No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Frank H. Gleason1, Bettina Scholz2, Thomas G. Jephcott4, Floris F. van Ogtrop5, Linda Henderson6, Osu Lilje7, Sandra Kittelmann8, Deborah J. Macarthur9
  • Editors: Joseph Heitman10, Pedro W. Crous11
    Affiliations: 1: School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia; 2: Faculty of Natural Resource Sciences, University of Akureyri, Borgir v. Nordurslod, IS 600 Akureyri, Iceland; 3: BioPol ehf., Einbúastig 2, 545 Skagaströnd, Iceland; 4: School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia; 5: School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia; 6: School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia; 7: School of Life and Environmental Sciences, Faculty of Science, University of Sydney, NSW 2006, Australia; 8: AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand; 9: School of Science, Faculty of Health Sciences, Australian Catholic University, NSW 2059, Australia; 10: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 11: CBS-KNAW Fungal Diversity Centre, Royal Dutch Academy of Arts and Sciences, Utrecht, The Netherlands
  • Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0038-2016
  • Received 11 December 2016 Accepted 07 February 2017 Published 31 March 2017
  • Deborah J. Macarthur, deborah.macarthur@acu.edu.au
image of Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats
    Preview this microbiology spectrum article:
    Zoom in

    Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0038-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0038-2016-2.gif
  • Abstract:

    The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.

  • Citation: Gleason F, Scholz B, Jephcott T, van Ogtrop F, Henderson L, Lilje O, Kittelmann S, Macarthur D. 2017. Key Ecological Roles for Zoosporic True Fungi in Aquatic Habitats. Microbiol Spectrum 5(2):FUNK-0038-2016. doi:10.1128/microbiolspec.FUNK-0038-2016.


1. Sparrow FK. 1960. Aquatic Phycomycetes, 2nd ed. University of Michigan Press, Ann Arbor, MI. http://dx.doi.org/10.5962/bhl.title.5685 [PubMed]
2. Jephcott TG, Sime-Ngando T, Gleason FH, Macarthur DJ. 2016. Host–parasite interactions in food webs: diversity, stability, and coevolution. Food Webs 6:1–8. http://dx.doi.org/10.1016/j.fooweb.2015.12.001
3. Baldauf SL. 2003. The deep roots of eukaryotes. Science 300:1703–1706. http://dx.doi.org/10.1126/science.1085544
4. Baldauf SL. 2008. An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273.
5. Beakes GW, Canter HM, Jaworski GH. 1988. Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can J Bot 66:1054–1067. http://dx.doi.org/10.1139/b88-151
6. Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. 2015. A higher level classification of all living organisms. PLoS One 10:e0119248. (Erratum, 10:e0130114) http://dx.doi.org/10.1371/journal.pone.0119248
7. Barr DJS. 2001. The chytridiomycota, p 93–112. In Esser K, Lemke PA (ed), The Mycota, Systematics and Evolution, vol VIIA. Springer, New York, NY. http://dx.doi.org/10.1007/978-3-662-10376-0_5
8. Voigt K, Marano AV, Gleason FH. 2013. 9 Ecological and economical importance of parasitic zoosporic true fungi, p 243–270. In Kempken F (ed), Agricultural Applications. Springer, Berlin, Germany. doi:10.1007/978-3-642-36821-9_9.
9. Powell MJ, Letcher PM. 2014. 6 Chytridiomycota, monoblepharidomycota, and neocallimastigomycota, p 141–175. In McLaughlin DJ, Spatafora JW (ed), Systematics and Evolution: Part A. Springer, Heidelberg, Germany. http://dx.doi.org/10.1007/978-3-642-55318-9_6.
10. Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML. 2011. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 11:331. http://dx.doi.org/10.1186/1471-2148-11-331
11. James TY, Porter TM, Martin WW. 2014. 7 Blastocladiomycota, p 177–207. In McLaughlin DJ, Spatafora JW (ed), Systematics and Evolution: Part A, 2nd ed. Springer, Heidelberg, Germany. http://dx.doi.org/10.1007/978-3-642-55318-9_7
12. Jones MDM, Richards TA, Hawksworth DL, Bass D. 2011. Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–175. http://dx.doi.org/10.5598/imafungus.2011.02.02.08 [PubMed]
13. Glockling SL, Marshall WL, Gleason FH. 2013. Phylogenetic interpretations and ecological potentials of the Mesomycetozoea (Ichthyosporea). Fungal Ecol 6:237–247. http://dx.doi.org/10.1016/j.funeco.2013.03.005
14. Busk PK, Lange M, Pilgaard B, Lange L. 2014. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature. PLoS One 9:e114138. http://dx.doi.org/10.1371/journal.pone.0114138
15. Lara E, Moreira D, López-García P. 2010. The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121. http://dx.doi.org/10.1016/j.protis.2009.06.005 [PubMed]
16. Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. 2014. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112. http://dx.doi.org/10.3389/fmicb.2014.00112
17. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493. (Erratum, 60:321.) http://dx.doi.org/10.1111/j.1550-7408.2012.00644.x
18. Xie J, Fu Y, Jiang D, Li G, Huang J, Li B, Hsiang T, Peng Y. 2008. Intergeneric transfer of ribosomal genes between two fungi. BMC Evol Biol 8:87. http://dx.doi.org/10.1186/1471-2148-8-87 [PubMed]
19. Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ. 2006. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 16:1857–1864. http://dx.doi.org/10.1016/j.cub.2006.07.052
20. Richards TA, Talbot NJ. 2007. Plant parasitic oomycetes such as phytophthora species contain genes derived from three eukaryotic lineages. Plant Signal Behav 2:112–114. http://dx.doi.org/10.4161/psb.2.2.3640
21. Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T. 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71. http://dx.doi.org/10.1111/j.1462-2920.2006.01111.x
22. Barr DJS. 1981. The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. Biosystems 14:359–370. http://dx.doi.org/10.1016/0303-2647(81)90042-3
23. Longcore JE. 1995. Morphology and zoospore ultrastructure of Entophlyctis luteolus sp. nov. (Chytridiales): implications for chytrid taxonomy. Mycologia 87:25–33. http://dx.doi.org/10.2307/3760942
24. Letcher PM, Powell MJ. 2012. A Taxonomic Summary and Revision of Rhizophydium (Rhizophydiales, Chytridiomycota). University Printing. The University of Alabama, Tuscaloosa, AL.
25. Hasija SK, Miller CE. 1971. Nutrition of chytriomyces and its influence on morphology. Am J Bot 58:939–944. http://dx.doi.org/10.2307/2441260
26. Chen S-F, Chien C-Y. 1996. Morphology and zoospore ultrastructure of Rhizophydium macroporosum (Chytridiales). Taiwania 42:105–112.
27. Scholz B, Guillou L, Marano AV, Neuhauser S, Sullivan BK, Karsten U, Küpper FC, Gleason FH. 2016. Zoosporic parasites infecting marine diatoms - A black box that needs to be opened. Fungal Ecol 19:59–76. http://dx.doi.org/10.1016/j.funeco.2015.09.002
28. Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MD, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 282:20152243. http://dx.doi.org/10.1098/rspb.2015.2243
29. Fuller MS, Jaworski A. 1987. Zoosporic Fungi in Teaching & Research. Southeastern Publishing Corporation, Athens, GA.
30. Gleason FH, Lilje O. 2009. Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59. http://dx.doi.org/10.1016/j.funeco.2008.12.002
31. Moss AS, Reddy NS, Dortaj IM, San Francisco MJ. 2008. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100:1–5. http://dx.doi.org/10.3852/mycologia.100.1.1 [PubMed]
32. Muehlstein LK, Amon JP, Leffler DL. 1988. Chemotaxis in the marine fungus Rhizophydium littoreum. Appl Environ Microbiol 54:1668–1672. [PubMed]
33. Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U. 2017. Chytridiomycosis of marine diatoms: the role of stress physiology and resistance in parasite-host recognition and accumulation of defense molecules. Mar Drugs 15:26. http://dx.doi.org/10.3390/md15020026
34. Krarup T, Olson LW, Heldt-Hansen HP. 1994. Some characteristics of extracellular proteases produced by members of the Chytridiales and the Spizellomycetales (Chytridiomycetes). Can J Microbiol 40:106–112. http://dx.doi.org/10.1139/m94-017
35. Piotrowski JS, Annis SL, Longcore JE. 2004. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15. http://dx.doi.org/10.2307/3761981 [PubMed]
36. Joneson S, Stajich JE, Shiu S-H, Rosenblum EB. 2011. Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7:e1002338. http://dx.doi.org/10.1371/journal.ppat.1002338 [PubMed]
37. Gleason FH, Marano AV, Digby AL, Al-Shugairan N, Lilje O, Steciow MM, Barrera MD, Inaba S, Nakagiri A. 2011. Patterns of utilization of different carbon sources by Chytridiomycota. Hydrobiologia 659:55–64. http://dx.doi.org/10.1007/s10750-010-0461-y
38. Lange L, Bech L, Busk PK, Grell MN, Huang Y, Lange M, Linde T, Pilgaard B, Roth D, Tong X. 2012. The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus 3:87–92. http://dx.doi.org/10.5598/imafungus.2012.03.01.09
39. Floudas D, et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. http://dx.doi.org/10.1126/science.1221748
40. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H. 2007. Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67. http://dx.doi.org/10.1007/s10531-006-9120-z
