1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Fungal Cell Wall: Structure, Biosynthesis, and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    204.92 Kb
  • PDF
    8.14 MB
  • HTML
    204.33 Kb
  • Authors: Neil A. R. Gow1, Jean-Paul Latge2, Carol A. Munro3
  • Editor: Joseph Heitman4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom; 2: Unité des Aspergillus, Institut Pasteur, Paris, France; 3: Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom; 4: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
  • Received 22 November 2016 Accepted 02 March 2017 Published 19 May 2017
  • Neil A.R. Gow, n.gow@abdn.ac.uk
image of The Fungal Cell Wall: Structure, Biosynthesis, and Function
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Fungal Cell Wall: Structure, Biosynthesis, and Function, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0035-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0035-2016-2.gif
  • Abstract:

    The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.

  • Citation: Gow N, Latge J, Munro C. 2017. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectrum 5(3):FUNK-0035-2016. doi:10.1128/microbiolspec.FUNK-0035-2016.

Key Concept Ranking

Sandwich Enzyme-Linked Immunosorbent Assay
0.45188868
0.45188868

References

1. Lesage G, Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343 http://dx.doi.org/10.1128/MMBR.00038-05. [PubMed]
2. de Groot PW, Ruiz C, Vázquez de Aldana CR, Duenas E, Cid VJ, Del Rey F, Rodríquez-Peña JM, Pérez P, Andel A, Caubín J, Arroyo J, García JC, Gil C, Molina M, García LJ, Nombela C, Klis FM. 2001. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2:124–142 http://dx.doi.org/10.1002/cfg.85.
3. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495 http://dx.doi.org/10.1093/nar/gkt1178. [PubMed][CrossRef]
4. Coronado JE, Mneimneh S, Epstein SL, Qiu WG, Lipke PN. 2007. Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell 6:2269–2277 http://dx.doi.org/10.1128/EC.00044-07. [PubMed]
5. Money NP. 2001. Biomechanics of invasive hyphal growth, p 3–17. In Howard RJ, Gow NAR (ed). The Mycota, vol. VIII. Springer-Verlag, Berlin, Germany.
6. Money NP. 2008. Insights on the mechanics of hyphal growth. Fungal Biol Rev 22:71–76 http://dx.doi.org/10.1016/j.fbr.2008.05.002.
7. Erwig LP, Gow NAR. 2016. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176 http://dx.doi.org/10.1038/nrmicro.2015.21. [PubMed]
8. Zipfel C. 2014. Plant pattern-recognition receptors. Trends Immunol 35:345–351 http://dx.doi.org/10.1016/j.it.2014.05.004. [PubMed]
9. Latgé JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290 http://dx.doi.org/10.1111/j.1365-2958.2007.05872.x. [PubMed]
10. Fleet GH. 1991. Cell walls, p 199–277. In Rose AH, Harrison FD (ed). The Yeasts, vol. 4. Academic Press, New York, NY.
11. Wheeler RT, Kombe D, Agarwala SD, Fink GR. 2008. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227 http://dx.doi.org/10.1371/journal.ppat.1000227.
12. Rappleye CA, Eissenberg LG, Goldman WE. 2007. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA 104:1366–1370 http://dx.doi.org/10.1073/pnas.0609848104.
13. Beauvais A, Maubon D, Park S, Morelle W, Tanguy M, Huerre M, Perlin DS, Latgé J-P. 2005. Two α(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl Environ Microbiol 71:1531–1538 http://dx.doi.org/10.1128/AEM.71.3.1531-1538.2005.
14. Reese AJ, Yoneda A, Breger JA, Beauvais A, Liu H, Griffith CL, Bose I, Kim MJ, Skau C, Yang S, Sefko JA, Osumi M, Latge JP, Mylonakis E, Doering TL. 2007. Loss of cell wall α(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol Microbiol 63:1385–1398 http://dx.doi.org/10.1111/j.1365-2958.2006.05551.x.
15. Klutts JS, Doering TL. 2008. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem 283:14327–14334 http://dx.doi.org/10.1074/jbc.M708927200.
16. Moyrand F, Fontaine T, Janbon G. 2007. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol 64:771–781 http://dx.doi.org/10.1111/j.1365-2958.2007.05695.x.
17. Yoneda A, Doering TL. 2006. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell 17:5131–5140 http://dx.doi.org/10.1091/mbc.E06-08-0701.
18. Wessels JGH. 1996. Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45 http://dx.doi.org/10.1016/S0065-2911(08)60154-X.
19. Dague E, Alsteens D, Latgé JP, Dufrêne YF. 2008. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94:656–660 http://dx.doi.org/10.1529/biophysj.107.116491. [PubMed]
20. Paris S, Debeaupuis JP, Crameri R, Carey M, Charlès F, Prévost MC, Schmitt C, Philippe B, Latgé JP. 2003. Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588 http://dx.doi.org/10.1128/AEM.69.3.1581-1588.2003.
21. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121 http://dx.doi.org/10.1038/nature08264.
22. Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latgé JP. 2000. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607.
23. Iorio E, Torosantucci A, Bromuro C, Chiani P, Ferretti A, Giannini M, Cassone A, Podo F. 2008. Candida albicans cell wall comprises a branched β-D-(1→6)-glucan with β-D-(1→3)-side chains. Carbohydr Res 343:1050–1061 http://dx.doi.org/10.1016/j.carres.2008.02.020. [PubMed]
24. Klis FM, de Groot P, Hellingwerf K. 2001. Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1):1–8 http://dx.doi.org/10.1080/mmy.39.1.1.8-0. [PubMed]
25. Bonhomme J, d’Enfert C. 2013. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol 16:398–403 http://dx.doi.org/10.1016/j.mib.2013.03.007. [PubMed]
26. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. 2014. Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-e14 http://dx.doi.org/10.1128/mBio.01333-14.
27. Martinez LR, Casadevall A. 2007. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601 http://dx.doi.org/10.1128/AEM.02506-06.
28. Cushion MT, Collins MS, Linke MJ. 2009. Biofilm formation by Pneumocystis spp. Eukaryot Cell 8:197–206 http://dx.doi.org/10.1128/EC.00202-08. [PubMed]
29. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D. 2007. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520 http://dx.doi.org/10.1128/AAC.01056-06.
30. Rajendran R, Sherry L, Lappin DF, Nile CJ, Smith K, Williams C, Munro CA, Ramage G. 2014. Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiol 14:303–306 http://dx.doi.org/10.1186/s12866-014-0303-6.
31. Al-Fattani MA, Douglas LJ. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008 http://dx.doi.org/10.1099/jmm.0.46569-0.
32. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prévost MC, Latgé JP. 2007. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600 http://dx.doi.org/10.1111/j.1462-5822.2007.00895.x.
33. Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A. 2001. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682 http://dx.doi.org/10.1074/jbc.R000031200. [PubMed]
34. Munro CA, Gow NAR. 2001. Chitin synthesis in human pathogenic fungi. Med Mycol 39(Suppl 1):41–53 http://dx.doi.org/10.1080/mmy.39.1.41.53. [PubMed]
35. Roncero C. 2002. The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378 http://dx.doi.org/10.1007/s00294-002-0318-7. [PubMed]
36. Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW. 1992. Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89:519–523 http://dx.doi.org/10.1073/pnas.89.2.519. [PubMed]
37. Lenardon MD, Whitton RK, Munro CA, Marshall D, Gow NA. 2007. Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall. Mol Microbiol 66:1164–1173 http://dx.doi.org/10.1111/j.1365-2958.2007.05990.x.
38. Morozov AA, Likhoshway YV. 2016. Evolutionary history of the chitin synthases of eukaryotes. Glycobiology 26:635–639 http://dx.doi.org/10.1093/glycob/cww018. [PubMed]
39. Fernandes C, Gow NAR, Gonçalves T. 2016. The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biol Rev 30:1–14 http://dx.doi.org/10.1016/j.fbr.2016.03.002.
40. Schorr M, Then A, Tahirovic S, Hug N, Mayinger P. 2001. The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Curr Biol 11:1421–1426 http://dx.doi.org/10.1016/S0960-9822(01)00449-3.
41. Valdivia RH, Schekman R. 2003. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci USA 100:10287–10292 http://dx.doi.org/10.1073/pnas.1834246100. [PubMed]
42. Lenardon MD, Munro CA, Gow NAR. 2010. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423 http://dx.doi.org/10.1016/j.mib.2010.05.002. [PubMed]
43. Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA. 2001. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426 http://dx.doi.org/10.1046/j.1365-2958.2001.02347.x. [PubMed]
44. Steinberg G. 2011. Motors in fungal morphogenesis: cooperation versus competition. Curr Opin Microbiol 14:660–667 http://dx.doi.org/10.1016/j.mib.2011.09.013. [PubMed]
45. Schuster M, Martin-Urdiroz M, Higuchi Y, Hacker C, Kilaru S, Gurr SJ, Steinberg G. 2016. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol 1:16149 http://dx.doi.org/10.1038/nmicrobiol.2016.149.
46. Treitschke S, Doehlemann G, Schuster M, Steinberg G. 2010. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 22:2476–2494 http://dx.doi.org/10.1105/tpc.110.075028.
47. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. 2012. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227 http://dx.doi.org/10.1038/emboj.2011.361. [PubMed][CrossRef]
48. Douglas CM. 2001. Fungal β(1,3)-D-glucan synthesis. Med Mycol 39(Suppl 1):55–66 http://dx.doi.org/10.1080/mmy.39.1.55.66. [PubMed]
49. Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, Mitchell A, Kurtz MB. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479. [PubMed]
50. Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, Smith DL, Higbee AJ, Ulbrich A, Coon JJ, Deshpande R, Bukhman YV, McIlwain S, Ong IM, Myers CL, Boone C, Landick R, Ralph J, Kabbage M, Ohya Y. 2015. Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proc Natl Acad Sci USA 112:E1490–E1497. http://dx.doi.org/10.1073/pnas.1410400112.
51. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G, Flattery A, Gill C, Chrebet G, Parent SA, Kurtz M, Teppler H, Douglas CM, Perlin DS. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273 http://dx.doi.org/10.1128/AAC.49.8.3264-3273.2005.
52. Mouyna I, Henry C, Doering TL, Latgé JP. 2004. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett 237:317–324. [PubMed]
53. Thompson JR, Douglas CM, Li W, Jue CK, Pramanik B, Yuan X, Rude TH, Toffaletti DL, Perfect JR, Kurtz M. 1999. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J Bacteriol 181:444–453. [PubMed]
54. Cutler JE. 2001. N-glycosylation of yeast, with emphasis on Candida albicans. Med Mycol 39(Suppl 1):75–86 http://dx.doi.org/10.1080/mmy.39.1.75.86. [PubMed][CrossRef]
55. Hall RA, Gow NAR. 2013. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol 90:1147–1161 http://dx.doi.org/10.1111/mmi.12426. [PubMed]
56. Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Dend R, Dend X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, MacDonald P, Melnikov A, Raley C, Brad MS, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Lempick RA, Cuomo CA, Kovacs JA. 2015. Mechanisms of adaptation to life exclusively in mammalian hosts by Pneumocystis. Nat Commun 7:10740. doi:10.1038/ncomms10740.
57. Henry C, Fontaine T, Heddergott C, Robinet P, Aimanianda V, Beau R, Beauvais A, Mouyna I, Prevost M-C, Zhao Y, Perlin D, Latge JP. 2016. Biosynthesis of cell wall mannan in the conidium and the mycelium of Aspergillus fumigatus. Cell Microbiol 18:1881–1891. [PubMed]
58. Reese AJ, Doering TL. 2003. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol 50:1401–1409 http://dx.doi.org/10.1046/j.1365-2958.2003.03780.x. [PubMed]
59. Fu C, Tanaka A, Free SJ. 2014. Neurospora crassa 1,3-α-glucan synthase, AGS-1, is required for cell wall biosynthesis during macroconidia development. Microbiology 160:1618–1627 http://dx.doi.org/10.1099/mic.0.080002-0.
60. Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latgé JP. 2013. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 9:e1003716 http://dx.doi.org/10.1371/journal.ppat.1003716.
61. Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latgé JP. 2009. Cell wall β-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J Biol Chem 284:13401–13412 http://dx.doi.org/10.1074/jbc.M807667200.
62. Shahinian S, Bussey H. 2000. β-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489 http://dx.doi.org/10.1046/j.1365-2958.2000.01713.x.
63. Herrero AB, Magnelli P, Mansour MK, Levitz SM, Bussey H, Abeijon C. 2004. KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 3:1423–1432 http://dx.doi.org/10.1128/EC.3.6.1423-1432.2004.
64. Latge JP. 2009. Galactofuranose containing molecules in Aspergillus fumigatus. Med Mycol 47(Suppl 1):S104–S109 http://dx.doi.org/10.1080/13693780802258832. [PubMed]
65. Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe SI, Kravtsov I, Vinogradov E, Creuzenet C, Liu H, Berghuis AM, Latgé JP, Filler SG, Fontaine T, Sheppard DC. 2014. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289:1243–1256 http://dx.doi.org/10.1074/jbc.M113.522516.
66. Gilbert NM, Donlin MJ, Gerik KJ, Specht CA, Djordjevic JT, Wilson CF, Sorrell TC, Lodge JK. 2010. KRE genes are required for β-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans. Mol Microbiol 76:517–534 http://dx.doi.org/10.1111/j.1365-2958.2010.07119.x.
67. Lee MJ, Geller AM, Bamford NC, Liu H, Gravelat FN, Snarr BD, Le Mauff F, Chabot J, Ralph B, Ostapska H, Lehoux M, Cerone RP, Baptista SD, Vinogradov E, Stajich JE, Filler SG, Howell PL, Sheppard DC. 2016. Deacetylation of fungal exopolysaccharide mediates adhesion and biofilm formation. MBio 7:e00252-e16 http://dx.doi.org/10.1128/mBio.00252-16.
68. Glasgow JE, Reissig JL. 1974. Interaction of galactosaminoglycan with Neurospora conidia. J Bacteriol 120:759–766. [PubMed]
69. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CMQ, Vanier G, Urb M, Campoli P, Al Abdallah Q, Lehoux M, Chabot JC, Ouimet M-C, Baptista SD, Fritz JHJ, Nierman WC, Latgé J-P, Mitchell AP, Filler SG, Fontaine T, Sheppard DC. 2013. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 9:e1003575 http://dx.doi.org/10.1371/journal.ppat.1003575.
70. Gresnigt MS, Bozza S, Becker KL, Joosten LAB, Abdollahi-Roodsaz S, van der Berg WB, Dinarello CA, Netea MG, Fontaine T, De Luca A, Moretti S, Romani L, Latge J-P, van de Veerdonk FL. 2014. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog 10:e1003936 http://dx.doi.org/10.1371/journal.ppat.1003936.
71. Nosanchuk JD, Stark RE, Casadevall A. 2015. Fungal melanin: what do we know about structure? Front Microbiol 6:1463 http://dx.doi.org/10.3389/fmicb.2015.01463. [PubMed]
72. Nosanchuk JD, Casadevall A. 2006. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50:3519–3528 http://dx.doi.org/10.1128/AAC.00545-06.
73. Walker CA, Gómez BL, Mora-Montes HM, Mackenzie KS, Munro CA, Brown AJP, Gow NAR, Kibbler CC, Odds FC. 2010. Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 9:1329–1342 http://dx.doi.org/10.1128/EC.00051-10.
74. Eisenman HC, Nosanchuk JD, Webber JB, Emerson RJ, Camesano TA, Casadevall A. 2005. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44:3683–3693 http://dx.doi.org/10.1021/bi047731m.
75. Walton FJ, Idnurm A, Heitman J. 2005. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57:1381–1396 http://dx.doi.org/10.1111/j.1365-2958.2005.04779.x.
76. Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. 1998. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J Bacteriol 180:3031–3038. [PubMed]
77. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. 2003. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158 http://dx.doi.org/10.1016/S1087-1845(02)00526-1.
78. Paolo WF Jr, Dadachova E, Mandal P, Casadevall A, Szanislo PJ, Nosanchuk JD. 2006. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella (Exophiala) dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature. BMC Microbiol 6:55. doi:10.1186/1471-2180-6-55.
79. Butler G, Rasmussen MD, Lin MF, Santos M, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Agrafioti I, Arnaud MB, Bates S, Berman J, Brown AJP, Brunke S, Constanzo MC, Fitzpatrick DA, Forche A, de Groot PWJ, Harris D, Hoyer L, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail M, Quinn J, Reedy JL, Schmitzberger FF, Sherlock G, Shah P, Silverstein K, Skrypek MS, Soll DR, Staggs S, Stumpf MPH, Sudbery PE, Thyagarajan S, Zeng Q, Berriman M, Heitman J, Lorenz MC, Gow NAR, Birren BW, Kellis M, Cuomo CA. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662 http://dx.doi.org/10.1038/nature08064.
80. de Groot PW, Hellingwerf KJ, Klis FM. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20:781–796 http://dx.doi.org/10.1002/yea.1007. [PubMed]
81. Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253 http://dx.doi.org/10.1016/j.jmb.2004.01.025.
82. de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3:955–965 http://dx.doi.org/10.1128/EC.3.4.955-965.2004.
83. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJP, Gow NAR, Odds FC. 2009. Property differences among the four major Candida albicans strain clades. Eukaryot Cell 8:373–387 http://dx.doi.org/10.1128/EC.00387-08.
84. Castillo L, Calvo E, Martínez AI, Ruiz-Herrera J, Valentín E, Lopez JA, Sentandreu R. 2008. A study of the Candida albicans cell wall proteome. Proteomics 8:3871–3881 http://dx.doi.org/10.1002/pmic.200800110. [PubMed][CrossRef]
85. Yin QY, de Groot PW, de Koster CG, Klis FM. 2008. Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16:20–26 http://dx.doi.org/10.1016/j.tim.2007.10.011. [PubMed]
86. Chaffin WL. 2008. Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544 http://dx.doi.org/10.1128/MMBR.00032-07. [PubMed]
87. Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJP. 2012. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12:3164–3179 http://dx.doi.org/10.1002/pmic.201200228.
88. Sorgo AG, Brul S, de Koster CG, de Koning LJ, Klis FM. 2013. Iron restriction-induced adaptations in the wall proteome of Candida albicans. Microbiology 159:1673–1682 http://dx.doi.org/10.1099/mic.0.065599-0. [PubMed]
89. Pitarch A, Jiménez A, Nombela C, Gil C. 2006. Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5:79–96 http://dx.doi.org/10.1074/mcp.M500243-MCP200.
90. Sohn K, Schwenk J, Urban C, Lechner J, Schweikert M, Rupp S. 2006. Getting in touch with Candida albicans: the cell wall of a fungal pathogen. Curr Drug Targets 7:505–512 http://dx.doi.org/10.2174/138945006776359395. [PubMed][CrossRef]
91. Klis FM, de Jong M, Brul S, de Groot PW. 2007. Extraction of cell surface-associated proteins from living yeast cells. Yeast 24:253–258 http://dx.doi.org/10.1002/yea.1476. [PubMed]
92. Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML. 2009. Vesicular transport across the fungal cell wall. Trends Microbiol 17:158–162 http://dx.doi.org/10.1016/j.tim.2008.12.005. [PubMed]
93. Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NAR, Booth NA. 2003. Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651 http://dx.doi.org/10.1046/j.1365-2958.2003.03390.x.
94. Urban C, Xiong X, Sohn K, Schröppel K, Brunner H, Rupp S. 2005. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol Microbiol 57:1318–1341 http://dx.doi.org/10.1111/j.1365-2958.2005.04771.x. [PubMed]
95. Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latgé JP, van Aalten DM. 2009. Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem 284:8461–8469 http://dx.doi.org/10.1074/jbc.M807990200. [PubMed]
96. Mouyna I, Hartl L, Latgé JP. 2013. β-1,3-Glucan modifying enzymes in Aspergillus fumigatis. Front Microbiol 4:81. http://dx.doi.org/10.3389/fmicb.2013.00081.
97. Cabib E, Blanco N, Grau C, Rodríguez-Peña JM, Arroyo J. 2007. Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935 http://dx.doi.org/10.1111/j.1365-2958.2006.05565.x. [PubMed]
98. Cabib E, Farkas V, Kosík O, Blanco N, Arroyo J, McPhie P. 2008. Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872 http://dx.doi.org/10.1074/jbc.M804274200. [PubMed]
99. Arroyo J, Farkaš V, Sanz AB, Cabib E. 2016. Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18:1239–1250 http://dx.doi.org/10.1111/cmi.12615. [PubMed]
100. Cabib E, Silverman SJ, Shaw JA. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138:97–102 http://dx.doi.org/10.1099/00221287-138-1-97.
101. Martín-Cuadrado AB, Dueñas E, Sipiczki M, Vázquez de Aldana CR, del Rey F. 2003. The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci 116:1689–1698 http://dx.doi.org/10.1242/jcs.00377.
102. Wessels JGH. 1993. Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413 http://dx.doi.org/10.1111/j.1469-8137.1993.tb03751.x.
103. Seidl V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42 http://dx.doi.org/10.1016/j.fbr.2008.03.002.
104. Selvaggini S, Munro CA, Paschoud S, Sanglard D, Gow NAR. 2004. Independent regulation of chitin synthase and chitinase activity in Candida albicans and Saccharomyces cerevisiae. Microbiology 150:921–928 http://dx.doi.org/10.1099/mic.0.26661-0.
105. Baker LG, Specht CA, Lodge JK. 2011. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot Cell 10:1264–1268 http://dx.doi.org/10.1128/EC.05138-11.
106. Gagnon-Arsenault I, Parisé L, Tremblay J, Bourbonnais Y. 2008. Activation mechanism, functional role and shedding of glycosylphosphatidylinositol-anchored Yps1p at the Saccharomyces cerevisiae cell surface. Mol Microbiol 69:982–993 http://dx.doi.org/10.1111/j.1365-2958.2008.06339.x.
107. Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B. 2006. Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694 http://dx.doi.org/10.1074/jbc.M509297200.
108. Kaur R, Ma B, Cormack BP. 2007. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA 104:7628–7633 http://dx.doi.org/10.1073/pnas.0611195104.
109. Sundstrom P. 2002. Adhesion in Candida spp. Cell Microbiol 4:461–469 http://dx.doi.org/10.1046/j.1462-5822.2002.00206.x.
110. Hoyer LL, Green CB, Oh SH, Zhao X. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family-a sticky pursuit. Med Mycol 46:1–15. [PubMed]
111. De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258 http://dx.doi.org/10.1101/gad.1121003.
112. de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M. 2008. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7:1951–1964 http://dx.doi.org/10.1128/EC.00284-08.
113. Frieman MB, McCaffery JM, Cormack BP. 2002. Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol Microbiol 46:479–492 http://dx.doi.org/10.1046/j.1365-2958.2002.03166.x. [PubMed]
114. Li F, Palecek SP. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:1193–1203 http://dx.doi.org/10.1099/mic.0.2007/013789-0. [PubMed]
115. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489 http://dx.doi.org/10.1074/jbc.M401929200.
116. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68:547–559 http://dx.doi.org/10.1111/j.1365-2958.2008.06184.x.
117. Staab JF, Bradway SD, Fidel PL, Sundstrom P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538 http://dx.doi.org/10.1126/science.283.5407.1535.
118. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP. 2008. Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024 http://dx.doi.org/10.1016/j.cub.2008.06.034.
119. Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP. 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6:931–939 http://dx.doi.org/10.1128/EC.00049-07. [PubMed]
120. Firon A, Aubert S, Iraqui I, Guadagnini S, Goyard S, Prévost MC, Janbon G, d’Enfert C. 2007. The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol Microbiol 66:1256–1275 http://dx.doi.org/10.1111/j.1365-2958.2007.06011.x. [PubMed]
121. Hiller E, Heine S, Brunner H, Rupp S. 2007. Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Eukaryot Cell 6:2056–2065 http://dx.doi.org/10.1128/EC.00285-07.
122. Norice CT, Smith FJ Jr, Solis N, Filler SG, Mitchell AP. 2007. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot Cell 6:2046–2055 http://dx.doi.org/10.1128/EC.00314-07. [PubMed]
123. Pérez A, Pedrós B, Murgui A, Casanova M, López-Ribot JL, Martínez JP. 2006. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6:1074–1084 http://dx.doi.org/10.1111/j.1567-1364.2006.00131.x.
124. Wösten HA, de Vocht ML. 2000. Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469:79–86 http://dx.doi.org/10.1016/S0304-4157(00)00002-2. [PubMed]
125. Albuquerque P, Kyaw CM, Saldanha RR, Brigido MM, Felipe MSS, Silva-Pereira I. 2004. Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 41:510–520 http://dx.doi.org/10.1016/j.fgb.2004.01.001.
126. Cho EM, Kirkland BH, Holder DJ, Keyhani NO. 2007. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3438–3447 http://dx.doi.org/10.1099/mic.0.2007/008532-0.
127. Kim S, Ahn IP, Rho HS, Lee YH. 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237 http://dx.doi.org/10.1111/j.1365-2958.2005.04750.x.
128. Müller O, Schreier PH, Uhrig JF. 2008. Identification and characterization of secreted and pathogenesis-related proteins in Ustilago maydis. Mol Genet Genomics 279:27–39 http://dx.doi.org/10.1007/s00438-007-0291-4. [PubMed]
