Kinase Pathway
0.44705534
0.46827978

References

1. Berbee ML, Taylor JW. 2010. Dating the molecular clock in fungi: how close are we? Fungal Biol Rev 24:1–16. http://dx.doi.org/10.1016/j.fbr.2010.03.001 [PubMed]
2. Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW. 2009. The fungi. Curr Biol 19:R840–R845. http://dx.doi.org/10.1016/j.cub.2009.07.004
3. Evans CS, Hedger JN. 2001. Degradation of plant cell wall polymers, p 1–26. In Gadd GM (ed), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511541780.002
4. Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. http://dx.doi.org/10.1007/s11104-008-9877-9
5. Iwashita K. 2002. Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94:530–535. http://dx.doi.org/10.1016/S1389-1723(02)80191-8
6. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. http://dx.doi.org/10.1126/scitranslmed.3004404 [PubMed]
7. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. http://dx.doi.org/10.1038/nature10947 [PubMed]
8. Harris SD. 2001. Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736–739. http://dx.doi.org/10.1016/S1369-5274(01)00276-4
9. Bartnicki-Garcia S, Lippman E. 1969. Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165:302–304. http://dx.doi.org/10.1126/science.165.3890.302 [PubMed]
10. Reinhardt MO. 1892. Das Wachstum von Pilzhyphen. Jahrb Wiss Bot 23:479–566.
11. Wessels JGH. 1988. A steady-state model for apical wall growth in fungi. Acta Bot Neerl 37:3–16. http://dx.doi.org/10.1111/j.1438-8677.1988.tb01576.x
12. Steinberg G. 2007. Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360. http://dx.doi.org/10.1128/EC.00381-06 [PubMed][CrossRef]
13. Riquelme M, Roberson RW, Sánchez-León E. 2016. Hyphal tip growth in filamentous fungi, p 47–66. In Wendland J (ed), Growth, Differentiation and Sexuality, vol. I, 3rd ed. Springer International Publishing, Cham, Switzerland.
14. Peñalva MA. 2010. Endocytosis in filamentous fungi: Cinderella gets her reward. Curr Opin Microbiol 13:684–692. http://dx.doi.org/10.1016/j.mib.2010.09.005 [PubMed]
15. Steinberg G. 2014. Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 20:10–18. http://dx.doi.org/10.1016/j.mib.2014.04.001 [PubMed]
16. Jedd G, Pieuchot L. 2012. Multiple modes for gatekeeping at fungal cell-to-cell channels. Mol Microbiol 86:1291–1294. http://dx.doi.org/10.1111/mmi.12074 [PubMed]
17. Wösten HA, van Veluw GJ, de Bekker C, Krijgsheld P. 2013. Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnol Lett 35:1155–1164. http://dx.doi.org/10.1007/s10529-013-1210-x [PubMed][CrossRef]
18. Harris SD. 2011. Hyphal morphogenesis: an evolutionary perspective. Fungal Biol 115:475–484. http://dx.doi.org/10.1016/j.funbio.2011.02.002 [PubMed]
19. Celio GJ, Padamsee M, Dentinger BT, Bauer R, McLaughlin DJ. 2006. Assembling the fungal tree of life: constructing the structural and biochemical database. Mycologia 98:850–859. http://dx.doi.org/10.3852/mycologia.98.6.850 [PubMed]
20. Harris SD. 2010. Hyphal growth and polarity, p 238–259. In Borkovich KA, Ebbole DJ (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC.
21. Riquelme M. 2013. Tip growth in filamentous fungi: a road trip to the apex. Annu Rev Microbiol 67:587–609. http://dx.doi.org/10.1146/annurev-micro-092412-155652 [PubMed]
22. Chang F, Peter M. 2003. Yeasts make their mark. Nat Cell Biol 5:294–299. http://dx.doi.org/10.1038/ncb0403-294 [PubMed]
23. Turrà D, El Ghalid M, Rossi F, Di Pietro A. 2015. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524. http://dx.doi.org/10.1038/nature15516
24. Chant J. 1999. Cell polarity in yeast. Annu Rev Cell Dev Biol 15:365–391. http://dx.doi.org/10.1146/annurev.cellbio.15.1.365
25. Chang F, Martin SG. 2009. Shaping fission yeast with microtubules. Cold Spring Harb Perspect Biol 1:a001347. http://dx.doi.org/10.1101/cshperspect.a001347 [PubMed]
26. Fischer R, Zekert N, Takeshita N. 2008. Polarized growth in fungi: interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826. http://dx.doi.org/10.1111/j.1365-2958.2008.06193.x
27. Justa-Schuch D, Heilig Y, Richthammer C, Seiler S. 2010. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol Microbiol 76:220–235. http://dx.doi.org/10.1111/j.1365-2958.2010.07093.x
28. Si H, Justa-Schuch D, Seiler S, Harris SD. 2010. Regulation of septum formation by the Bud3-Rho4 GTPase module in Aspergillus nidulans. Genetics 185:165–176. http://dx.doi.org/10.1534/genetics.110.114165
29. Harris SD. 1999. Morphogenesis is coordinated with nuclear division in germinating Aspergillus nidulans conidiospores. Microbiology 145:2747–2756. http://dx.doi.org/10.1099/00221287-145-10-2747
30. Konzack S, Rischitor PE, Enke C, Fischer R. 2005. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506. http://dx.doi.org/10.1091/mbc.E04-02-0083 [PubMed]
31. Harris SD. 2008. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100:823–832. http://dx.doi.org/10.3852/08-177 [PubMed]
32. Si H, Rittenour WR, Harris SD. 2016. Roles of Aspergillus nidulans Cdc42/Rho GTPase regulators in hyphal morphogenesis and development. Mycologia 108:543–555. http://dx.doi.org/10.3852/15-232
33. DeMay BS, Meseroll RA, Occhipinti P, Gladfelter AS. 2009. Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Mol Biol Cell 20:2311–2326. http://dx.doi.org/10.1091/mbc.E08-12-1169 [PubMed]
34. Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS. 2016. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213:23–32. http://dx.doi.org/10.1083/jcb.201512029
35. Semighini CP, Harris SD. 2008. Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179:1919–1932. http://dx.doi.org/10.1534/genetics.108.089318
36. Takemoto D, Tanaka A, Scott B. 2006. A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821. http://dx.doi.org/10.1105/tpc.106.046169
37. Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR. 2008. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449. http://dx.doi.org/10.1091/mbc.E07-05-0464 [PubMed]
38. Upadhyay S, Shaw BD. 2008. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68:690–705. http://dx.doi.org/10.1111/j.1365-2958.2008.06178.x [PubMed]
39. Schultzhaus Z, Yan H, Shaw BD. 2015. Aspergillus nidulans flippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB. Mol Microbiol 97:18–32. http://dx.doi.org/10.1111/mmi.13019
40. Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S. 2011. A role for endocytic recycling in hyphal growth. Fungal Biol 115:541–546. http://dx.doi.org/10.1016/j.funbio.2011.02.010 [PubMed]
41. Takeshita N, Higashitsuji Y, Konzack S, Fischer R. 2008. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351. http://dx.doi.org/10.1091/mbc.E07-06-0523
42. Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N. 2015. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv 1:e1500947. http://dx.doi.org/10.1126/sciadv.1500947
43. Pearson CL, Xu K, Sharpless KE, Harris SD. 2004. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol Biol Cell 15:3658–3672. http://dx.doi.org/10.1091/mbc.E03-11-0803 [PubMed][CrossRef]
44. Takeshita N, Diallinas G, Fischer R. 2012. The role of flotillin FloA and stomatin StoA in the maintenance of apical sterol-rich membrane domains and polarity in the filamentous fungus Aspergillus nidulans. Mol Microbiol 83:1136–1152. http://dx.doi.org/10.1111/j.1365-2958.2012.07996.x
45. Chang F, Minc N. 2014. Electrochemical control of cell and tissue polarity. Annu Rev Cell Dev Biol 30:317–336. http://dx.doi.org/10.1146/annurev-cellbio-100913-013357 [PubMed]
46. Thomson DD, Wehmeier S, Byfield FJ, Janmey PA, Caballero-Lima D, Crossley A, Brand AC. 2015. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae. Cell Microbiol 17:342–354. http://dx.doi.org/10.1111/cmi.12369
47. Lew DJ, Reed SI. 1995. Cell cycle control of morphogenesis in budding yeast. Curr Opin Genet Dev 5:17–23. http://dx.doi.org/10.1016/S0959-437X(95)90048-9
48. Wang Y. 2009. CDKs and the yeast-hyphal decision. Curr Opin Microbiol 12:644–649. http://dx.doi.org/10.1016/j.mib.2009.09.002 [PubMed]
49. Li CR, Au Yong JY, Wang YM, Wang Y. 2012. CDK regulates septin organization through cell-cycle-dependent phosphorylation of the Nim1-related kinase Gin4. J Cell Sci 125:2533–2543. http://dx.doi.org/10.1242/jcs.104497
