No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Eugene Gladyshev1
  • Editors: Joseph Heitman2, Eva Holtgrewe Stukenbrock3
    Affiliations: 1: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; 2: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 3: Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany, and Max Planck Institute for Evolutionary Biology, Plön, Germany
  • Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0042-2017
  • Received 30 January 2017 Accepted 01 February 2017 Published 14 July 2017
  • Eugene Gladyshev, eugene.gladyshev@gmail.com
image of Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi
    Preview this microbiology spectrum article:
    Zoom in

    Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0042-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0042-2017-2.gif
  • Abstract:

    Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterbalanced by the host genome defenses. In fungi, the primary genome defense mechanisms include repeat-induced point mutation (RIP) and methylation induced premeiotically, meiotic silencing by unpaired DNA, sex-induced silencing, cosuppression (also known as somatic quelling), and cotranscriptional RNA surveillance. Recent studies of the filamentous fungus have shown that the process of repeat recognition for RIP apparently involves interactions between coaligned double-stranded segments of chromosomal DNA. These studies have also shown that RIP can be mediated by the conserved pathway that establishes transcriptional (heterochromatic) silencing of repetitive DNA. In light of these new findings, RIP emerges as a specialized case of the general phenomenon of heterochromatic silencing of repetitive DNA.

  • Citation: Gladyshev E. 2017. Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. Microbiol Spectrum 5(4):FUNK-0042-2017. doi:10.1128/microbiolspec.FUNK-0042-2017.

Key Concept Ranking

DNA Synthesis
Repetitive DNA
Chromosomal DNA


1. Castanera R, López-Varas L, Borgognone A, LaButti K, Lapidus A, Schmutz J, Grimwood J, Pérez G, Pisabarro AG, Grigoriev IV, Stajich JE, Ramírez L. 2016. Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles. PLoS Genet 12:e1006108. http://dx.doi.org/10.1371/journal.pgen.1006108
2. Biémont C. 2010. A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093. http://dx.doi.org/10.1534/genetics.110.124180
3. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GH, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJ, Zhong S, Goodwin SB, Grigoriev IV. 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8:e1003037. http://dx.doi.org/10.1371/journal.ppat.1003037
4. Santana MF, Silva JC, Mizubuti ES, Araújo EF, Condon BJ, Turgeon BG, Queiroz MV. 2014. Characterization and potential evolutionary impact of transposable elements in the genome of Cochliobolus heterostrophus. BMC Genomics 15:536. http://dx.doi.org/10.1186/1471-2164-15-536
5. Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35:57–65. http://dx.doi.org/10.1016/j.gde.2015.09.001
6. Arkhipova I, Meselson M. 2005. Deleterious transposable elements and the extinction of asexuals. BioEssays 27:76–85. http://dx.doi.org/10.1002/bies.20159 [PubMed]
7. Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. http://dx.doi.org/10.1038/nrg3683 [PubMed]
8. Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B, Hannon GJ. 2015. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350:339–342. http://dx.doi.org/10.1126/science.aab0700
9. Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SI. 2011. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18:1132–1138. http://dx.doi.org/10.1038/nsmb.2122 [PubMed]
10. Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marín L, Chang AY, Goto D, Cande WZ, Antequera F, Arcangioli B, Martienssen RA. 2011. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479:135–138. http://dx.doi.org/10.1038/nature10501
11. Zhang K, Fischer T, Porter RL, Dhakshnamoorthy J, Zofall M, Zhou M, Veenstra T, Grewal SI. 2011. Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA. Science 331:1624–1627. http://dx.doi.org/10.1126/science.1198712
12. Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI. 2012. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science 335:96–100. http://dx.doi.org/10.1126/science.1211651 [PubMed]
13. Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR III, Bartel DP, Madhani HD. 2013. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–968. http://dx.doi.org/10.1016/j.cell.2013.01.046
14. Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI. 2013. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061–1074. http://dx.doi.org/10.1016/j.cell.2013.10.027
15. Coyne RS, Lhuillier-Akakpo M, Duharcourt S. 2012. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 104:309–325. http://dx.doi.org/10.1111/boc.201100057
16. Wang J, Davis RE. 2014. Programmed DNA elimination in multicellular organisms. Curr Opin Genet Dev 27:26–34. http://dx.doi.org/10.1016/j.gde.2014.03.012 [PubMed]
17. Romano N, Macino G. 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353. http://dx.doi.org/10.1111/j.1365-2958.1992.tb02202.x
18. Chang SS, Zhang Z, Liu Y. 2012. RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323. http://dx.doi.org/10.1146/annurev-micro-092611-150138 [PubMed]
19. Yang Q, Ye QA, Liu Y. 2015. Mechanism of siRNA production from repetitive DNA. Genes Dev 29:526–537. http://dx.doi.org/10.1101/gad.255828.114 [PubMed]
20. Bull JH, Wootton JC. 1984. Heavily methylated amplified DNA in transformants of Neurospora crassa. Nature 310:701–704. http://dx.doi.org/10.1038/310701a0 [PubMed]
21. Codón AC, Lee YS, Russo VE. 1997. Novel pattern of DNA methylation in Neurospora crassa transgenic for the foreign gene hph. Nucleic Acids Res 25:2409–2416. http://dx.doi.org/10.1093/nar/25.12.2409
22. Freitag M, Lee DW, Kothe GO, Pratt RJ, Aramayo R, Selker EU. 2004. DNA methylation is independent of RNA interference in Neurospora. Science 304:1939. http://dx.doi.org/10.1126/science.1099709 [PubMed]
23. Chicas A, Forrest EC, Sepich S, Cogoni C, Macino G. 2005. Small interfering RNAs that trigger posttranscriptional gene silencing are not required for the histone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa. Mol Cell Biol 25:3793–3801. http://dx.doi.org/10.1128/MCB.25.9.3793-3801.2005
24. Aramayo R, Metzenberg RL. 1996. Meiotic transvection in fungi. Cell 86:103–113. http://dx.doi.org/10.1016/S0092-8674(00)80081-1
25. Shiu PK, Raju NB, Zickler D, Metzenberg RL. 2001. Meiotic silencing by unpaired DNA. Cell 107:905–916. http://dx.doi.org/10.1016/S0092-8674(01)00609-2
26. Wang Y, Smith KM, Taylor JW, Freitag M, Stajich JE. 2015. Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 (Bethesda) 5:1949–1960. http://dx.doi.org/10.1534/g3.115.017921
27. Hammond TM. Sixteen years of meiotic silencing by unpaired DNA. Adv Genet 97. In press. http://dx.doi.org/10.1016/bs.adgen.2016.11.001
28. Turner JM. 2015. Meiotic silencing in mammals. Annu Rev Genet 49:395–412. http://dx.doi.org/10.1146/annurev-genet-112414-055145 [PubMed]
29. Bean CJ, Schaner CE, Kelly WG. 2004. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat Genet 36:100–105. http://dx.doi.org/10.1038/ng1283
30. Pigozzi MI, Solari AJ. 2005. The germ-line-restricted chromosome in the zebra finch: recombination in females and elimination in males. Chromosoma 114:403–409. http://dx.doi.org/10.1007/s00412-005-0025-5
31. Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, de Boer P, Grootegoed JA. 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053. http://dx.doi.org/10.1128/MCB.25.3.1041-1053.2005 [PubMed]
32. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS. 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47. [PubMed]
33. Aramayo R, Selker EU. 2013. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 5:a017921. http://dx.doi.org/10.1101/cshperspect.a017921
34. Samarajeewa DA, Sauls PA, Sharp KJ, Smith ZJ, Xiao H, Groskreutz KM, Malone TL, Boone EC, Edwards KA, Shiu PK, Larson ED, Hammond TM. 2014. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. Genetics 198:895–904. http://dx.doi.org/10.1534/genetics.114.168187
35. Hammond TM, Xiao H, Boone EC, Perdue TD, Pukkila PJ, Shiu PK. 2011. SAD-3, a putative helicase required for meiotic silencing by unpaired DNA, interacts with other components of the silencing machinery. G3 (Bethesda) 1:369–376. http://dx.doi.org/10.1534/g3.111.000570