129. Levin DE. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291 http://dx.doi.org/10.1128/MMBR.69.2.262-291.2005. [PubMed]
130. Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun M-H, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298 http://dx.doi.org/10.1016/j.fgb.2009.01.002.
131. Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NAR. 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413 http://dx.doi.org/10.1111/j.1365-2958.2007.05588.x.
132. Popolo L, Gualtieri T, Ragni E. 2001. The yeast cell-wall salvage pathway. Med Mycol 39(Suppl 1):111–121 http://dx.doi.org/10.1080/mmy.39.1.111.121. [PubMed]
133. García R, Bermejo C, Grau C, Pérez R, Rodríguez-Peña JM, Francois J, Nombela C, Arroyo J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279:15183–15195 http://dx.doi.org/10.1074/jbc.M312954200.
134. Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP. 2006. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathog 2:e21 http://dx.doi.org/10.1371/journal.ppat.0020021.
135. Rauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault J-S, Smith FJ, Nantel A, Mitchell AP. 2008. Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. Mol Biol Cell 19:2741–2751 http://dx.doi.org/10.1091/mbc.E08-02-0191. [PubMed][CrossRef]
136. Karababa M, Valentino E, Pardini G, Coste AT, Bille J, Sanglard D. 2006. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59:1429–1451 http://dx.doi.org/10.1111/j.1365-2958.2005.05037.x. [PubMed]
137. Reinoso-Martín C, Schüller C, Schuetzer-Muehlbauer M, Kuchler K. 2003. The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210 http://dx.doi.org/10.1128/EC.2.6.1200-1210.2003.
138. Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NAR. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4:e1000040 http://dx.doi.org/10.1371/journal.ppat.1000040. [PubMed]
139. Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. 2000. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 44:739–746 http://dx.doi.org/10.1128/AAC.44.3.739-746.2000.
140. Steinbach WJ, Cramer RA Jr, Perfect BZ, Henn C, Nielsen K, Heitman J, Perfect JR. 2007. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob Agents Chemother 51:2979–2981 http://dx.doi.org/10.1128/AAC.01394-06. [PubMed]
141. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. 2005. Attenuation of the activity of caspofungin at high concentrations against Candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother 49:5146–5148 http://dx.doi.org/10.1128/AAC.49.12.5146-5148.2005.
142. Walker LA, Lenardon MD, Preechasuth K, Munro CA, Gow NA. 2013. Cell wall stress induces alternative fungal cytokinesis and septation strategies. J Cell Sci 126:2668–2677 http://dx.doi.org/10.1242/jcs.118885.
143. Weber I, Assmann D, Thines E, Steinberg G. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242 http://dx.doi.org/10.1105/tpc.105.037341.
144. DeMarini DJ, Adams AE, Fares H, De Virgilio C, Valle G, Chuang JS, Pringle JR. 1997. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139:75–93 http://dx.doi.org/10.1083/jcb.139.1.75.
145. Rowbottom L, Munro CA, Gow NAR. 2004. Candida albicans mutants in the BNI4 gene have reduced cell-wall chitin and alterations in morphogenesis. Microbiology 150:3243–3252 http://dx.doi.org/10.1099/mic.0.27167-0. [PubMed]
146. Kozubowski L, Heitman J. 2010. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 75:658–675 http://dx.doi.org/10.1111/j.1365-2958.2009.06983.x.
147. Vargas-Muñiz JM, Renshaw H, Richards AD, Lamoth F, Soderblom EJ, Moseley MA, Juvvadi PR, Steinbach WJ. 2015. The Aspergillus fumigatus septins play pleiotropic roles in septation, conidiation, and cell wall stress, but are dispensable for virulence. Fungal Genet Biol 81:41–51 http://dx.doi.org/10.1016/j.fgb.2015.05.014.
148. García I, Jiménez D, Martín V, Durán A, Sánchez Y. 2005. The α-glucanase Agn1p is required for cell separation in Schizosaccharomyces pombe. Biol Cell 97:569–576 http://dx.doi.org/10.1042/BC20040096. [PubMed]
149. Sudbery PE. 2008. Regulation of the polarised growth in fungi. Fungal Biol Rev 22:44–55 http://dx.doi.org/10.1016/j.fbr.2008.07.001.
150. Virag A, Harris SD. 2006. The Spitzenkörper: a molecular perspective. Mycol Res 110:4–13 http://dx.doi.org/10.1016/j.mycres.2005.09.005. [PubMed]
151. Machesky LM, Gould KL. 1999. The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11:117–121 http://dx.doi.org/10.1016/S0955-0674(99)80014-3. [PubMed]
152. Lipschutz JH, Mostov KE. 2002. Exocytosis: the many masters of the exocyst. Curr Biol 12:R212–R214 http://dx.doi.org/10.1016/S0960-9822(02)00753-4. [PubMed]
153. Irazoqui JE, Lew DJ. 2004. Polarity establishment in yeast. J Cell Sci 117:2169–2171 http://dx.doi.org/10.1242/jcs.00953. [PubMed]
154. Johnson DI. 1999. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63:54–105. [PubMed]
155. Steinberg G. 2007. On the move: endosomes in fungal growth and pathogenicity. Nat Rev Microbiol 5:309–316 http://dx.doi.org/10.1038/nrmicro1618. [PubMed]
156. Domer JE. 1971. Monosaccharide and chitin content of cell walls of Histoplasma capsulatum and Blastomyces dermatitidis. J Bacteriol 107:870–877. [PubMed]
157. Kanetsuna F, Carbonell LM, Moreno RE, Rodriguez J. 1969. Cell wall composition of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol 97:1036–1041. [PubMed]
158. Oliveira-Garcia E, Deising HB. 2016. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola. Plant J 87:355–375 http://dx.doi.org/10.1111/tpj.13205.
159. Brown AJP, Brown GD, Netea MG, Gow NAR. 2014. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622 http://dx.doi.org/10.1016/j.tim.2014.07.001.
160. Odds FC, Brown AJ, Gow NAR. 2003. Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279 http://dx.doi.org/10.1016/S0966-842X(03)00117-3.
161. Fairlamb AH, Gow NAR, Matthews KR, Waters AP. 2016. Drug resistance in eukaryotic microorganisms. Nat Microbiol 1:16092 http://dx.doi.org/10.1038/nmicrobiol.2016.92. [PubMed]
162. Perlin DS. 2007. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10:121–130 http://dx.doi.org/10.1016/j.drup.2007.04.002. [PubMed]
163. Netea MG, Brown GD, Kullberg BJ, Gow NAR. 2008. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78 http://dx.doi.org/10.1038/nrmicro1815.
164. Reid DM, Gow NAR, Brown GD. 2009. Pattern recognition: recent insights from dectin-1. Curr Opin Immunol 21:30–37 http://dx.doi.org/10.1016/j.coi.2009.01.003.
165. van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NAR, Netea MG. 2008. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312 http://dx.doi.org/10.1016/j.mib.2008.06.002. [PubMed]
166. Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 20:684–689 http://dx.doi.org/10.1016/j.coi.2008.10.002. [PubMed]
167. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–96 http://dx.doi.org/10.1038/nature05746.
168. Wagener J, Malireddi SRK, Lenardon MD, Köberle M, Vautier S, MacCallum DM, Biedermann T, Schaller M, Netea MG, Kanneganti T-D, Brown GB, Brown AJP, Gow NAR. 2014. Fungal chitin dampens inflammation through NOD2 and TLR9 activation. PLoS Pathog 10:e1004050. doi:10.1371/journal.ppat.1004050.
169. Becker KL, Aimanianda V, Wang X, Gresnigt MS, Ammerdorffer A, Jacobs CW, Gazendam RP, Joosten LAB, Netea MG, Latgé JP, van de Veerdonk FL. 2016. Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the Fc-γ ceceptor/Syk/PI3K pathway. MBio 7:e01823-e15 http://dx.doi.org/10.1128/mBio.01823-15.
170. Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA. 2009. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182:3573–3582 http://dx.doi.org/10.4049/jimmunol.0802113. [PubMed]
171. Hohl TM, Feldmesser M, Perlin DS, Pamer EG. 2008. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis 198:176–185 http://dx.doi.org/10.1086/589304.
172. Lamaris GA, Lewis RE, Chamilos G, May GS, Safdar A, Walsh TJ, Raad II, Kontoyiannis DP. 2008. Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis 198:186–192 http://dx.doi.org/10.1086/589305.
173. Rappleye CA, Goldman WE. 2008. Fungal stealth technology. Trends Immunol 29:18–24 http://dx.doi.org/10.1016/j.it.2007.10.001.
174. Wheeler RT, Fink GR. 2006. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2:e35 http://dx.doi.org/10.1371/journal.ppat.0020035. [PubMed]
175. Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E, Willment JA, Taylor PR, Kerrigan A, Tsoni SV, Gordon S, Meyer-Wentrup F, Adema GJ, Kullberg BJ, Schweighoffer E, Tybulewicz V, Mora-Montes HM, Gow NAR, Williams DL, Netea MG, Brown GD. 2008. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol 38:500–506 http://dx.doi.org/10.1002/eji.200737741.
176. Bulmer GS, Sans MD. 1967. Cryptococcus neoformans. II. Phagocytosis by human leukocytes. J Bacteriol 94:1480–1483. [PubMed]
177. Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. 2008. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 10:2043–2057 http://dx.doi.org/10.1111/j.1462-5822.2008.01186.x.
178. Wozniak KL, Levitz SM. 2008. Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect Immun 76:4764–4771 http://dx.doi.org/10.1128/IAI.00660-08.
179. Alvarez M, Casadevall A. 2006. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16:2161–2165 http://dx.doi.org/10.1016/j.cub.2006.09.061.
180. Ma H, Croudace JE, Lammas DA, May RC. 2006. Expulsion of live pathogenic yeast by macrophages. Curr Biol 16:2156–2160 http://dx.doi.org/10.1016/j.cub.2006.09.032.
181. Dadachova E, Casadevall A. 2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531 http://dx.doi.org/10.1016/j.mib.2008.09.013.
182. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. 2007. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457 http://dx.doi.org/10.1371/journal.pone.0000457.
183. Doering TL, Nosanchuk JD, Roberts WK, Casadevall A. 1999. Melanin as a potential cryptococcal defence against microbicidal proteins. Med Mycol 37:175–181 http://dx.doi.org/10.1080/j.1365-280X.1999.00218.x.
184. Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272 http://dx.doi.org/10.1016/j.molcel.2014.03.028. [PubMed]
185. Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552 http://dx.doi.org/10.1038/nri.2016.77.
186. Sánchez-Vallet A, Mesters JR, Thomma BPHJ. 2015. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 39:171–183 http://dx.doi.org/10.1093/femsre/fuu003.
187. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP, Talbot NJ. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335 http://dx.doi.org/10.1105/tpc.111.092957.
188. Oliveira-Garcia E, Deising HB. 2013. Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize. Plant Cell 25:2356–2378 http://dx.doi.org/10.1105/tpc.112.103499.
189. Casadevall A, Pirofski LA. 2006. Polysaccharide-containing conjugate vaccines for fungal diseases. Trends Mol Med 12:6–9 http://dx.doi.org/10.1016/j.molmed.2005.11.003.
190. Cassone A. 2008. Fungal vaccines: real progress from real challenges. Lancet Infect Dis 8:114–124 http://dx.doi.org/10.1016/S1473-3099(08)70016-1.
191. Cutler JE, Deepe GS Jr, Klein BS. 2007. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5:13–28 http://dx.doi.org/10.1038/nrmicro1537. [PubMed]
192. Dan JM, Levitz SM. 2006. Prospects for development of vaccines against fungal diseases. Drug Resist Updat 9:105–110 http://dx.doi.org/10.1016/j.drup.2006.05.004.
193. Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, Filler SG, Yeaman MR, Edwards JE Jr. 2006. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 194:256–260 http://dx.doi.org/10.1086/504691. [PubMed]
194. Ibrahim AS, Spellberg BJ, Avanesian V, Fu Y, Edwards JE Jr. 2006. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 74:3039–3041 http://dx.doi.org/10.1128/IAI.74.5.3039-3041.2006.
195. Xin H, Dziadek S, Bundle DR, Cutler JE. 2008. Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci USA 105:13526–13531 http://dx.doi.org/10.1073/pnas.0803195105.
196. Sandini S, La Valle R, De Bernardis F, Macrì C, Cassone A. 2007. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 9:1223–1238 http://dx.doi.org/10.1111/j.1462-5822.2006.00862.x.
197. Ito JI, Lyons JM, Hong TB, Tamae D, Liu YK, Wilczynski SP, Kalkum M. 2006. Vaccinations with recombinant variants of Aspergillus fumigatus allergen Asp f 3 protect mice against invasive aspergillosis. Infect Immun 74:5075–5084 http://dx.doi.org/10.1128/IAI.00815-06.
198. Larsen RA, Pappas PG, Perfect J, Aberg JA, Casadevall A, Cloud GA, James R, Filler S, Dismukes WE. 2005. Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother 49:952–958 http://dx.doi.org/10.1128/AAC.49.3.952-958.2005.
199. Cassone A, Torosantucci A. 2006. Opportunistic fungi and fungal infections: the challenge of a single, general antifungal vaccine. Expert Rev Vaccines 5:859–867 http://dx.doi.org/10.1586/14760584.5.6.859.
200. Rachini A, Pietrella D, Lupo P, Torosantucci A, Chiani P, Bromuro C, Proietti C, Bistoni F, Cassone A, Vecchiarelli A. 2007. An anti-β-glucan monoclonal antibody inhibits growth and capsule formation of Cryptococcus neoformansin vitro and exerts therapeutic, anticryptococcal activity in vivo. Infect Immun 75:5085–5094 http://dx.doi.org/10.1128/IAI.00278-07.
201. Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P, Rappuoli R, Cassone A. 2005. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 202:597–606 http://dx.doi.org/10.1084/jem.20050749.
202. Hancock RE, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557 http://dx.doi.org/10.1038/nbt1267.
203. Li XS, Reddy MS, Baev D, Edgerton M. 2003. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278:28553–28561 http://dx.doi.org/10.1074/jbc.M300680200.
204. Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DF, Weaver LL, Henklein P, Ulrich AS, Chiang SH, Farmer SW, Pante N, Volkmer R, Hancock RE. 2009. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69 http://dx.doi.org/10.1016/j.chembiol.2008.11.006.
205. Stynen D, Goris A, Sarfati J, Latgé JP. 1995. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis. J Clin Microbiol 33:497–500. [PubMed]
206. Morelle W, Bernard M, Debeaupuis JP, Buitrago M, Tabouret M, Latgé J-P. 2005. Galactomannoproteins of Aspergillus fumigatus. Eukaryot Cell 4:1308–1316 http://dx.doi.org/10.1128/EC.4.7.1308-1316.2005.
207. Sendid B, Jouault T, Coudriau R, Camus D, Odds F, Tabouret M, Poulain D. 2004. Increased sensitivity of mannanemia detection tests by joint detection of α- and β-linked oligomannosides during experimental and human systemic candidiasis. J Clin Microbiol 42:164–171 http://dx.doi.org/10.1128/JCM.42.1.164-171.2004.
208. Babady NE, Bestrom JE, Jespersen DJ, Jones MF, Beito EM, Binnicker MJ, Wengenack NL. 2009. Evaluation of three commercial latex agglutination kits and a commercial enzyme immunoassay for the detection of cryptococcal antigen. Med Mycol 47:336–338 http://dx.doi.org/10.1080/13693780802607400.
209. McFadden DC, Zaragoza O, Casadevall A. 2004. Immunoreactivity of cryptococcal antigen is not stable under prolonged incubations in human serum. J Clin Microbiol 42:2786–2788 http://dx.doi.org/10.1128/JCM.42.6.2786-2788.2004.
210. Marty FM, Koo S. 2009. Role of (1→3)-β-D-glucan in the diagnosis of invasive aspergillosis. Med Mycol 47(Suppl 1):S233–S240 http://dx.doi.org/10.1080/13693780802308454.
211. Ostrosky-Zeichner L, Alexander BD, Kett DH, Vazquez J, Pappas PG, Saeki F, Ketchum PA, Wingard J, Schiff R, Tamura H, Finkelman MA, Rex JH. 2005. Multicenter clinical evaluation of the (1→3) β-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis 41:654–659 http://dx.doi.org/10.1086/432470.
212. Duro RM, Netski D, Thorkildson P, Kozel TR. 2003. Contribution of epitope specificity to the binding of monoclonal antibodies to the capsule of Cryptococcus neoformans and the soluble form of its major polysaccharide, glucuronoxylomannan. Clin Diagn Lab Immunol 10:252–258.
213. Cheetham J, Smith DA, da Silva Dantas A, Doris KS, Patterson MJ, Bruce CR, Quinn J. 2007. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell 18:4603–4614 http://dx.doi.org/10.1091/mbc.E07-06-0581.
214. Román E, Arana DM, Nombela C, Alonso-Monge R, Pla J. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol 15:181–190 http://dx.doi.org/10.1016/j.tim.2007.02.001.
215. Kozubowski L, Lee SC, Heitman J. 2009. Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 11:370–380 http://dx.doi.org/10.1111/j.1462-5822.2008.01273.x.
216. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5:418–430 http://dx.doi.org/10.1038/nrmicro1680.
microbiolspec.FUNK-0035-2016.citations
cm/5/3
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0035-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0035-2016
2017-05-19
2017-12-15