41. Karling JS. 1977. Chytridiomycetarum Iconographia. J. Cramer, Vaduz, Liechtenstein.
42. Powell MJ. 1993. Looking at mycology with a Janus face: A glimpse at Chytridiomycetes active in the environment. Mycologia 85:1–20. http://dx.doi.org/10.2307/3760471
43. Comeau AM, Vincent WF, Bernier L, Lovejoy C. 2016. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6:30120. http://dx.doi.org/10.1038/srep30120
44. Chambouvet A, Richards TA, Bass D, Neuhauser S. 2015. Revealing microparasite diversity in aquatic environments using brute force molecular techniques and subtle microscopy, p 93–116. In Morand S, Krasnov BR, Littlewood DTJ (ed), Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9781139794749.010
45. Lepère C, Domaizon I, Debroas D. 2008. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949. http://dx.doi.org/10.1128/AEM.01156-07 [PubMed]
46. Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK. 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320. http://dx.doi.org/10.1073/pnas.0907303106
47. Wurzbacher C, Rösel S, Rychła A, Grossart HP. 2014. Importance of saprotrophic freshwater fungi for pollen degradation. PLoS One 9:e94643. http://dx.doi.org/10.1371/journal.pone.0094643 [PubMed]
48. Kagami M, Amano Y, Ishii N. 2012. Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microb Ecol 63:358–368. http://dx.doi.org/10.1007/s00248-011-9913-9
49. do Amaral Meirinho P, Nishimura PY, Pires-Zottarelli CLA, Mochini-Carlos V, Pompêo MLM. 2013. Olpidium gregarium, a chytrid fungus affecting rotifers populations in Rio Grande Reservoir, São Paulo State, Brazil. Biota Neotrop 13:356–359. http://dx.doi.org/10.1590/S1676-06032013000100036
50. Gleason FH, Küpper FC, Amon JP, Picard K, Gachon CMM, Marano AV, Sime-Ngando T, Lilje O. 2011. Zoosporic true fungi in marine ecosystems: a review. Mar Freshw Res 62:383–393. http://dx.doi.org/10.1071/MF10294
51. Gleason F, Kagami M, Lefevre E, Simengando T. 2008. The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25. http://dx.doi.org/10.1016/j.fbr.2008.02.001
52. Gleason FH, Letcher PM, Commandeur Z, Jeong CE, McGee PA. 2005. The growth response of some Chytridiomycota to temperatures commonly observed in the soil. Mycol Res 109:717–722. http://dx.doi.org/10.1017/S0953756204002163 [PubMed]
53. Gleason FH, Letcher PM, McGee PA. 2004. Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589. http://dx.doi.org/10.1017/S0953756204009736 [PubMed]
54. Gleason FH, Daynes CN, McGee PA. 2010. Some zoosporic fungi can grow and survive within a wide pH range. Fungal Ecol 3:31–37. http://dx.doi.org/10.1016/j.funeco.2009.05.004
55. Amaral Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML. 2002. Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137. http://dx.doi.org/10.1038/417137a
56. Kong P, Moorman GW, Lea-Cox JD, Ross DS, Richardson PA, Hong C. 2009. Zoosporic tolerance to pH stress and its implications for Phytophthora species in aquatic ecosystems. Appl Environ Microbiol 75:4307–4314. http://dx.doi.org/10.1128/AEM.00119-09
57. Slade SJ, Pegg GF. 1993. The effect of silver and other metal ions on the in vitro growth of root-rotting Phytophthora and other fungal species. Ann Appl Biol 122:233–251. http://dx.doi.org/10.1111/j.1744-7348.1993.tb04030.x
58. Byrt PN, Irving HR, Grant BR. 1982. The effect of cations on zoospores of the fungus Phytophthora cinnamomi. J Gen Microbiol 128:1189–1198. doi:10.1099/00221287-128-6-1189
59. Donaldson SP, Deacon JW. 1992. Role of calcium in adhesion and germination of zoospore cysts of Pythium: a model to explain infection of host plants. J Gen Microbiol 138:2051–2059. http://dx.doi.org/10.1099/00221287-138-10-2051
60. Sensson E, Unestam T. 1975. Differential induction of zoospore encystment and germination in Aphanomyces astaci, Oomycetes. Physiol Plant 35:210–216. http://dx.doi.org/10.1111/j.1399-3054.1975.tb03895.x
61. Soll DR, Sonneborn DR. 1972. Zoospore germination in Blastocladiella emersonii. IV. Ion control over cell differentiation. J Cell Sci 10:315–333. [PubMed]
62. Henderson L, Pilgaard B, Gleason FH, Lilje O. 2015. Copper (II) lead (II), and zinc (II) reduce growth and zoospore release in four zoosporic true fungi from soils of NSW, Australia. Fungal Biol 119:648–655. http://dx.doi.org/10.1016/j.funbio.2015.04.002
63. Amon JP, Arthur RD. 1981. Nutritional studies of a marine Phlyctochytrium sp. Mycologia 73:1049–1055. http://dx.doi.org/10.2307/3759675
64. Amon JP. 1976. An estuarine species of Phlyctochytrium (Chytridiales) having a transient requirement for sodium. Mycologia 68:470–480. http://dx.doi.org/10.2307/3758973
65. Gleason FH, Midgley DJ, Letcher PM, McGee PA. 2006. Can soil Chytridiomycota survive and grow in different osmotic potentials? Mycol Res 110:869–875. http://dx.doi.org/10.1016/j.mycres.2006.04.002 [PubMed]
66. Lepelletier F, Karpov SA, Alacid E, Le Panse S, Bigeard E, Garcés E, Jeanthon C, Guillou L. 2014. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165:230–244. http://dx.doi.org/10.1016/j.protis.2014.02.004