36. Decker LM, Boone EC, Xiao H, Shanker BS, Boone SF, Kingston SL, Lee SA, Hammond TM, Shiu PK. 2015. Complex formation of RNA silencing proteins in the perinuclear region of Neurospora crassa. Genetics 199:1017–1021. http://dx.doi.org/10.1534/genetics.115.174623
37. Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. 2010. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 24:2566–2582. http://dx.doi.org/10.1101/gad.1970910
38. Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J. 2012. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 8:e1002885. http://dx.doi.org/10.1371/journal.pgen.1002885
39. Case ME, Schweizer M, Kushner SR, Giles NH. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci USA 76:5259–5263. http://dx.doi.org/10.1073/pnas.76.10.5259
40. Case ME. 1986. Genetical and molecular analyses of qa-2 transformants in Neurospora crassa. Genetics 113:569–587. [PubMed]
41. Selker EU, Stevens JN. 1985. DNA methylation at asymmetric sites is associated with numerous transition mutations. Proc Natl Acad Sci USA 82:8114–8118. http://dx.doi.org/10.1073/pnas.82.23.8114
42. Selker EU. 1990. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613. http://dx.doi.org/10.1146/annurev.ge.24.120190.003051 [PubMed]
43. Selker EU. 1997. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet 13:296–301. http://dx.doi.org/10.1016/S0168-9525(97)01201-8
44. Selker EU. 2002. Repeat-induced gene silencing in fungi. Adv Genet 46:439–450. http://dx.doi.org/10.1016/S0065-2660(02)46016-6
45. Hane J, Williams A, Taranto A, Solomon P, Oliver R, VanDenBerg M, Maruthachalam K. 2015. Repeat-induced point mutation: a fungal-specific, endogenous mutagenesis process. Genet Transform Syst Fungi 2:55–68.
46. Clutterbuck AJ. 2011. Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48:306–326. http://dx.doi.org/10.1016/j.fgb.2010.09.002 [PubMed]
47. Amselem J, Lebrun MH, Quesneville H. 2015. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics 16:141. http://dx.doi.org/10.1186/s12864-015-1347-1
48. Testa AC, Oliver RP, Hane JK. 2016. OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol 8:2044–2064. http://dx.doi.org/10.1093/gbe/evw121
49. Horns F, Petit E, Yockteng R, Hood ME. 2012. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol Evol 4:240–247. http://dx.doi.org/10.1093/gbe/evs005
50. Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Pöggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kück U, Freitag M. 2010. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6:e1000891. http://dx.doi.org/10.1371/journal.pgen.1000891
51. Goyon C, Faugeron G. 1989. Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9:2818–2827. http://dx.doi.org/10.1128/MCB.9.7.2818
52. Rhounim L, Rossignol JL, Faugeron G. 1992. Epimutation of repeated genes in Ascobolus immersus. EMBO J 11:4451–4457. [PubMed]
53. Rossignol JL, Faugeron G. 1994. Gene inactivation triggered by recognition between DNA repeats. Experientia 50:307–317. http://dx.doi.org/10.1007/BF01924014 [PubMed]
54. Faugeron G, Rhounim L, Rossignol JL. 1990. How does the cell count the number of ectopic copies of a gene in the premeiotic inactivation process acting in Ascobolus immersus? Genetics 124:585–591. [PubMed]
55. Fincham JR, Connerton IF, Notarianni E, Harrington K. 1989. Premeiotic disruption of duplicated and triplicated copies of the Neurospora crassaam (glutamate dehydrogenase) gene. Curr Genet 15:327–334. http://dx.doi.org/10.1007/BF00419912
56. Goyon C, Barry C, Grégoire A, Faugeron G, Rossignol JL. 1996. Methylation of DNA repeats of decreasing sizes in Ascobolus immersus. Mol Cell Biol 16:3054–3065. http://dx.doi.org/10.1128/MCB.16.6.3054
57. Barry C, Faugeron G, Rossignol JL. 1993. Methylation induced premeiotically in Ascobolus: coextension with DNA repeat lengths and effect on transcript elongation. Proc Natl Acad Sci USA 90:4557–4561. http://dx.doi.org/10.1073/pnas.90.10.4557
58. Malagnac F, Wendel B, Goyon C, Faugeron G, Zickler D, Rossignol JL, Noyer-Weidner M, Vollmayr P, Trautner TA, Walter J. 1997. A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure. Cell 91:281–290. http://dx.doi.org/10.1016/S0092-8674(00)80410-9