Abstract:

The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/5/3/FUNK-0035-2016.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0035-2016&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Structural organization of the cell walls of fungal pathogens. The upper panels show transmission electron micrograph sections of the cell walls, revealing mannoprotein fibrils in the outer walls of , the fibril-free cell wall of an hypha, and the elaborate capsule of . The cartoons (below) show the major components of the wall and current hypotheses about their interconnections. Most fungi have a common alkali-insoluble core of branched β-(1,3) glucan, β-(1,6) glucan, and chitin but differ substantially in the components that are attached to this. In , the outer wall is heavily enriched with highly mannosylated proteins that are mostly attached via glycosylphosphatidylinositol remnants to β-(1,6) glucan and to the β-(1,3) glucan-chitin core. In , typical of many filamentous fungi, mannan chains are of lower molecular weight and are modified with β-(1,5) galactofuran. These mannans are not components of glycoproteins but are attached directly to the cell wall core. The cell wall core polysaccharides of are β-(1,3)-β-(1,4) glucans and are attached to an outer layer of alkali-soluble linear α-(1,3)(1,4) glucan. Conidial walls of have an outer hydrophobin rodlet layer of highly hydrophobic portions (hydrophobins) and a melanin layer; hyphae of have α-(1,3) glucan GM, and galactosaminoglycan (GAG) in the outer cell wall and limited glycosylated proteins. In , an outer capsule is composed of glucuronoxylomannan (GXM) and lesser amounts of galactoxylomannan (GalXM). The capsule is attached to α-(1,3) glucan in the underlying wall, although peptides or other glycans may also be required for anchoring the capsule to the cell wall. The inner wall has a β-(1,3) glucan-β-(1,6) glucan-chitin core, but most of the chitin is deacetylated to chitosan, and some of the chitosan/chitin may be located further from the membrane. also has a layer of melanin whose precise location is not known, but it may be incorporated into several cell wall polysaccharides and may assemble close to the chitin/chitosan layer. cell walls may lack chitin and the outer chain -mannans but retain core -mannan and -mannan modified proteins ( 56 ). Hyphae of and have an outer cell wall layer of α-(1,3) glucan that prevents efficient immune recognition of β-(1,3) glucan in the inner cell wall. (From reference 7 , with permission.)