67. Johnson TW, Sparrow FK. 1961. Fungi in Oceans and Estuaries. J. Cramer. Hafner Publishing Co, New York.
68. Taylor JD, Cunliffe M. 2016. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128. http://dx.doi.org/10.1038/ismej.2016.24
69. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871. http://dx.doi.org/10.3852/mycologia.98.6.860
70. Park D. 1974. Accumulation of fungi by cellulose exposed in a river. Trans Br Mycol Soc 63:437–447. http://dx.doi.org/10.1016/S0007-1536(74)80090-2
71. Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F. 2011. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35:620–651. http://dx.doi.org/10.1111/j.1574-6976.2011.00266.x [PubMed]
72. Longcore JE, Simmons DR, Letcher PM. 2016. Synchytrium microbalum sp. nov. is a saprobic species in a lineage of parasites. Fungal Biol 120:1156–1164. http://dx.doi.org/10.1016/j.funbio.2016.06.010 [PubMed]
73. Hanic LA, Sekimoto S, Bates SS. 2009. Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Botany 87:1096–1105. http://dx.doi.org/10.1139/B09-070
74. Scholz B, Küpper FC, Vyverman W, Karsten U. 2014. Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms - a methodological comparison. J Phycol 50:1009–1019. http://dx.doi.org/10.1111/jpy.12230
75. Scholz B. 2015. Host-Pathogen Interactions Between Brackish and Marine Microphytobenthic Diatom Taxa and Representatives of the Chytridiomycota, Oomycota and Labyrinthulomycota. Status report for the Icelandic Research Fund, May–June 2014.
76. Scholz B, Küpper FC, Vyverman W, Karsten U. 2016. Effects of eukaryotic pathogens (Chytridiomycota and Oomycota) on marine benthic diatom communities in the Solthörn tidal flat (southern North Sea, Germany). Eur J Phycol 51:253–269. http://dx.doi.org/10.1080/09670262.2015.1134814
77. Gutiérrez MH, Jara AM, Pantoja S. 2016. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1646–1653. http://dx.doi.org/10.1111/1462-2920.13257 [PubMed]
78. Elbrächter M, Schnepf E. 1998. Parasites of harmful algae, p 351–369. In Anderson DM, Cembella AD, Hallegraeff GM (ed), Physiological Ecology of Harmful Algal Blooms. Springer, Berlin, Germany.
79. Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, Guillou L. 2015. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol doi:10.1016/j.funeco.2015.03.007.
80. Gómez F, Moreira D, Benzerara K, López-García P. 2011. Solenicola setigera is the first characterized member of the abundant and cosmopolitan uncultured marine stramenopile group MAST-3. Environ Microbiol 13:193–202. http://dx.doi.org/10.1111/j.1462-2920.2010.02320.x
81. Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11:1002–1011. http://dx.doi.org/10.1111/j.1755-0998.2011.03041.x
82. Schoch CL, et al, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. http://dx.doi.org/10.1073/pnas.1117018109
83. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, Del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet A-L, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41(D1):D597–D604. http://dx.doi.org/10.1093/nar/gks1160
84. de Vargas C, et al, Tara Oceans Coordinators. 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. http://dx.doi.org/10.1126/science.1261605
85. Massana R, Pedrós-Alió C. 2008. Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218. http://dx.doi.org/10.1016/j.mib.2008.04.004 [PubMed]
86. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra WH, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–4049. http://dx.doi.org/10.1111/1462-2920.12955 [PubMed]
87. Rasconi S, Jobard M, Jouve L, Sime-Ngando T. 2009. Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553. http://dx.doi.org/10.1128/AEM.02211-08
88. Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD. 2014. Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277. http://dx.doi.org/10.1146/annurev-marine-010213-135029
89. Lefèvre E, Letcher PM, Powell MJ. 2012. Temporal variation of the small eukaryotic community in two freshwater lakes: emphasis on zoosporic fungi. Aquat Microb Ecol 67:91–105. http://dx.doi.org/10.3354/ame01592
90. Leshem T, Letcher PM, Powell MJ, Sukenik A. 2016. Characterization of a new chytrid species parasitic on the dinoflagellate, Peridinium gatunense. Mycologia 108:731–743. http://dx.doi.org/10.3852/15-197 [PubMed]
91. Hadas O, Kaplan A, Sukenik A. 2015. Long-term changes in cyanobacteria populations in Lake Kinneret (Sea of Galilee), Israel: an eco-physiological outlook. Life (Basel) 5:418–431. http://dx.doi.org/10.3390/life5010418 [PubMed]
92. Kyle M, Haande S, Ostermaier V, Rohrlack T. 2015. The Red Queen race between parasitic chytrids and their host, Planktothrix: a test using a time series reconstructed from sediment DNA. PLoS One 10:e0118738. http://dx.doi.org/10.1371/journal.pone.0118738 [PubMed]
93. Jephcott TG, van Ogtrop FF, Gleason FH, Macarthur DJ, Scholz B. 2017. The ecology of chytrid and aphelid parasites of phytoplankton, p 239–255. In Dighton J, White JF (ed), The Fungal Community: Its Organization and Role in the Ecosystem, 4th ed. CRC Press Boca Raton, FL.