50. Wang H, Huang ZX, Au Yong JY, Zou H, Zeng G, Gao J, Wang Y, Wong AH, Wang Y. 2016. CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth. Mol Microbiol 101:250–264. http://dx.doi.org/10.1111/mmi.13386 [PubMed]
51. Sgarlata C, Pérez-Martín J. 2005. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis. J Cell Sci 118:3607–3622. http://dx.doi.org/10.1242/jcs.02499
52. Morris NR. 1975. Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254. http://dx.doi.org/10.1017/S0016672300016049
53. Fiddy C, Trinci AP. 1976. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J Gen Microbiol 97:169–184. http://dx.doi.org/10.1099/00221287-97-2-169 [PubMed]
54. Momany M, Taylor I. 2000. Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology 146:3279–3284. http://dx.doi.org/10.1099/00221287-146-12-3279 [PubMed]
55. Gladfelter AS, Hungerbuehler AK, Philippsen P. 2006. Asynchronous nuclear division cycles in multinucleated cells. J Cell Biol 172:347–362. http://dx.doi.org/10.1083/jcb.200507003 [PubMed]
56. Bergen LG, Upshall A, Morris NR. 1984. S-phase, G2, and nuclear division mutants of Aspergillus nidulans. J Bacteriol 159:114–119. [PubMed]
57. Peñalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, Pantazopoulou A. 2012. Searching for gold beyond mitosis: mining intracellular membrane traffic in Aspergillus nidulans. Cell Logist 2:2–14. http://dx.doi.org/10.4161/cl.19304
58. Harris SD, Hofmann AF, Tedford HW, Lee MP. 1999. Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 151:1015–1025. [PubMed]
59. Momany M, Westfall PJ, Abramowsky G. 1999. Aspergillus nidulans swo mutants show defects in polarity establishment, polarity maintenance and hyphal morphogenesis. Genetics 151:557–567. [PubMed]
60. Pinar M, Pantazopoulou A, Arst HN Jr, Peñalva MA. 2013. Acute inactivation of the Aspergillus nidulans Golgi membrane fusion machinery: correlation of apical extension arrest and tip swelling with cisternal disorganization. Mol Microbiol 89:228–248. http://dx.doi.org/10.1111/mmi.12280
61. Malhotra V. 2013. Unconventional protein secretion: an evolving mechanism. EMBO J 32:1660–1664. http://dx.doi.org/10.1038/emboj.2013.104 [PubMed][CrossRef]
62. Klumperman J. 2011. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3:a005181. http://dx.doi.org/10.1101/cshperspect.a005181 [PubMed]
63. Pantazopoulou A. 2016. The Golgi apparatus: insights from filamentous fungi. Mycologia 108:603–622. http://dx.doi.org/10.3852/15-309 [PubMed]
64. Pantazopoulou A, Peñalva MA. 2011. Characterization of Aspergillus nidulans RabC/Rab6. Traffic 12:386–406. http://dx.doi.org/10.1111/j.1600-0854.2011.01164.x [PubMed]
65. Sánchez-León E, Bowman B, Seidel C, Fischer R, Novick P, Riquelme M. 2015. The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkörper microvesicles in Neurospora crassa. Mol Microbiol 95:472–490. http://dx.doi.org/10.1111/mmi.12878
66. Wooding S, Pelham HRB. 1998. The dynamics of Golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9:2667–2680. http://dx.doi.org/10.1091/mbc.9.9.2667 [PubMed]
67. Breakspear A, Langford KJ, Momany M, Assinder SJ. 2007. CopA:GFP localizes to putative Golgi equivalents in Aspergillus nidulans. FEMS Microbiol Lett 277:90–97. http://dx.doi.org/10.1111/j.1574-6968.2007.00945.x [PubMed]
68. Pantazopoulou A, Peñalva MA. 2009. Organization and dynamics of the Aspergillus nidulans Golgi during apical extension and mitosis. Mol Biol Cell 20:4335–4347. http://dx.doi.org/10.1091/mbc.E09-03-0254 [PubMed]
69. Glick BS, Luini A. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3:a005215. http://dx.doi.org/10.1101/cshperspect.a005215
70. Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS. 2006. Golgi maturation visualized in living yeast. Nature 441:1002–1006. http://dx.doi.org/10.1038/nature04717 [PubMed]
71. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A. 2006. Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010. http://dx.doi.org/10.1038/nature04737 [PubMed]
72. Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J. 2008. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067. http://dx.doi.org/10.1016/j.cell.2008.04.044
73. Papanikou E, Glick BS. 2014. Golgi compartmentation and identity. Curr Opin Cell Biol 29:74–81. http://dx.doi.org/10.1016/j.ceb.2014.04.010 [PubMed]
74. Bonifacino JS, Glick BS. 2004. The mechanisms of vesicle budding and fusion. Cell 116:153–166. http://dx.doi.org/10.1016/S0092-8674(03)01079-1
75. López-Berges MS, Pinar M, Abenza JF, Arst HN Jr, Peñalva MA. 2016. The Aspergillus nidulans syntaxin PepA(Pep12) is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles. Mol Microbiol 99:199–216. http://dx.doi.org/10.1111/mmi.13226 [PubMed]
76. Stanley P. 2011. Golgi glycosylation. Cold Spring Harb Perspect Biol 3:a005199. http://dx.doi.org/10.1101/cshperspect.a005199 [PubMed]
77. Jackson-Hayes L, Hill TW, Loprete DM, Fay LM, Gordon BS, Nkashama SA, Patel RK, Sartain CV. 2008. Two GDP-mannose transporters contribute to hyphal form and cell wall integrity in Aspergillus nidulans. Microbiology 154:2037–2047. http://dx.doi.org/10.1099/mic.0.2008/017483-0
78. Whyte JR, Munro S. 2001. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537. http://dx.doi.org/10.1016/S1534-5807(01)00063-6
79. Ungar D, Oka T, Krieger M, Hughson FM. 2006. Retrograde transport on the COG railway. Trends Cell Biol 16:113–120. http://dx.doi.org/10.1016/j.tcb.2005.12.004 [PubMed]
80. Gremillion SK, Harris SD, Jackson-Hayes L, Kaminskyj SG, Loprete DM, Gauthier AC, Mercer S, Ravita AJ, Hill TW. 2014. Mutations in proteins of the conserved oligomeric golgi complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 73:69–82. http://dx.doi.org/10.1016/j.fgb.2014.10.005
81. Arst HN Jr, Hernández-González M, Peñalva MA, Pantazopoulou A. 2014. GBF/Gea mutant with a single substitution sustains fungal growth in the absence of BIG/Sec7. FEBS Lett 588:4799–4806. http://dx.doi.org/10.1016/j.febslet.2014.11.014 [PubMed]
82. Pantazopoulou A, Pinar M, Xiang X, Peñalva MA. 2014. Maturation of late Golgi cisternae into RabERAB11 exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 25:2428–2443. http://dx.doi.org/10.1091/mbc.E14-02-0710
83. Pinar M, Arst HN Jr, Pantazopoulou A, Tagua VG, de los Ríos V, Rodríguez-Salarichs J, Díaz JF, Peñalva MA. 2015. TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabERAB11. Proc Natl Acad Sci USA 112:4346–4351. http://dx.doi.org/10.1073/pnas.1419168112 [PubMed]
84. Pinar M, Pantazopoulou A, Peñalva MA. 2013. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement. Autophagy 9:1024–1043. http://dx.doi.org/10.4161/auto.24483
85. Levine TP, Munro S. 2002. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704. http://dx.doi.org/10.1016/S0960-9822(02)00779-0
86. Daboussi L, Costaguta G, Payne GS. 2012. Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 14:239–248. http://dx.doi.org/10.1038/ncb2427 [PubMed]
87. Schultzhaus Z, Johnson TB, Shaw BD. 2017. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 103:299–318. http://dx.doi.org/10.1111/mmi.13557
88. Abenza JF, Pantazopoulou A, Rodríguez JM, Galindo A, Peñalva MA. 2009. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75. http://dx.doi.org/10.1111/j.1600-0854.2008.00848.x
89. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND. 2000. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259. http://dx.doi.org/10.1046/j.1365-2818.2000.00708.x
90. Valdez-Taubas J, Pelham HR. 2003. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13:1636–1640. http://dx.doi.org/10.1016/j.cub.2003.09.001
91. Gilbert MJ, Thornton CR, Wakley GE, Talbot NJ. 2006. A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440:535–539. http://dx.doi.org/10.1038/nature04567
92. Hernández-González M, Peñalva MA, Pantazopoulou A. 2015. Conditional inactivation of Aspergillus nidulans sarA(SAR1) uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 95:491–508. http://dx.doi.org/10.1111/mmi.12880
93. Veldhuisen G, Saloheimo M, Fiers MA, Punt PJ, Contreras R, Penttilä M, van den Hondel CA. 1997. Isolation and analysis of functional homologues of the secretion-related SAR1 gene of Saccharomyces cerevisiae from Aspergillus niger and Trichoderma reesei. Mol Gen Genet 256:446–455.