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Synthesis and remodeling of β-(1,3) glucan. Putative sequential or concomitant events in the synthesis and remodeling of β-(1,3) glucan. 1. Synthesis of linear glucan chains (glucan synthase complex composed of a catalytic [GS], activating [Act], and regulating [Reg] subunits). 2. Hydrolysis of glucans. 3. Branching of β-(1,3) glucan. 4. Elongation of β-(1,3) glucan side chains. 5. Cross-linking with branched [β-(1,3)] glucan. GPI-anchored transglycosidase or hydrolases (T) bound to the membrane can act on the polysaccharides in the cell wall space. Panel A provides example. An example of GPI-anchored Gel1 protein involved in the elongation of β-(1,3) glucan inside the cell wall space. Crystal structure of the Gel1 orthologue, Gas2 complex with acceptor and donor oligosaccharides. The enzyme is shown as a ribbon, the glucan binding domain with green strands and orange helices, and the catalytic domain with blue strands and red helices. A gray transparent molecular surface is shown, revealing an elongated groove on the catalytic domain, in which the laminarioligosaccharides (shown as sticks, with yellow carbon atoms) bind. Biochemical organization of a GPI-anchored protein in . The three domains of the GPI anchor are (i) a phosphoethanolamine linker covalently bound to the protein, (ii) a mannan-glucosamine-myo-inositol oligosaccharide, and (iii) a ceramide tail attaching the GPI anchor to the cell membrane. (Data from reference 86 ).