94. Kagami M, Miki T, Takimoto G. 2014. Mycoloop: chytrids in aquatic food webs. Front Microbiol 5:166. http://dx.doi.org/10.3389/fmicb.2014.00166 [PubMed]
95. Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E. 2007. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Biol Sci 274:1561–1566. http://dx.doi.org/10.1098/rspb.2007.0425
96. Grami B, Rasconi S, Niquil N, Jobard M, Saint-Béat B, Sime-Ngando T. 2011. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modeling analysis. PLoS One 6:e23273. http://dx.doi.org/10.1371/journal.pone.0023273
97. Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407. http://dx.doi.org/10.1016/j.watres.2011.12.016 [PubMed]
98. Wagner C, Adrian R. 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468. http://dx.doi.org/10.4319/lo.2009.54.6_part_2.2460
99. Rohrlack T, Christiansen G, Kurmayer R. 2013. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 79:2642–2647. http://dx.doi.org/10.1128/AEM.03499-12
100. Kagami M, de Bruin A, Ibelings BW, Van Donk E. 2007. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129. http://dx.doi.org/10.1007/s10750-006-0438-z
101. Gleason FH, Macarthur DJ. 2008. The chytrid epidemic revisited. Inoculum 59:1–3.
102. Gleason FH, Mozley-Standridge SE, Porter D, Boyle DG, Hyatt AD. 2007. Preservation of Chytridiomycota in culture collections. Mycol Res 111:129–136. http://dx.doi.org/10.1016/j.mycres.2006.10.009 [PubMed]
103. Frenken T, Velthuis M, de Senerpont Domis LN, Stephan S, Aben R, Kosten S, van Donk E, Van de Waal DB. 2016. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob Change Biol 22:299–309. http://dx.doi.org/10.1111/gcb.13095
104. Van Valen L. 1973. A new evolutionary law. Evol Theory 1:1–30. [PubMed]
105. Gokhale CS, Papkou A, Traulsen A, Schulenburg H. 2013. Lotka-Volterra dynamics kills the Red Queen: population size fluctuations and associated stochasticity dramatically change host-parasite coevolution. BMC Evol Biol 13:254. http://dx.doi.org/10.1186/1471-2148-13-254
106. Gleason FH, Lilje O, Marano AV, Sime-Ngando T, Sullivan BK, Kirchmair M, Neuhauser S. 2014. Ecological functions of zoosporic hyperparasites. Front Microbiol 5:244. http://dx.doi.org/10.3389/fmicb.2014.00244 [PubMed][CrossRef]
107. Carney LT, Lane TW. 2014. Parasites in algae mass culture. Front Microbiol 5:278. http://dx.doi.org/10.3389/fmicb.2014.00278 [PubMed]
108. Grossart HP, Wurzbacher C, James TY, Kagami M. 2016. Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38. http://dx.doi.org/10.1016/j.funeco.2015.06.004
109. Liebetanz E. 1910. Die parasitischen protozoen des wiederkäuermagens. Arch Protistenkd 19:19–80.
110. Braune R. 1913. Untersuchungen über die im wiederkäuermagen vorkommenden protozoen. Arch Protistenkd 32:111–170.
111. Orpin CG. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262. http://dx.doi.org/10.1099/00221287-91-2-249
112. Orpin CG. 1977. The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J Gen Microbiol 99:215–218. http://dx.doi.org/10.1099/00221287-99-1-215 [PubMed]
113. Orpin CG. 1977. The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J Gen Microbiol 99:107–117. http://dx.doi.org/10.1099/00221287-99-1-107
114. Orpin CG. 1994. Anaerobic fungi: taxonomy, biology, and distribution in nature, p 1–46. In Orpin CG (ed), Anaerobic Fungi: Biology, Ecology, and Function. Marcel Dekker Inc, New York, NY.