94. Lee SC, Shaw BD. 2008. Localization and function of ADP ribosylation factor A in Aspergillus nidulans. FEMS Microbiol Lett 283:216–222. http://dx.doi.org/10.1111/j.1574-6968.2008.01174.x [PubMed]
95. Morozova N, Liang Y, Tokarev AA, Chen SH, Cox R, Andrejic J, Lipatova Z, Sciorra VA, Emr SD, Segev N. 2006. TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF. Nat Cell Biol 8:1263–1269. http://dx.doi.org/10.1038/ncb1489
96. Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S, Reinisch KM. 2008. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133:1202–1213. http://dx.doi.org/10.1016/j.cell.2008.04.049
97. Yang Y, El-Ganiny AM, Bray GE, Sanders DAR, Kaminskyj SGW. 2008. Aspergillus nidulans hypB encodes a Sec7-domain protein important for hyphal morphogenesis. Fungal Genet Biol 45:749–759. http://dx.doi.org/10.1016/j.fgb.2007.11.005 [PubMed]
98. Girbardt M. 1957. Der Spitzenkörper von Polystictus versicolor. Planta 50:47–59. http://dx.doi.org/10.1007/BF01912343
99. Girbardt M. 1969. Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67:413–441. http://dx.doi.org/10.1007/BF01254905
100. López-Franco R, Bracker CE. 1996. Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195:90–111. http://dx.doi.org/10.1007/BF01279189
101. Chapa-y-Lazo B, Lee S, Regan H, Sudbery P. 2011. The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth. Fungal Biol 115:547–556. http://dx.doi.org/10.1016/j.funbio.2011.02.001 [PubMed]
102. Hoch HC, Staples RC. 1983. Ultrastructural organization of the nondifferentiated uredospore germling of Uromyces phaseoli variety typica. Mycologia 75:795–824. http://dx.doi.org/10.2307/3792772
103. Lehmler C, Steinberg G, Snetselaar KM, Schliwa M, Kahmann R, Bölker M. 1997. Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16:3464–3473. http://dx.doi.org/10.1093/emboj/16.12.3464 [PubMed]
104. Roberson RW, Saucedo E, Maclean D, Propster J, Unger B, Oneil TA, Parvanehgohar K, Cavanaugh C, Lowry D. 2011. The hyphal tip structure of Basidiobolus sp.: a zygomycete fungus of uncertain phylogeny. Fungal Biol 115:485–492. http://dx.doi.org/10.1016/j.funbio.2011.02.012
105. Vargas M, Aronson JM, Roberson RW. 1993. The cytoplasmic organization of hyphal tip cells in the fungus Allomyces macrogynus. Protoplasma 176:43–52. http://dx.doi.org/10.1007/BF01378938
106. McClure WK, Park D, Robinson PM. 1968. Apical organization in the somatic hyphae of fungi. J Gen Microbiol 50:177–182. http://dx.doi.org/10.1099/00221287-50-2-177 [PubMed]
107. Fisher KE, Roberson RW. 2016. Fungal hyphal growth: Spitzenkörper versus apical vesicle crescent. Fungal Genom Biol 6:136.
108. Fisher KE, Roberson RW. 2016. Hyphal tip cytoplasmic organization in four zygomycetous fungi. Mycologia 108:533–542. http://dx.doi.org/10.3852/15-226 [PubMed]
109. Bartnicki-Garcia S. 1973. Fundamental aspects of hyphal morphogenesis, p 245–267. In Ashworth JM, Smith E (ed), Microbial Differentiation. Cambridge University Press, Cambridge, United Kingdom.
110. Green PB. 1969. Cell morphogenesis. Annu Rev Plant Pathol 20:365–394. http://dx.doi.org/10.1146/annurev.pp.20.060169.002053
111. Robertson NF. 1965. Presidential address: the fungal hypha. Trans Br Mycol Soc 48:1–8. http://dx.doi.org/10.1016/S0007-1536(65)80001-8
112. Martínez-Núñez L, Riquelme M. 2015. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 85:58–70. http://dx.doi.org/10.1016/j.fgb.2015.11.001
113. Bourett TM, Howard RJ. 1991. Ultrastructural immunolocalization of actin in a fungus. Protoplasma 163:199–202. http://dx.doi.org/10.1007/BF01323344
114. Grove SN, Bracker CE. 1970. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol 104:989–1009. [PubMed]
115. Bartnicki-Garcia S, Hergert F, Gierz G. 1989. Computer simulation of fungal morphogenesis and the mathematical basis for hyphal tip growth. Protoplasma 153:46–57. http://dx.doi.org/10.1007/BF01322464
116. Latgé JP, Calderone R. 2006. The fungal cell wall, p 73–104. In Kues U, Fischer R (ed), The Mycota, vol. 1, Springer-Verlag, Berlin, Germany.
117. Sietsma JH, Wessels JGH. 2006. Apical wall biogenesis, p 53–72. In Kues U, Fischer R (ed), The Mycota, Vol. 1. Springer-Verlag, Berlin, Germany.
118. Riquelme M, Bartnicki-García S, González-Prieto JM, Sánchez-León E, Verdín-Ramos JA, Beltrán-Aguilar A, Freitag M. 2007. Spitzenkorper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 6:1853–1864. http://dx.doi.org/10.1128/EC.00088-07
119. Verdín J, Bartnicki-Garcia S, Riquelme M. 2009. Functional stratification of the Spitzenkörper of Neurospora crassa. Mol Microbiol 74:1044–1053. http://dx.doi.org/10.1111/j.1365-2958.2009.06917.x
120. Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S, Beltrán-Aguilar A, Seiler S, Novick P, Freitag M. 2014. The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Mol Biol Cell 25:1312–1326. http://dx.doi.org/10.1091/mbc.E13-06-0299
121. Peñalva MA. 2015. A lipid-managing program maintains a stout Spitzenkörper. Mol Microbiol 97:1–6. http://dx.doi.org/10.1111/mmi.13044
122. Bartnicki-Garcia S. 2002. Hyphal tip growth: outstanding questions, p 29–58. In Osiewacz HD, Molecular Biology of Fungal Development. Marcel Dekker, New York, NY.
123. Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M. 2005. Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229. http://dx.doi.org/10.1128/EC.4.2.225-229.2005 [PubMed]
124. Berepiki A, Lichius A, Shoji JY, Tilsner J, Read ND. 2010. F-actin dynamics in Neurospora crassa. Eukaryot Cell 9:547–557. http://dx.doi.org/10.1128/EC.00253-09 [PubMed]
125. Delgado-Álvarez DL, Callejas-Negrete OA, Gómez N, Freitag M, Roberson RW, Smith LG, Mouriño-Pérez RR. 2010. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 47:573–586. http://dx.doi.org/10.1016/j.fgb.2010.03.004
126. Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M, Howard J, Fischer R. 2013. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J Cell Sci 126:5400–5411. http://dx.doi.org/10.1242/jcs.129841
127. Horio T, Oakley BR. 2005. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926. http://dx.doi.org/10.1091/mbc.E04-09-0798 [PubMed]
128. Riquelme M, Gierz G, Bartnicki-García S. 2000. Dynein and dynactin deficiencies affect the formation and function of the Spitzenkörper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146:1743–1752. http://dx.doi.org/10.1099/00221287-146-7-1743
129. Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. 2013. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot Cell 12:998–1008. http://dx.doi.org/10.1128/EC.00085-13
130. Riquelme M, Reynaga-Peña CG, Gierz G, Bartnicki-García S. 1998. What determines growth direction in fungal hyphae? Fungal Genet Biol 24:101–109. http://dx.doi.org/10.1006/fgbi.1998.1074
131. Vida TA, Emr SD. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792. http://dx.doi.org/10.1083/jcb.128.5.779
132. Treitschke S, Doehlemann G, Schuster M, Steinberg G. 2010. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 22:2476–2494. http://dx.doi.org/10.1105/tpc.110.075028
133. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553. http://dx.doi.org/10.1016/j.cub.2013.06.057 [PubMed]
134. Weber I, Assmann D, Thines E, Steinberg G. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242. http://dx.doi.org/10.1105/tpc.105.037341
135. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. 2012. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227. http://dx.doi.org/10.1038/emboj.2011.361 [PubMed]
136. Schuster M, Martin-Urdiroz M, Higuchi Y, Hacker C, Kilaru S, Gurr SJ, Steinberg G. 2016. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol 1:16149. http://dx.doi.org/10.1038/nmicrobiol.2016.149
137. Fujiwara M, Horiuchi H, Ohta A, Takagi M. 1997. A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 236:75–78. http://dx.doi.org/10.1006/bbrc.1997.6907 [PubMed]
138. Aufauvre-Brown A, Mellado E, Gow NA, Holden DW. 1997. Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21:141–152. http://dx.doi.org/10.1006/fgbi.1997.0959 [PubMed]
139. Jiménez-Ortigosa C, Aimanianda V, Muszkieta L, Mouyna I, Alsteens D, Pire S, Beau R, Krappmann S, Beauvais A, Dufrêne YF, Roncero C, Latgé JP. 2012. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob Agents Chemother 56:6121–6131. http://dx.doi.org/10.1128/AAC.00752-12
140. Madrid MP, Di Pietro A, Roncero MI. 2003. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47:257–266. http://dx.doi.org/10.1046/j.1365-2958.2003.03299.x
141. Werner S, Sugui JA, Steinberg G, Deising HB. 2007. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Microbe Interact 20:1555–1567. http://dx.doi.org/10.1094/MPMI-20-12-1555
142. Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL. 2012. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporth eoryzae. PLoS Pathog 8:e1002526. http://dx.doi.org/10.1371/journal.ppat.1002526
143. Fajardo-Somera RA, Jöhnk B, Bayram Ö, Valerius O, Braus GH, Riquelme M. 2015. Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet Biol 75:30–45. http://dx.doi.org/10.1016/j.fgb.2015.01.002
144. Horiuchi H, Fujiwara M, Yamashita S, Ohta A, Takagi M. 1999. Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181:3721–3729. [PubMed]
145. Takeshita N, Wernet V, Tsuizaki M, Grün N, Hoshi HO, Ohta A, Fischer R, Horiuchi H. 2015. Transportation of Aspergillus nidulans class III and V chitin synthases to the hyphal tips depends on conventional kinesin. PLoS One 10:e0125937. http://dx.doi.org/10.1371/journal.pone.0125937
146. Takeshita N, Ohta A, Horiuchi H. 2005. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16:1961–1970. http://dx.doi.org/10.1091/mbc.E04-09-0761