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Glucan synthase (Gsc1), chitin synthase (Chs6), and myosin chitin synthase (Mcs1) of are codelivered on the same secretory vesicles and colocalize at bud and hypha tips. mCherry3-Mcs1 (red) and Chs6-GFP3 (green and yellow) colocalized Mcs1 and Chs6 at the bud tip. Scale bar, 2 μm. In the bud is photobleached with a laser, and the codelivery of mCherry3-Mcs1 (red) and Chs6-GFP3 (green) into the photobleached bud is revealed after 5 minutes. Scale bars, 3 μm (left) and 0.5 μm (right). Electron microscopy of secretory vesicles that have been colloidal-gold-labeled with antibodies showing Chs6 and Mcs1 colocalization in a single vesicle. Scale bars: 100 nm. A model for the delivery and secretion of vesicles containing both Chs6 and Msc1 via actin- and microtubule-based cytoplasmic transport systems to the apical cell membrane. After fusion with the apical membrane, the nascent polysaccharide chains of chitin and β-(1,3) glucan are inserted into the cell wall—a process that anchors the synthases , ensuring coordinated synthesis and tethering at the biosynthetically active apical region of the cell. (From Schuster et al. [ 45 ], with kind permission and modification by Gero Steinberg.)

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Signaling pathways that regulate cell wall remodeling and cell integrity. Integral, glycosylated, membrane sensors (Wsc family, Mid2, Mtl1, Sho1, and Sln1) detect specific perturbations in the wall and transduce the signal to the downstream pathway elements that feed into MAP kinase cascades. Transcription factors at the bottom of the pathway activate gene expression to promote remodeling of the cell wall architecture to maintain cell integrity. In , Pkc1 is involved in targeting Chs3 to the plasma membrane in response to heat shock, and Rho1 activates the Fks1 subunit of β-(1,3) glucan synthase. Black text denotes proteins; red, ; blue, ; and green, . The fungal pathogen orthologues may not have been fully characterized, and their position in the pathways reflects the paradigm. However, significant rewiring of signaling pathways is evident in ; for example, the role of the CaSko1 transcription factor in response to caspofungin is independent of the Hog1 MAP kinase ( 135 ) but involves the Psk1 PAK kinase. Furthermore, in , there is no evidence of Ste11 activating Hog1 like there is in ( 213 ). In , the Cas5 transcription factor also contributes to the transcriptional response to caspofungin, and there are no Cas5-orthologues in ( 134 ). The CaCek1 MAP kinase is also implicated in cell wall remodeling and is constitutively activated in a null mutant background ( 213 ). Fungal pathogen orthologues of the elements upstream of the MAP kinase cascades are not shown but exist, although the membrane sensors appear to have significantly diverged. Exogenous calcium enters cells primarily through the Cch1/Mid1 channel complexes. A third Ca channel, Fig1, plays a role in Ca transport during mating, but no orthologues of Fig1 have been identified in or . Ca binds to and activates calmodulin (Cmd1), which in turn activates the phosphatase calcineurin, composed of a catalytic (Cna1) and a regulatory (Cnb1) subunit. has two Cna1 isoforms (Cna1/Cmp1 and Cna2/Cmp2). Calcineurin activates the transcription factor Crz1 by dephosphorylation to induce expression of genes that contain calcium-dependent response elements within their promoter sequences. No Crz1 orthologue has been identified in . Some data also suggest that calcineurin has regulatory functions that are independent of Crz1 ( 136 ). Several of the proteins that may be related to this pathway remain unannotated, so putative orthologs have been ascribed but have not been experimentally validated. The pathway can be blocked via FK506 binding to Fpr1 or cylosporin A binding to cyclophilin Cpr1, and both interactions result in calcineurin inhibition. (Adapted from references 129 , 130 , 214 216 ).

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Chitin synthesis and septum formation in yeasts. Septation involves a protein scaffold that tethers the Chs3p chitin synthase that assembles the chitin ring to Cdc10p of the septin ring complex via Chs4p and Bni4p. The structure of the wild-type septum of (transmission electron microscopy image on right) is shown alongside septum-less yeast cells in a conditional mutant (middle transmission electron microscopy image) and salvage septa (transmission electron microscopy image on left) made in the same mutant strain after stimulation of the cell wall salvage pathways by growth in the presence of calcium ions and calcofluor white. (Reused from reference 138 under CC BY 4.0).

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Recognition of human fungal pathogens. PAMP-PRR interactions for fungal cell recognition are shown as described in the text. Interactions with CLRs (C-type lectins), TLRs (Toll-like receptors), NLRs (Nod-like receptors), and a range of other receptors are shown in the purple boxes along with the relevant fungal PAMPs and examples of organisms for which given PRR-PAMP recognition phenomena have been described.

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Recognition and avoidance of the recognition of chitin by plant pathogens. The detection of fungal chitin is used to trigger PAMP-mediated immunity in plants. To counter this, plant pathogenic fungi have evolved a range of mechanisms to avoid detection, including the following. The liberation of chitin fragments by host chitinase attack can activate host immunity. Countering this, some phytopathogens secrete effectors that block access to chitinase or inhibit chitinase activity. Fungal LysM-type effectors block recognition either by tight binding to prevent engagement with the host PRR or by interfering with host receptor dimerization. The synthesis of an outer cell wall layer of α-(1,3) glucan (as in certain human pathogenic species) prevents chitinase action and access to inner cell wall PAMPs. Some fungal pathogens convert, to a greater or lesser extent, chitin into chitosan by inducing chitin deacetylases. This modified form of chitin is a poor substrate for chitinase and only weakly induces plant immune recognition. (From Bart Thomma with permission [adapted from reference 186 ]).

Source: microbiolspec May 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0035-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error