115. Ho YW, Abdullah N, Jalaludin S. 2000. The diversity and taxonomy of anaerobic gut fungi. Fungal Divers 4:37–51.
116. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17. http://dx.doi.org/10.1111/1574-6941.12383 [PubMed]
117. Scupham AJ, Presley LL, Wei B, Bent E, Griffith N, McPherson M, Zhu F, Oluwadara O, Rao N, Braun J, Borneman J. 2006. Abundant and diverse fungal microbiota in the murine intestine. Appl Environ Microbiol 72:793–801. http://dx.doi.org/10.1128/AEM.72.1.793-801.2006
118. Orpin CG. 1976. Studies on the rumen flagellate Sphaeromonas communis. J Gen Microbiol 94:270–280. http://dx.doi.org/10.1099/00221287-94-2-270 [PubMed]
119. Teunissen MJ, Op den Camp HJ, Orpin CG, Huis in ’t Veld JH, Vogels GD. 1991. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol 137:1401–1408. http://dx.doi.org/10.1099/00221287-137-6-1401 [PubMed]
120. Milne A, Theodorou MK, Jordan MGC, King-Spooner C, Trinci APJ. 1989. Survival of anaerobic fungi in feces, in saliva, and in pure culture. Exp Mycol 13:27–37. http://dx.doi.org/10.1016/0147-5975(89)90005-4
121. Mackie RI, Rycyk M, Ruemmler RL, Aminov RI, Wikelski M. 2004. Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos archipelago. Physiol Biochem Zool 77:127–138. http://dx.doi.org/10.1086/383498
122. Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. 2010. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235. http://dx.doi.org/10.1038/ismej.2010.49
123. Thorsen MS. 1999. Abundance and biomass of the gut-living microorganisms (bacteria, protozoa and fungi) in the irregular sea urchin Echinocardium cordatum (Spatangoida: echinodermata). Mar Biol 133:353–360. http://dx.doi.org/10.1007/s002270050474
124. Hibbett DS, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547. http://dx.doi.org/10.1016/j.mycres.2007.03.004 [PubMed][CrossRef]
125. Trinci APJ, Davies DR, Gull K, Lawrence MI, Bonde Nielsen B, Rickers A, Theodorou MK. 1994. Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152. http://dx.doi.org/10.1016/S0953-7562(09)80178-0
126. Rezaeian M, Beakes GW, Parker DS. 2004. Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol Res 108:1227–1233. http://dx.doi.org/10.1017/S0953756204000929 [PubMed]
127. Heath IB, Kaminskyj SG, Bauchop T. 1986. Basal body loss during fungal zoospore encystment: evidence against centriole autonomy. J Cell Sci 83:135–140. [PubMed]
128. Orpin CG, Greenwood Y. 1986. The role of haems and related compounds in the nutrition and zoosporogenesis of the rumen Chytridiomycete Neocallimastix frontalis H8. Microbiology 132:2179–2185. http://dx.doi.org/10.1099/00221287-132-8-2179
129. Orpin CG, Joblin K. 1997. The rumen anaerobic fungi, p 140–195. The Rumen Microbial Ecosystem. Springer International Publishing, Berlin, Germany.
130. Orpin CG, Bountiff L. 1978. Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. J Gen Microbiol 104:113–122. http://dx.doi.org/10.1099/00221287-104-1-113
131. Ho YW, Barr DJS. 1995. Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677. http://dx.doi.org/10.2307/3760810
132. Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK. 2001. Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673. http://dx.doi.org/10.1139/b01-047
133. Chen YC, Tsai SD, Cheng HL, Chien CY, Hu CY, Cheng TY. 2007. Caecomyces sympodialis sp. nov., a new rumen fungus isolated from Bos indicus. Mycologia 99:125–130. http://dx.doi.org/10.3852/mycologia.99.1.125 [PubMed][CrossRef]
134. Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK. 2015. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol 119:731–737. http://dx.doi.org/10.1016/j.funbio.2015.04.005
135. Ho YW, Abdullah N, Jalaludin S. 1988. Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. J Gen Microbiol 134:177–181.
136. Ho YW, Abdullah N, Jalaludin S. 1988. Colonization of guinea grass by anaerobic rumen fungi in swamp buffalo and cattle. Anim Feed Sci Technol 22:161–171. http://dx.doi.org/10.1016/0377-8401(88)90083-1
137. Joblin KN. 1989. Physical disruption of plant fibre by rumen fungi of the Sphaeromonas group, p 259–260. In Nolan JV, Leng RA, Demeyer DI (ed), The Role of Protozoa and Fungi in Ruminant Digestion. Penambul Books, Armidale, Australia.
138. Gleason FH, Gordon GLR, Philips MW. 2003. Variation in morphology of rhizoids in an Australian isolate of Caecomyces (Chytridiomycetes). Aust Mycol 21:94–101.