147. Read ND, Kalkman ER. 2003. Does endocytosis occur in fungal hyphae? Fungal Genet Biol 39:199–203. http://dx.doi.org/10.1016/S1087-1845(03)00045-8
148. Hoffmann J, Mendgen K. 1998. Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85. http://dx.doi.org/10.1006/fgbi.1998.1059 [PubMed]
149. Steinberg G, Schliwa M, Lehmler C, Bölker M, Kahmann R, McIntosh JR. 1998. Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J Cell Sci 111:2235–2246. [PubMed]
150. Atkinson HA, Daniels A, Read ND. 2002. Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 37:233–244. http://dx.doi.org/10.1016/S1087-1845(02)00535-2
151. Peñalva MA. 2005. Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 42:963–975. http://dx.doi.org/10.1016/j.fgb.2005.09.004 [PubMed]
152. Araujo-Bazán L, Peñalva MA, Espeso EA. 2008. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905. http://dx.doi.org/10.1111/j.1365-2958.2007.06102.x
153. Echauri-Espinosa RO, Callejas-Negrete OA, Roberson RW, Bartnicki-García S, Mouriño-Pérez RR. 2012. Coronin is a component of the endocytic collar of hyphae of Neurospora crassa and is necessary for normal growth and morphogenesis. PLoS One 7:e38237. http://dx.doi.org/10.1371/journal.pone.0038237
154. Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, Whiteway M. 2013. Clathrin- and Arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio 4:e00476-13. http://dx.doi.org/10.1128/mBio.00476-13
155. Fuchs U, Hause G, Schuchardt I, Steinberg G. 2006. Endocytosis is essential for pathogenic development in the corn smut fungus Ustilago maydis. Plant Cell 18:2066–2081. http://dx.doi.org/10.1105/tpc.105.039388
156. Higuchi Y, Shoji JY, Arioka M, Kitamoto K. 2009. Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. Eukaryot Cell 8:37–46. http://dx.doi.org/10.1128/EC.00207-08 [PubMed]
157. Jorde S, Walther A, Wendland J. 2011. The Ashbya gossypii fimbrin SAC6 is required for fast polarized hyphal tip growth and endocytosis. Microbiol Res 166:137–145. http://dx.doi.org/10.1016/j.micres.2010.09.003 [PubMed]
158. Martin R, Hellwig D, Schaub Y, Bauer J, Walther A, Wendland J. 2007. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis. Yeast 24:511–522. http://dx.doi.org/10.1002/yea.1489
159. Matsuo K, Higuchi Y, Kikuma T, Arioka M, Kitamoto K. 2013. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae. Fungal Genet Biol 56:125–134. http://dx.doi.org/10.1016/j.fgb.2013.03.007
160. Wedlich-Söldner R, Bölker M, Kahmann R, Steinberg G. 2000. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J 19:1974–1986. http://dx.doi.org/10.1093/emboj/19.9.1974 [PubMed]
161. Higuchi Y, Ashwin P, Roger Y, Steinberg G. 2014. Early endosome motility spatially organizes polysome distribution. J Cell Biol 204:343–357. http://dx.doi.org/10.1083/jcb.201307164
162. Lemmon MA. 2003. Phosphoinositide recognition domains. Traffic 4:201–213. http://dx.doi.org/10.1034/j.1600-0854.2004.00071.x
163. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M. 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329. http://dx.doi.org/10.1016/0092-8674(90)90369-P [PubMed]
164. van der Sluijs P, Hull M, Webster P, Mâle P, Goud B, Mellman I. 1992. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70:729–740. http://dx.doi.org/10.1016/0092-8674(92)90307-X
165. Seidel C, Moreno-Velásquez SD, Riquelme M, Fischer R. 2013. Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth. Eukaryot Cell 12:1020–1032. http://dx.doi.org/10.1128/EC.00081-13
166. Kilaru S, Schuster M, Latz M, Guo M, Steinberg G. 2015. Fluorescent markers of the endocytic pathway in Zymoseptoria tritici. Fungal Genet Biol 79:150–157. http://dx.doi.org/10.1016/j.fgb.2015.03.019
167. Egan MJ, McClintock MA, Reck-Peterson SL. 2012. Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 15:637–645. http://dx.doi.org/10.1016/j.mib.2012.10.003 [PubMed]
168. Svoboda K, Schmidt CF, Schnapp BJ, Block SM. 1993. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727. http://dx.doi.org/10.1038/365721a0
169. Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H. 2006. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci USA 103:5741–5745. http://dx.doi.org/10.1073/pnas.0508511103
170. Plamann M, Minke PF, Tinsley JH, Bruno KS. 1994. Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127:139–149. http://dx.doi.org/10.1083/jcb.127.1.139 [PubMed]
171. Xiang X, Beckwith SM, Morris NR. 1994. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci USA 91:2100–2104. http://dx.doi.org/10.1073/pnas.91.6.2100 [PubMed]
172. Steinberg G, Schliwa M. 1995. The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties. Mol Biol Cell 6:1605–1618. http://dx.doi.org/10.1091/mbc.6.11.1605
173. Wu Q, Sandrock TM, Turgeon BG, Yoder OC, Wirsel SG, Aist JR. 1998. A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol Biol Cell 9:89–101. http://dx.doi.org/10.1091/mbc.9.1.89 [PubMed]
174. Steinberg G. 1997. A kinesin-like mechanoenzyme from the zygomycete Syncephalastrum racemosum shares biochemical similarities with conventional kinesin from Neurospora crassa. Eur J Cell Biol 73:124–131. [PubMed]
175. Lenz JH, Schuchardt I, Straube A, Steinberg G. 2006. A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25:2275–2286. http://dx.doi.org/10.1038/sj.emboj.7601119
176. Zhang J, Li S, Fischer R, Xiang X. 2003. Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 14:1479–1488. http://dx.doi.org/10.1091/mbc.E02-08-0516 [PubMed]
177. Steinberg G. 2011. Motors in fungal morphogenesis: cooperation versus competition. Curr Opin Microbiol 14:660–667. http://dx.doi.org/10.1016/j.mib.2011.09.013 [PubMed]
178. Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G. 2002. A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957. http://dx.doi.org/10.1093/emboj/cdf296 [PubMed]
179. Egan MJ, Tan K, Reck-Peterson SL. 2012. Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197:971–982. http://dx.doi.org/10.1083/jcb.201112101 [PubMed]
180. Zekert N, Fischer R. 2009. The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 20:673–684. http://dx.doi.org/10.1091/mbc.E08-07-0685 [PubMed]
181. Miki H, Setou M, Kaneshiro K, Hirokawa N. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004–7011. http://dx.doi.org/10.1073/pnas.111145398
182. Steinberg G, Perez-Martin J. 2008. Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67. http://dx.doi.org/10.1016/j.tcb.2007.11.008 [PubMed]
183. Higuchi Y, Nakahama T, Shoji JY, Arioka M, Kitamoto K. 2006. Visualization of the endocytic pathway in the filamentous fungus Aspergillus oryzae using an EGFP-fused plasma membrane protein. Biochem Biophys Res Commun 340:784–791. http://dx.doi.org/10.1016/j.bbrc.2005.12.077
184. Han G, Liu B, Zhang J, Zuo W, Morris NR, Xiang X. 2001. The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 11:719–724. http://dx.doi.org/10.1016/S0960-9822(01)00200-7
185. Schuster M, Kilaru S, Ashwin P, Lin C, Severs NJ, Steinberg G. 2011. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J 30:652–664. http://dx.doi.org/10.1038/emboj.2010.360 [PubMed]
186. Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G. 2011. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc Natl Acad Sci USA 108:3618–3623. http://dx.doi.org/10.1073/pnas.1015839108
187. Zhang J, Qiu R, Arst HN Jr, Peñalva MA, Xiang X. 2014. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J Cell Biol 204:1009–1026. http://dx.doi.org/10.1083/jcb.201308009
188. Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM, Talbot NJ, Steinberg G. 2014. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J Cell Biol 204:989–1007. http://dx.doi.org/10.1083/jcb.201309022
189. Yao X, Wang X, Xiang X. 2014. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus. Mol Biol Cell 25:2181–2189. http://dx.doi.org/10.1091/mbc.E14-04-0873 [PubMed]
190. Zhang J, Yao X, Fischer L, Abenza JF, Peñalva MA, Xiang X. 2011. The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. J Cell Biol 193:1245–1255. http://dx.doi.org/10.1083/jcb.201011022 [PubMed]
191. Yao X, Arst HN Jr, Wang X, Xiang X. 2015. Discovery of a vezatin-like protein for dynein-mediated early endosome transport. Mol Biol Cell 26:3816–3827. http://dx.doi.org/10.1091/mbc.E15-08-0602
192. Steinberg G. 2015. Kinesin-3 in the basidiomycete Ustilago maydis transports organelles along the entire microtubule array. Fungal Genet Biol 74:59–61. http://dx.doi.org/10.1016/j.fgb.2014.10.010
193. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. 2005. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749. http://dx.doi.org/10.1016/j.cell.2005.06.043 [PubMed]
194. Abenza JF, Galindo A, Pinar M, Pantazopoulou A, de los Ríos V, Peñalva MA. 2012. Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement. Mol Biol Cell 23:1889–1901. http://dx.doi.org/10.1091/mbc.E11-11-0925
195. Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Ríos V, Peñalva MA. 2010. Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 21:2756–2769. http://dx.doi.org/10.1091/mbc.E10-02-0119
196. Schnitzer MJ, Block SM. 1997. Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390. http://dx.doi.org/10.1038/41111
197. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. 2012. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 125:2740–2752. http://dx.doi.org/10.1242/jcs.101212 [PubMed]
198. König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M. 2009. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28:1855–1866. http://dx.doi.org/10.1038/emboj.2009.145 [PubMed]
199. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. 2015. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. eLife 4:e06041. http://dx.doi.org/10.7554/eLife.06041