139. Heath IB, Bauchop T, Skipp RA. 1983. Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can J Bot 61:295–307. http://dx.doi.org/10.1139/b83-033
140. Lowe SE, Griffith GG, Milne A, Theodorou MK, Trinci APJ. 1987. The life cycle and growth kinetics of an anaerobic rumen fungus. J Gen Microbiol 133:1815–1827.
141. Bernalier A, Fonty G, Bonnemoy F, Gouet P. 1992. Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr Microbiol 25:143–148. http://dx.doi.org/10.1007/BF01571022
142. Sehgal JP, Jit D, Puniya AK, Singh K. 2008. Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. Anim Feed Sci 17:510–518. http://dx.doi.org/10.22358/jafs/66678/2008
143. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS. 2013. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620–4634. http://dx.doi.org/10.1128/AEM.00821-13
144. Liggenstoffer AS, Youssef NH, Wilkins MR, Elshahed MS. 2014. Evaluating the utility of hydrothermolysis pretreatment approaches in enhancing lignocellulosic biomass degradation by the anaerobic fungus Orpinomyces sp. strain C1A. J Microbiol Methods 104:43–48. http://dx.doi.org/10.1016/j.mimet.2014.06.010 [PubMed]
145. Morrison JM, Elshahed MS, Youssef NH. 2016. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci Rep 6:29217. http://dx.doi.org/10.1038/srep29217
146. Couger MB, Youssef NH, Struchtemeyer CG, Liggenstoffer AS, Elshahed MS. 2015. Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol Biofuels 8:208. http://dx.doi.org/10.1186/s13068-015-0390-0
147. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA. 2016. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195. http://dx.doi.org/10.1126/science.aad1431
148. Bauchop T. 1989. Biology of gut anaerobic fungi. Biosystems 23:53–64. http://dx.doi.org/10.1016/0303-2647(89)90008-7
149. Teunissen MJ, Op den Camp HJ. 1993. Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie van Leeuwenhoek 63:63–76. http://dx.doi.org/10.1007/BF00871733 [PubMed]
150. Wubah DA, Akin DE, Borneman WS. 1993. Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit Rev Microbiol 19:99–115. http://dx.doi.org/10.3109/10408419309113525 [PubMed]
151. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA. 1986. Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739. http://dx.doi.org/10.1042/bj2360729 [PubMed]
152. Bauchop T, Mountfort DO. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42:1103–1110. [PubMed]
153. Marvin-Sikkema FD, Pedro Gomes TM, Grivet JP, Gottschal JC, Prins RA. 1993. Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol 160:388–396. http://dx.doi.org/10.1007/BF00252226 [PubMed]
154. van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA. 1997. Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150. http://dx.doi.org/10.1016/S0014-5793(97)00409-2
155. Hackstein JH, Baker SE, van Hellemond JJ, Tielens AG. 2008. Hydrogenosomes of anaerobic chytrids: an alternative way to adapt to anaerobic environments, p 147–162. In Tachezy J (ed), Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Springer, Berlin, Germany. http://dx.doi.org/10.1007/7171_2007_111
156. Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JH. 1999. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32:1103–1114. http://dx.doi.org/10.1046/j.1365-2958.1999.01434.x [PubMed]
157. Brookman JL, Mennim G, Trinci AP, Theodorou MK, Tuckwell DS. 2000. Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 185 rRNA. Microbiology 146:393–403. http://dx.doi.org/10.1099/00221287-146-2-393
158. Breton A, Bernalier A, Dusser M, Fonty G, Gaillard-Martinie B, Guillot J. 1990. Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol Lett 58:177–182.
159. Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW. 2015. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 9:11–28. http://dx.doi.org/10.3897/mycokeys.9.9032
160. Gold JJ, Heath IB, Bauchop T. 1988. Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 21:403–415. http://dx.doi.org/10.1016/0303-2647(88)90039-1
161. Vavra J, Joyon L. 1966. Etude sur la morphologie, le cycle evolutif et la position systematique de Callimastix cyclops is Weissenberg 1912. Protistologica (Paris) 2:15–16.