200. Vollmeister E, Schipper K, Feldbrügge M. 2012. Microtubule-dependent mRNA transport in the model microorganism Ustilago maydis. RNA Biol 9:261–268. http://dx.doi.org/10.4161/rna.19432
201. Guimaraes SC, Schuster M, Bielska E, Dagdas G, Kilaru S, Meadows BR, Schrader M, Steinberg G. 2015. Peroxisomes, lipid droplets, and endoplasmic reticulum “hitchhike” on motile early endosomes. J Cell Biol 211:945–954. http://dx.doi.org/10.1083/jcb.201505086
202. Salogiannis J, Egan MJ, Reck-Peterson SL. 2016. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J Cell Biol 212:289–296. http://dx.doi.org/10.1083/jcb.201512020
203. Lin C, Schuster M, Guimaraes SC, Ashwin P, Schrader M, Metz J, Hacker C, Gurr SJ, Steinberg G. 2016. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 7:11814. http://dx.doi.org/10.1038/ncomms11814
204. Salogiannis J, Reck-Peterson SL. 2017. Hitchhiking: a non-canonical mode of microtubule-based transport. Trends Cell Biol 27:141–150. http://dx.doi.org/10.1016/j.tcb.2016.09.005
205. Baumann S, König J, Koepke J, Feldbrügge M. 2014. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep 15:94–102. http://dx.doi.org/10.1002/embr.201338037
206. Zander S, Baumann S, Weidtkamp-Peters S, Feldbrügge M. 2016. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J Cell Sci 129:2778–2792. http://dx.doi.org/10.1242/jcs.182824
207. Fink G, Steinberg G. 2006. Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol Biol Cell 17:3242–3253. http://dx.doi.org/10.1091/mbc.E05-12-1118 [PubMed]
208. Steinberg G, Wedlich-Söldner R, Brill M, Schulz I. 2001. Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci 114:609–622. [PubMed]
209. Schrader M, Godinho LF, Costello JL, Islinger M. 2015. The different facets of organelle interplay: an overview of organelle interactions. Front Cell Dev Biol 3:56. http://dx.doi.org/10.3389/fcell.2015.00056 [PubMed]
210. Egan MJ, McClintock MA, Hollyer IH, Elliott HL, Reck-Peterson SL. 2015. Cytoplasmic dynein is required for the spatial organization of protein aggregates in filamentous fungi. Cell Reports 11:201–209. http://dx.doi.org/10.1016/j.celrep.2015.03.028
211. Chumley FG, Valent B. 1990. Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143. http://dx.doi.org/10.1094/MPMI-3-135
212. Gómez BL, Nosanchuk JD. 2003. Melanin and fungi. Curr Opin Infect Dis 16:91–96. http://dx.doi.org/10.1097/00001432-200304000-00005
213. Nosanchuk JD, Casadevall A. 2006. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50:3519–3528. http://dx.doi.org/10.1128/AAC.00545-06
214. Jackson JC, Higgins LA, Lin X. 2009. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One 4:e4224. http://dx.doi.org/10.1371/journal.pone.0004224
215. Upadhyay S, Xu X, Lowry D, Jackson JC, Roberson RW, Lin X. 2016. Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin. Cell Rep 14:2511–2518. http://dx.doi.org/10.1016/j.celrep.2016.02.059 [PubMed]
216. Fuchs U, Manns I, Steinberg G. 2005. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 16:2746–2758. http://dx.doi.org/10.1091/mbc.E05-03-0176
217. Miaczynska M, Pelkmans L, Zerial M. 2004. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406. http://dx.doi.org/10.1016/j.ceb.2004.06.005
218. Steinberg G. 2007. On the move: endosomes in fungal growth and pathogenicity. Nat Rev Microbiol 5:309–316. http://dx.doi.org/10.1038/nrmicro1618
219. Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S, Talbot NJ, Steinberg G. 2014. Long-distance endosome trafficking drives fungal effector production during plant infection. Nat Commun 5:5097. http://dx.doi.org/10.1038/ncomms6097
220. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R. 2011. Metabolic priming by a secreted fungal effector. Nature 478:395–398. http://dx.doi.org/10.1038/nature10454 [PubMed]
221. Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290. http://dx.doi.org/10.1371/journal.ppat.1000290
222. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684. http://dx.doi.org/10.1371/journal.ppat.1002684
223. Garrido E, Pérez-Martín J. 2003. The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol Microbiol 47:729–743. http://dx.doi.org/10.1046/j.1365-2958.2003.03323.x
224. Delgado-Álvarez DL, Bartnicki-García S, Seiler S, Mouriño-Pérez RR. 2014. Septum development in Neurospora crassa: the septal actomyosin tangle. PLoS One 9:e96744. http://dx.doi.org/10.1371/journal.pone.0096744
225. Momany M, Hamer JE. 1997. Relationship of actin, microtubules, and crosswall synthesis during septation in Aspergillus nidulans. Cell Motil Cytoskeleton 38:373–384. http://dx.doi.org/10.1002/(SICI)1097-0169(1997)38:4<373::AID-CM7>3.0.CO;2-4
226. García Cortés JC, Ramos M, Osumi M, Pérez P, Ribas JC. 2016. The cell biology of fission yeast septation. Microbiol Mol Biol Rev 80:779–791. http://dx.doi.org/10.1128/MMBR.00013-16
227. Seiler S, Justa-Schuch D. 2010. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 78:1058–1076. http://dx.doi.org/10.1111/j.1365-2958.2010.07392.x
228. Willet AH, McDonald NA, Gould KL. 2015. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe. Curr Opin Microbiol 28:46–52. http://dx.doi.org/10.1016/j.mib.2015.08.001
229. Harris SD, Kraus PR. 1998. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics 148:1055–1067. [PubMed]
230. Wolkow TD, Harris SD, Hamer JE. 1996. Cytokinesis in Aspergillus nidulans is controlled by cell size, nuclear positioning and mitosis. J Cell Sci 109:2179–2188. [PubMed]
231. Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD. 2012. Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol 85:252–270. http://dx.doi.org/10.1111/j.1365-2958.2012.08108.x
232. Sharpless KE, Harris SD. 2002. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479. http://dx.doi.org/10.1091/mbc.01-07-0356
233. Virag A, Harris SD. 2006. Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot Cell 5:881–895. http://dx.doi.org/10.1128/EC.00036-06
234. Cotado-Sampayo M, Ortega Pérez R, Ojha M, Seum C, Barja F. 2011. Characterization of Neurospora crassa α-actinin. Curr Microbiol 63:100–105. http://dx.doi.org/10.1007/s00284-011-9954-9
235. Wang J, Hu H, Wang S, Shi J, Chen S, Wei H, Xu X, Lu L. 2009. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology 155:2714–2725. http://dx.doi.org/10.1099/mic.0.029215-0
236. Ichinomiya M, Yamada E, Yamashita S, Ohta A, Horiuchi H. 2005. Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 4:1125–1136. http://dx.doi.org/10.1128/EC.4.6.1125-1136.2005
237. Berlin A, Paoletti A, Chang F. 2003. Mid2p stabilizes septin rings during cytokinesis in fission yeast. J Cell Biol 160:1083–1092. http://dx.doi.org/10.1083/jcb.200212016 [PubMed]
238. Kang PJ, Hood-DeGrenier JK, Park HO. 2013. Coupling of septins to the axial landmark by Bud4 in budding yeast. J Cell Sci 126:1218–1226. http://dx.doi.org/10.1242/jcs.118521
239. Berepiki A, Read ND. 2013. Septins are important for cell polarity, septation and asexual spore formation in Neurospora crassa and show different patterns of localisation at germ tube tips. PLoS One 8:e63843. http://dx.doi.org/10.1371/journal.pone.0063843
240. Juvvadi PR, Fortwendel JR, Rogg LE, Steinbach WJ. 2011. Differential localization patterns of septins during growth of the human fungal pathogen Aspergillus fumigatus reveal novel functions. Biochem Biophys Res Commun 405:238–243. http://dx.doi.org/10.1016/j.bbrc.2011.01.017
241. Lindsey R, Cowden S, Hernández-Rodríguez Y, Momany M. 2010. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. Eukaryot Cell 9:155–163. http://dx.doi.org/10.1128/EC.00269-09
242. Vargas-Muñiz JM, Renshaw H, Richards AD, Waitt G, Soderblom EJ, Moseley MA, Asfaw Y, Juvvadi PR, Steinbach WJ. 2016. Dephosphorylation of the core septin, AspB, in a protein phosphatase 2A-dependent manner impacts its localization and function in the fungal pathogen Aspergillus fumigatus. Front Microbiol 7:997. http://dx.doi.org/10.3389/fmicb.2016.00997
243. Rasmussen CG, Glass NL. 2005. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. Eukaryot Cell 4:1913–1925. http://dx.doi.org/10.1128/EC.4.11.1913-1925.2005 [PubMed]
244. Simanis V. 2015. Pombe’s thirteen: control of fission yeast cell division by the septation initiation network. J Cell Sci 128:1465–1474. http://dx.doi.org/10.1242/jcs.094821
245. Bruno KS, Morrell JL, Hamer JE, Staiger CJ. 2001. SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Mol Microbiol 42:3–12. http://dx.doi.org/10.1046/j.1365-2958.2001.02605.x
246. Kim JM, Lu L, Shao R, Chin J, Liu B. 2006. Isolation of mutations that bypass the requirement of the septation initiation network for septum formation and conidiation in Aspergillus nidulans. Genetics 173:685–696. http://dx.doi.org/10.1534/genetics.105.054304
247. Kim JM, Zeng CJ, Nayak T, Shao R, Huang AC, Oakley BR, Liu B. 2009. Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 20:2874–2884. http://dx.doi.org/10.1091/mbc.E08-12-1177
248. Min K, Son H, Lim JY, Choi GJ, Kim JC, Harris SD, Lee YW. 2014. Transcription factor RFX1 is crucial for maintenance of genome integrity in Fusarium graminearum. Eukaryot Cell 13:427–436. http://dx.doi.org/10.1128/EC.00293-13 [PubMed]
249. Bracker CE, Butler EE. 1963. The ultrastructure and development of septa in hyphae of Rhizoctonia solani. Mycologia 55:35–58. http://dx.doi.org/10.2307/3756380
250. Bracker CE, Butler EE. 1964. Function of the septal pore apparatus in Rhizoctonia solani during protoplasmic streaming. J Cell Biol 21:152–157. http://dx.doi.org/10.1083/jcb.21.1.152 [PubMed]
251. Gull K. 1978. Form and function of septa in filamentous fungi, p 78–93. In Smith JE (ed), The Filamentous Fungi: Developmental Mycology, vol 3. Edward Arnold, London, United Kingdom.
252. Moore RT, McAlear JH. 1962. Fine structure of mycota. 7. Observations on septa of ascomycetes and basidiomycetes. Am J Bot 49:86–94. http://dx.doi.org/10.2307/2439393
253. Jennings DH. 1987. Translocation of solutes in fungi. Biol Rev Camb Philos Soc 62:215–243. http://dx.doi.org/10.1111/j.1469-185X.1987.tb00664.x
254. Lew RR. 2005. Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiology 151:2685–2692. http://dx.doi.org/10.1099/mic.0.27947-0 [PubMed]
255. Wösten HA, Moukha SM, Sietsma JH, Wessels JG. 1991. Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023. http://dx.doi.org/10.1099/00221287-137-8-2017 [PubMed]
256. Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NN, Wösten HA. 2007. Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322. http://dx.doi.org/10.1128/EC.00244-07 [PubMed]
257. de Bekker C, Bruning O, Jonker MJ, Breit TM, Wösten HA. 2011. Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12:R71. http://dx.doi.org/10.1186/gb-2011-12-8-r71
258. de Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HA. 2011. Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77:1263–1267. http://dx.doi.org/10.1128/AEM.02134-10 [PubMed]
259. Krijgsheld P, Altelaar AF, Post H, Ringrose JH, Müller WH, Heck AJ, Wösten HA. 2012. Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818. http://dx.doi.org/10.1021/pr201157b
260. Krijgsheld P, Nitsche BM, Post H, Levin AM, Müller WH, Heck AJ, Ram AF, Altelaar AF, Wösten HA. 2013. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. J Proteome Res 12:1808–1819. http://dx.doi.org/10.1021/pr301154w [PubMed]
261. Bleichrodt RJ, van Veluw GJ, Recter B, Maruyama J, Kitamoto K, Wösten HA. 2012. Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86:1334–1344. http://dx.doi.org/10.1111/mmi.12077
262. Teertstra WR, Lugones LG, Wösten HA. 2004. In situ hybridisation in filamentous fungi using peptide nucleic acid probes. Fungal Genet Biol 41:1099–1103. http://dx.doi.org/10.1016/j.fgb.2004.08.010 [PubMed]
263. van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beek N, Muller WH, Arentshorst M, van der Mei HC, Ram AF, Dijksterhuis J, Wösten HA. 2013. Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants. Stud Mycol 74:47–57. http://dx.doi.org/10.3114/sim0008
264. Vinck A, de Bekker C, Ossin A, Ohm RA, de Vries RP, Wösten HA. 2011. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies. Environ Microbiol 13:216–225. http://dx.doi.org/10.1111/j.1462-2920.2010.02322.x
265. Vinck A, Terlou M, Pestman WR, Martens EP, Ram AF, van den Hondel CA, Wösten HA. 2005. Hyphal differentiation in the exploring mycelium of Aspergillus niger. Mol Microbiol 58:693–699. http://dx.doi.org/10.1111/j.1365-2958.2005.04869.x [PubMed]
266. Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleissner A, Freitag M, Lew RR, Mouriño-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK. 2011. Architecture and development of the Neurospora crassa hypha:- a model cell for polarized growth. Fungal Biol 115:446–474. http://dx.doi.org/10.1016/j.funbio.2011.02.008
267. Roberson RW, Abril M, Blackwell M, Letcher P, McLaughlin D, Mourino-Perez RR, Riquelme M, Uchida M. 2010. Hyphal structure, in cellular and molecular biology of filamentous fungi, p 8–24. In Borkovich K, Ebbole DJ (ed), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC.
268. Heath IB. 1994. The cytoskeleton in hyphal growth, organelle movements, and mitosis, p 43–65. In Wessels JGH, Meinhardt F (ed), The Mycota I: Growth, Differentiation and Sexuality. Springer Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-662-11908-2_3
269. Simonin A, Palma-Guerrero J, Fricker M, Glass NL. 2012. Physiological significance of network organization in fungi. Eukaryot Cell 11:1345–1352. http://dx.doi.org/10.1128/EC.00213-12
270. Amir R, Steudle E, Levanon D, Hadar Y, Chet I. 1995. Turgor changes in Morchella esculenta during translocation and sclerotial formation. Exp Mycol 19:129–136. http://dx.doi.org/10.1006/emyc.1995.1015
271. Brownlee C, Jennings DH. 1982. The pathway of translocation in Serpula lacrimans. Trans Br Mycol Soc 79:401–407. http://dx.doi.org/10.1016/S0007-1536(82)80033-8
272. Abadeh A, Lew RR. 2013. Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport. Microbiology 159:2386–2394. http://dx.doi.org/10.1099/mic.0.071191-0
273. Lew RR, Levina NN, Walker SK, Garrill A. 2004. Turgor regulation in hyphal organisms. Fungal Genet Biol 41:1007–1015. http://dx.doi.org/10.1016/j.fgb.2004.07.007 [PubMed]
274. Brody JP, Yager P, Goldstein RE, Austin RH. 1996. Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441. http://dx.doi.org/10.1016/S0006-3495(96)79538-3 [PubMed]
275. Steinberg G, Schliwa M. 1996. Characterization of the biophysical and motility properties of kinesin from the fungus Neurospora crassa. J Biol Chem 271:7516–7521. http://dx.doi.org/10.1074/jbc.271.13.7516
276. Ramos-García SL, Roberson RW, Freitag M, Bartnicki-García S, Mouriño-Pérez RR. 2009. Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. Eukaryot Cell 8:1880–1890. http://dx.doi.org/10.1128/EC.00062-09 [PubMed]
277. Xiang X, Plamann M. 2003. Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633. http://dx.doi.org/10.1016/j.mib.2003.10.009 [PubMed]
278. Steinberg G. 2000. The cellular roles of molecular motors in fungi. Trends Microbiol 8:162–168. http://dx.doi.org/10.1016/S0966-842X(00)01720-0
279. Bleichrodt RJ, Hulsman M, Wösten HA, Reinders MJ. 2015. Switching from a unicellular to multicellular organization in an Aspergillus niger hypha. MBio 6:e00111-15. http://dx.doi.org/10.1128/mBio.00111-15
280. Meijer WH, Gidijala L, Fekken S, Kiel JA, van den Berg MA, Lascaris R, Bovenberg RA, van der Klei IJ. 2010. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709. http://dx.doi.org/10.1128/AEM.02327-09
281. Pieuchot L, Lai J, Loh RA, Leong FY, Chiam KH, Stajich J, Jedd G. 2015. Cellular subcompartments through cytoplasmic streaming. Dev Cell 34:410–420. http://dx.doi.org/10.1016/j.devcel.2015.07.017
282. Bleichrodt RJ, Vinck A, Read ND, Wösten HA. 2015. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genet Biol 82:193–200. http://dx.doi.org/10.1016/j.fgb.2015.06.010
283. Reynaga-Peña CG, Bartnicki-Garcia S. 1997. Apical branching in a temperature sensitive mutant of Aspergillus niger. Fungal Genet Biol 22:153–167. http://dx.doi.org/10.1006/fgbi.1997.1003
284. Reynaga-Peña CG, Bartnicki-García S. 2005. Cytoplasmic contractions in growing fungal hyphae and their morphogenetic consequences. Arch Microbiol 183:292–300. http://dx.doi.org/10.1007/s00203-005-0771-z [PubMed]
285. Forment JV, Flipphi M, Ramón D, Ventura L, Maccabe AP. 2006. Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J Biol Chem 281:8339–8346. http://dx.doi.org/10.1074/jbc.M508198200