162. Barr DJS, Kudo H, Jakober KD, Cheng KJ. 1989. Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Can J Bot 67:2815–2824. http://dx.doi.org/10.1139/b89-361
163. Li J, Heath IB. 1992. The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. I. Cladistic analysis of rRNA sequences. Can J Bot 70:1738–1746. http://dx.doi.org/10.1139/b92-215
164. Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. 2012. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 142:1684–1692. http://dx.doi.org/10.3945/jn.112.159574 [PubMed]
165. Boots B, Lillis L, Clipson N, Petrie K, Kenny DA, Boland TM, Doyle E. 2013. Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. J Appl Microbiol 114:626–635. http://dx.doi.org/10.1111/jam.12067
166. Denman SE, Nicholson MJ, Brookman JL, Theodorou MK, McSweeney CS. 2008. Detection and monitoring of anaerobic rumen fungi using an ARISA method. Lett Appl Microbiol 47:492–499. http://dx.doi.org/10.1111/j.1472-765X.2008.02449.x [PubMed]
167. Fliegerová K, Mrázek J, Hoffmann K, Zábranská J, Voigt K. 2010. Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol (Praha) 55:319–325. http://dx.doi.org/10.1007/s12223-010-0049-y
168. Nicholson MJ, McSweeney CS, Mackie RI, Brookman JL, Theodorou MK. 2010. Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe 16:66–73. http://dx.doi.org/10.1016/j.anaerobe.2009.05.003
169. Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. 2012. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One 7:e36866. http://dx.doi.org/10.1371/journal.pone.0036866
170. Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. 2013. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8:e47879. http://dx.doi.org/10.1371/journal.pone.0047879
171. Kumar S, Indugu N, Vecchiarelli B, Pitta DW. 2015. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6:781. http://dx.doi.org/10.3389/fmicb.2015.00781
172. Sirohi SK, Choudhury PK, Puniya AK, Singh D, Dagar SS, Singh N. 2013. Ribosomal ITS1 sequence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. Ann Microbiol 63:1571–1577. http://dx.doi.org/10.1007/s13213-013-0620-2
173. Koetschan C, Kittelmann S, Lu J, Al-Halbouni D, Jarvis GN, Müller T, Wolf M, Janssen PH. 2014. Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS One 9:e91928. http://dx.doi.org/10.1371/journal.pone.0091928
174. Tapio I, Shingfield KJ, McKain N, Bonin A, Fischer D, Bayat AR, Vilkki J, Taberlet P, Snelling TJ, Wallace RJ. 2016. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS One 11:e0151220. http://dx.doi.org/10.1371/journal.pone.0151220
175. Li Z, Wright AD, Liu H, Fan Z, Yang F, Zhang Z, Li G. 2015. Response of the rumen microbiota of sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS One 10:e0123481. http://dx.doi.org/10.1371/journal.pone.0123481
176. Kittelmann S, Kirk MR, Jonker A, McCulloch A, Janssen PH. 2015. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen. Appl Environ Microbiol 81:7470–7483. http://dx.doi.org/10.1128/AEM.02385-15
177. Kittelmann S, Pinares-Patiño CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC, Janssen PH. 2014. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One 9:e103171. http://dx.doi.org/10.1371/journal.pone.0103171

Citations loading...


Article metrics loading...



The diversity and abundance of zoosporic true fungi have been analyzed recently using fungal sequence libraries and advances in molecular methods, such as high-throughput sequencing. This review focuses on four evolutionary primitive true fungal phyla: the Aphelidea, Chytridiomycota, Neocallimastigomycota, and Rosellida (Cryptomycota), most species of which are not polycentric or mycelial (filamentous), rather they tend to be primarily monocentric (unicellular). Zoosporic fungi appear to be both abundant and diverse in many aquatic habitats around the world, with abundance often exceeding other fungal phyla in these habitats, and numerous novel genetic sequences identified. Zoosporic fungi are able to survive extreme conditions, such as high and extremely low pH; however, more work remains to be done. They appear to have important ecological roles as saprobes in decomposition of particulate organic substrates, pollen, plant litter, and dead animals; as parasites of zooplankton and algae; as parasites of vertebrate animals (such as frogs); and as symbionts in the digestive tracts of mammals. Some chytrids cause economically important diseases of plants and animals. They regulate sizes of phytoplankton populations. Further metagenomics surveys of aquatic ecosystems are expected to enlarge our knowledge of the diversity of true zoosporic fungi. Coupled with studies on their functional ecology, we are moving closer to unraveling the role of zoosporic fungi in carbon cycling and the impact of climate change on zoosporic fungal populations.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic life cycle of endo- and epibiotic zoosporic parasites infecting marine diatoms. Besides the main cycle (solid black arrows), ecological effects on the marine planktonic and benthic community compositions, as well as interactions, are also depicted (unfilled outlined arrows).

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0038-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Representatives of the chytridiomycota infecting marine diatoms in phytoplankton net samples collected from the Skagaströnd area (northwest Iceland). and single cell with multiple chytrid sporangia and colony with multiple infections . Pathogens were visualized by using calcofluor white stain in combination with transmission light and fluorescence excitation (UV light, 330 to 380 nm). Image by B. Scholz. Bar, 100 μm.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0038-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Chytrid parasites infecting a freshwater diatom ( sp.) collected from a freshwater pond in Centennial Park, Sydney, Australia. Image by D.J. Macarthur. Bar, 50 μm.

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0038-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Currently described phyla in the supergroup Opisthokonta

Source: microbiolspec March 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0038-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error