286. Gow NAR, Gooday GW, Newsam RJ, Gull K. 1980. Ultrastructure of the septum in Candida albicans. Curr Microbiol 4:357–359. http://dx.doi.org/10.1007/BF02605377
287. Trinci AP, Collinge AJ. 1973. Structure and plugging of septa of wild type and spreading colonial mutants of Neurospora crassa. Arch Mikrobiol 91:355–364. http://dx.doi.org/10.1007/BF00425054 [PubMed]
288. Freitag M, Hickey PC, Raju NB, Selker EU, Read ND. 2004. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41:897–910. http://dx.doi.org/10.1016/j.fgb.2004.06.008
289. Markham P. 1994. Occlusions of septal pores in filamentous fungi. Mycol Res 98:1089–1106. http://dx.doi.org/10.1016/S0953-7562(09)80195-0
290. Aylmore RC, Wakley GE, Todd NK. 1984. Septal sealing in the basidiomycete Coriolus versicolor. Microbiology 130:2975–2982. http://dx.doi.org/10.1099/00221287-130-11-2975
291. van Peer AF, Müller WH, Boekhout T, Lugones LG, Wösten HA. 2009. Cytoplasmic continuity revisited: closure of septa of the filamentous fungus Schizophyllum commune in response to environmental conditions. PLoS One 4:e5977. http://dx.doi.org/10.1371/journal.pone.0005977
292. Wilsenach R, Kessel M. 1965. On the function and structure of the septal pore of Polyporus rugulosus. J Gen Microbiol 40:397–400. http://dx.doi.org/10.1099/00221287-40-3-397 [PubMed]
293. Giesy RM, Day PR. 1965. The septal pores of Coprinus lagopus in relation to nuclear migration. Am J Bot 52:287–293. http://dx.doi.org/10.2307/2439942
294. van Driel KG, van Peer AF, Grijpstra J, Wösten HA, Verkleij AJ, Müller WH, Boekhout T. 2008. Septal pore cap protein SPC18, isolated from the basidiomycetous fungus Rhizoctonia solani, also resides in pore plugs. Eukaryot Cell 7:1865–1873. http://dx.doi.org/10.1128/EC.00125-08
295. van Peer AF, Wang F, van Driel KG, de Jong JF, van Donselaar EG, Müller WH, Boekhout T, Lugones LG, Wösten HA. 2010. The septal pore cap is an organelle that functions in vegetative growth and mushroom formation of the wood-rot fungus Schizophyllum commune. Environ Microbiol 12:833–844. http://dx.doi.org/10.1111/j.1462-2920.2009.02122.x
296. Engh I, Würtz C, Witzel-Schlömp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kück U. 2007. The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6:831–843. http://dx.doi.org/10.1128/EC.00269-06
297. Fleissner A, Glass NL. 2007. SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6:84–94. http://dx.doi.org/10.1128/EC.00268-06 [PubMed]
298. Maruyama J, Escaño CS, Kitamoto K. 2010. AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 391:868–873. http://dx.doi.org/10.1016/j.bbrc.2009.11.154
299. Tsukasaki W, Saeki K, Katayama T, Maruyama J, Kitamoto K. 2016. Molecular dissection of SO (SOFT) protein in stress-induced aggregation and cell-to-cell interactive functions in filamentous fungal multicellularity. Fungal Biol 120:775–782. http://dx.doi.org/10.1016/j.funbio.2016.02.001
300. Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL. 2005. The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930. http://dx.doi.org/10.1128/EC.4.5.920-930.2005 [PubMed]
301. Maruyama J, Juvvadi PR, Ishi K, Kitamoto K. 2005. Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 331:1081–1088. http://dx.doi.org/10.1016/j.bbrc.2005.03.233
302. Shen KF, Osmani AH, Govindaraghavan M, Osmani SA. 2014. Mitotic regulation of fungal cell-to-cell connectivity through septal pores involves the NIMA kinase. Mol Biol Cell 25:763–775. http://dx.doi.org/10.1091/mbc.E13-12-0718 [PubMed]
303. Govindaraghavan M, Lad AA, Osmani SA. 2014. The NIMA kinase is required to execute stage-specific mitotic functions after initiation of mitosis. Eukaryot Cell 13:99–109. http://dx.doi.org/10.1128/EC.00231-13
304. Lai J, Koh CH, Tjota M, Pieuchot L, Raman V, Chandrababu KB, Yang D, Wong L, Jedd G. 2012. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc Natl Acad Sci USA 109:15781–15786. http://dx.doi.org/10.1073/pnas.1207467109
305. Buller AHR. 1933 . Researches on Fungi, p 75–167. Longmans and Green. London, United Kingdom.
306. Woronin M. 1865. Zur Entwicklungsgeschichte des Ascobolus pulcherrimus Cr. und einiger Pezizen. Abh Senckenb Nat Gesell 5:333–344.
307. Markham P, Collinge AJ. 1987. Woronin bodies of filamentous fungi. FEMS Microbiol Rev 46:1–11. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02448.x
308. Beck J, Ebel F. 2013. Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int J Med Microbiol 303:90–97. http://dx.doi.org/10.1016/j.ijmm.2012.11.005
309. Momany M, Richardson EA, Van Sickle C, Jedd G. 2002. Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266. http://dx.doi.org/10.2307/3761802 [PubMed]
310. Collinge AJ, Markham P. 1985. Woronin bodies rapidly plug septal pores of severed Penicillium chrysogenum hyphae. Exp Mycol 9:80–85. http://dx.doi.org/10.1016/0147-5975(85)90051-9
311. Plamann M. 2009. Cytoplasmic streaming in neurospora: disperse the plug to increase the flow? PLoS Genet 5:e1000526. http://dx.doi.org/10.1371/journal.pgen.1000526
312. Brenner DM, Carroll GC. 1968. Fine-structural correlates of growth in hyphae of Ascodesmis sphaerospora. J Bacteriol 95:658–671. [PubMed]
313. Reichle RE, Alexander JV. 1965. Multiperforate septations, Woronin bodies, and septal plugs in Fusarium. J Cell Biol 24:489–496. http://dx.doi.org/10.1083/jcb.24.3.489
314. Trinci AP, Collinge AJ. 1974. Occlusion of the septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80:57–67. http://dx.doi.org/10.1007/BF01666351 [PubMed]
315. Jedd G, Chua NH. 2000. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231. http://dx.doi.org/10.1038/35008652
316. Tenney K, Hunt I, Sweigard J, Pounder JI, McClain C, Bowman EJ, Bowman BJ. 2000. Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet Biol 31:205–217. http://dx.doi.org/10.1006/fgbi.2000.1230
317. Asiegbu FO, Choi W, Jeong JS, Dean RA. 2004. Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative ‘woronin body’ protein. FEMS Microbiol Lett 230:85–90. http://dx.doi.org/10.1016/S0378-1097(03)00858-9
318. Curach NC, Te’o VS, Gibbs MD, Bergquist PL, Nevalainen KM. 2004. Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 331:133–140. http://dx.doi.org/10.1016/j.gene.2004.02.007
319. Managadze D, Würtz C, Wiese S, Meyer HE, Niehaus G, Erdmann R, Warscheid B, Rottensteiner H. 2010. A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa. Proteomics 10:3222–3234. http://dx.doi.org/10.1002/pmic.201000095 [PubMed]
320. Yuan P, Jedd G, Kumaran D, Swaminathan S, Shio H, Hewitt D, Chua NH, Swaminathan K. 2003. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Biol 10:264–270. http://dx.doi.org/10.1038/nsb910
321. Markham P, Collinge AJ, Head JB, Poole RK. 1987. Is the spatial organization of fungal hyphae maintained and regulated by Woronin bodies?, p 79–99. In Poole RK, Trinci APJ (ed), Spatial Organization in Eukaryotic Microbes. IRL Press, Oxford, United Kingdom.
322. Wergin WP. 1973. Development of Woronin bodies from microbodies in Fusarium oxysporum f.sp. lycopersici. Protoplasma 76:249–260. http://dx.doi.org/10.1007/BF01280701
323. Keller GA, Krisans S, Gould SJ, Sommer JM, Wang CC, Schliebs W, Kunau W, Brody S, Subramani S. 1991. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J Cell Biol 114:893–904. http://dx.doi.org/10.1083/jcb.114.5.893 [PubMed]
324. Tey WK, North AJ, Reyes JL, Lu YF, Jedd G. 2005. Polarized gene expression determines woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659. http://dx.doi.org/10.1091/mbc.E04-10-0937
325. Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G. 2008. Making two organelles from one: woronin body biogenesis by peroxisomal protein sorting. J Cell Biol 180:325–339. http://dx.doi.org/10.1083/jcb.200705049 [PubMed]
326. Beck J, Echtenacher B, Ebel F. 2013. Woronin bodies, their impact on stress resistance and virulence of the pathogenic mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Mol Microbiol 89:857–871. http://dx.doi.org/10.1111/mmi.12316
327. Managadze D, Würtz C, Sichting M, Niehaus G, Veenhuis M, Rottensteiner H. 2007. The peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies. Traffic 8:687–701. http://dx.doi.org/10.1111/j.1600-0854.2007.00560.x [PubMed]
328. Escaño CS, Juvvadi PR, Jin FJ, Takahashi T, Koyama Y, Yamashita S, Maruyama J, Kitamoto K. 2009. Disruption of the Aopex11-1 gene involved in peroxisome proliferation leads to impaired Woronin body formation in Aspergillus oryzae. Eukaryot Cell 8:296–305. http://dx.doi.org/10.1128/EC.00197-08 [PubMed]
329. Ramos-Pamplona M, Naqvi NI. 2006. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 61:61–75. http://dx.doi.org/10.1111/j.1365-2958.2006.05194.x
330. Berns MW, Aist JR, Wright WH, Liang H. 1992. Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res 198:375–378. http://dx.doi.org/10.1016/0014-4827(92)90395-O
331. Ng SK, Liu F, Lai J, Low W, Jedd G. 2009. A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet 5:e1000521. http://dx.doi.org/10.1371/journal.pgen.1000521
332. Han P, Jin FJ, Maruyama J, Kitamoto K. 2014. A large nonconserved region of the tethering protein Leashin is involved in regulating the position, movement, and function of Woronin bodies in Aspergillus oryzae. Eukaryot Cell 13:866–877. http://dx.doi.org/10.1128/EC.00060-14
333. Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H. 2003. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721. http://dx.doi.org/10.1073/pnas.2235652100
334. Soundararajan S, Jedd G, Li X, Ramos-Pamploña M, Chua NH, Naqvi NI. 2004. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574. http://dx.doi.org/10.1105/tpc.020677
335. Collinge AJ, Markham P. 1987. Response of severed Penicillium chrysogenum hyphae following rapid Woronin body plugging of septal pores. FEMS Microbiol Lett 40:165–168. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02018.x
336. Sánchez-León E, Riquelme M. 2015. Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet Biol 82:104–107. http://dx.doi.org/10.1016/j.fgb.2015.07.001
337. Sánchez-León E, Verdín J, Freitag M, Roberson RW, Bartnicki-Garcia S, Riquelme M. 2011. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations. Eukaryot Cell 10:683–695. http://dx.doi.org/10.1128/EC.00280-10
338. Schuster M, Kilaru S, Guo M, Sommerauer M, Lin C, Steinberg G. 2015. Red fluorescent proteins for imaging Zymoseptoria tritici during invasion of wheat. Fungal Genet Biol 79:132–140. http://dx.doi.org/10.1016/j.fgb.2015.03.025 [PubMed]
339. Schuster M, Kilaru S, Latz M, Steinberg G. 2015. Fluorescent markers of the microtubule cytoskeleton in Zymoseptoria tritici. Fungal Genet Biol 79:141–149. http://dx.doi.org/10.1016/j.fgb.2015.03.005
340. Ma W, Kilaru S, Collins C, Courbot M, Steinberg G. 2015. Libraries for two-hybrid screening of yeast and hyphal growth forms in Zymoseptoria tritici. Fungal Genet Biol 79:94–101. http://dx.doi.org/10.1016/j.fgb.2015.03.023
341. Guo M, Kilaru S, Schuster M, Steinberg G. 2015. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genet Biol 79:158–165. http://dx.doi.org/10.1016/j.fgb.2015.04.014
342. Kilaru S, Ma W, Schuster M, Courbot M, Steinberg G. 2015. Conditional promoters for analysis of essential genes in Zymoseptoria tritici. Fungal Genet Biol 79:166–173. http://dx.doi.org/10.1016/j.fgb.2015.03.024 [PubMed]
343. Kilaru S, Schuster M, Studholme D, Soanes D, Lin C, Talbot NJ, Steinberg G. 2015. A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genet Biol 79:125–131. http://dx.doi.org/10.1016/j.fgb.2015.03.022
344. Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L, Seitner D, Rabanal FA, Czedik-Eysenberg A, Uhse S, Bindics J, Genenncher B, Navarrete F, Kellner R, Ekker H, Kumlehn J, Vogel JP, Gordon SP, Marcel TC, Münsterkötter M, Walter MC, Sieber CM, Mannhaupt G, Güldener U, Kahmann R, Djamei A. 2016. A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. eLife 5:e20522. http://dx.doi.org/10.7554/eLife.20522
345. Beck J, Wagener J, Ebel F. 2013. The septal cell wall of filamentous fungi, p 129–142. In Mora-Montes HM (ed), The Fungal Cell Wall. Nova Publishers, New York, NY. [PubMed]
346. Moore RT, Marchant R. 1972. Ultrastructural characterization of the basidiomycete septum of Polyporus biennis. Can J Bot 50:2463–2469. http://dx.doi.org/10.1139/b72-317
microbiolspec.FUNK-0034-2016.citations
cm/5/2
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0034-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0034-2016
2017-04-21
2017-11-18

Abstract:

Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Growth patterns in fungal hyphae. Growth occurs in an isotropic fashion during spore germination. Specification of a polarity axis ultimately results in the formation of a hypha that continues to grow at the tip. While tip growth is maintained, the specification of additional polarity axes enables the formation of septa and lateral branches. Whereas septum formation is transient, branching results in the formation of a secondary hypha that also continues to grow at the tip. Red arrows designate polarity axes.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Highly schematic representation of the cisternal maturation process in the nonstacked fungal Golgi, with indication of the different functional stages. COPII-coated vesicles (green) bud off specialized domains of the ER denoted ER exit sites (ERES) or transitional ER (left). COPII vesicles coalesce to form an early Golgi cisterna, represented here as a green fenestrated structure that depicts actual Golgi structures often visible in EM micrographs. Retrograde COPI traffic (violet vesicles) retrieves back to the ER proteins such as cargo receptors that need to be recycled. Early cisternae are equipped with cargo glycosylation enzymes (t0). As time passes (double arrowheads) an early Golgi cisterna becomes progressively enriched in cargo and late Golgi components (represented in red) by delivering early Golgi ones (e.g., glycosylating enzymes) to cisternae in earlier stages of maturation, in a process which is likely mediated by COPI retrograde traffic (t1 and t2). Eventually, late Golgi components become predominate (TGN, t3) and the cargo-enriched cisterna becomes competent to tear off into carriers destined for the plasma membrane (PM) and the endosomes (t4). TGN cisternae also receive traffic from the endosomal system (blue arrows). In the route (dark blue) connecting the cisternae with the PM, the transition between late Golgi and post-Golgi identity is dictated by the recruitment of RabE to the membranes, which is critically regulated by TRAPPII (see text). Proteins that have been shown by microscopy to localize to specific stages are indicated, with green lettering indicating early Golgi and red lettering indicating TGN. The image summarizes work performed with .

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Illustration of a hyphal tip with the main organelles and subcellular components involved in apical cell wall growth. The diagram is based on work with . (Art: Leonora Martínez-Núñez).

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Diagram showing the cooperation of molecular motors in bidirectional EE motility. The illustration is based on results obtained from studies of . See text for detailed description.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

EEs as multifunctional platforms. Proteins that associate with the organelles are shown as colored symbols and described in black; functions are indicated in dark red. The diagram is based on work with , , and . See text for detailed description.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Time course of the contraction of the CAR during septum formation in the wheat pathogen . The side view of the three-dimensional image stack shows that the CAR is closing with time. Time in minutes is shown in the upper-left corners. The CAR was labeled using an F-actin-specific GFP-LifeAct probe.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Model for septum formation. A signal emanating from mitotic nuclei is relayed to the septation site via the septation initiation network (SIN). Components needed for assembly of the contractile actin ring (CAR) (actin filaments, Bud4) are already associated with the septation site and operate in conjunction with the SIN to define the division plane. Activation of the GTPase Rho4 at the septation site initiates organization of actin filaments into a CAR. Constriction of the CAR is coincident with appearance of a septin ring. Deposition of the septum is guided by the CAR. The septin ring disassembles once the final size of the septal pore is reached. Several proteins, including calcineurin and Rho4, remain associated with the mature septal pore. The diagram was modified from Beck et al. ( 345 ).

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Model for tip-ward translocation in . Newly formed hyphal compartments are in cytoplasmic contact with neighboring cells. The Woronin body is not plugging the septal pore, and cytoplasmic streaming, as well as diffusion through the septal pore, is possible (green arrow). Older septa are plugged by Woronin bodies, which prevents exchange of cytoplasm. However, selective transport of molecules such as glucose toward the growth region is still possible (red arrows). This may involve septum-associated transporters.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Schematic drawing of a dolipore in the basidiomycete . The image was redrawn from a reconstruction of electron micrographs, first published in reference 346 .

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error