59. Freitag M, Williams RL, Kothe GO, Selker EU. 2002. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci USA 99:8802–8807. http://dx.doi.org/10.1073/pnas.132212899 [PubMed]
60. Lee DW, Freitag M, Selker EU, Aramayo R. 2008. A cytosine methyltransferase homologue is essential for sexual development in Aspergillus nidulans. PLoS One 3:e2531. http://dx.doi.org/10.1371/journal.pone.0002531
61. Yang K, Liang L, Ran F, Liu Y, Li Z, Lan H, Gao P, Zhuang Z, Zhang F, Nie X, Kalayu Yirga S, Wang S. 2016. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence. Sci Rep 6:23259. http://dx.doi.org/10.1038/srep23259
62. Gladyshev E, Kleckner N. 2017. Recombination-independent recognition of DNA homology for repeat-induced point mutation. Curr Genet 63:389–400. [PubMed]
63. Goll MG, Bestor TH. 2005. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514. http://dx.doi.org/10.1146/annurev.biochem.74.010904.153721
64. Reither S, Li F, Gowher H, Jeltsch A. 2003. Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. J Mol Biol 329:675–684. http://dx.doi.org/10.1016/S0022-2836(03)00509-6
65. Cheng X. 1995. Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318. http://dx.doi.org/10.1146/annurev.bb.24.060195.001453
66. Gowher H, Loutchanwoot P, Vorobjeva O, Handa V, Jurkowska RZ, Jurkowski TP, Jeltsch A. 2006. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 357:928–941. http://dx.doi.org/10.1016/j.jmb.2006.01.035
67. Estabrook RA, Lipson R, Hopkins B, Reich N. 2004. The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes. J Biol Chem 279:31419–31428. http://dx.doi.org/10.1074/jbc.M402950200
68. Selker EU, Garrett PW. 1988. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci USA 85:6870–6874. http://dx.doi.org/10.1073/pnas.85.18.6870
69. Gladyshev E, Kleckner N. 2014. Direct recognition of homology between double helices of DNA in Neurospora crassa. Nat Commun 5:3509. http://dx.doi.org/10.1038/ncomms4509 [PubMed]
70. Gladyshev E, Kleckner N. 2016. Recombination-independent recognition of DNA homology for repeat-induced point mutation (RIP) is modulated by the underlying nucleotide sequence. PLoS Genet 12:e1006015. http://dx.doi.org/10.1371/journal.pgen.1006015
71. Watters MK, Randall TA, Margolin BS, Selker EU, Stadler DR. 1999. Action of repeat-induced point mutation on both strands of a duplex and on tandem duplications of various sizes in Neurospora. Genetics 153:705–714. [PubMed]
72. Cambareri EB, Singer MJ, Selker EU. 1991. Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127:699–710. [PubMed]
73. Pontecorvo G. 1944. Structure of heterochromatin. Nature 153:365–367. http://dx.doi.org/10.1038/153365a0
74. Dorer DR, Henikoff S. 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:993–1002. http://dx.doi.org/10.1016/0092-8674(94)90439-1
75. Pal-Bhadra M, Leibovitch BA, Gandhi SG, Chikka MR, Bhadra U, Birchler JA, Elgin SC. 2004. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672. (Erratum, 340:924) http://dx.doi.org/10.1126/science.1092653
76. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837. http://dx.doi.org/10.1126/science.1074973
77. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676. http://dx.doi.org/10.1126/science.1093686
78. Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622. http://dx.doi.org/10.1016/j.cell.2005.02.007
79. Honda S, Bicocca VT, Gessaman JD, Rountree MR, Yokoyama A, Yu EY, Selker JM, Selker EU. 2016. Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci USA 113:E6135–E6144. (Correction, 114:E1037. doi:10.1073/pnas.1621475114.) (Correction: Proc Natl Acad Science USA 2017) http://dx.doi.org/10.1073/pnas.1614279113
80. Pandit NN, Russo VE. 1992. Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412–422. http://dx.doi.org/10.1007/BF00538700
81. Windhofer F, Catcheside DE, Kempken F. 2000. Methylation of the foreign transposon Restless in vegetative mycelia of Neurospora crassa. Curr Genet 37:194–199. http://dx.doi.org/10.1007/s002940050519
82. Gladyshev E, Kleckner N. 2017. DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet. [Epub ahead of print.] doi:10.1038/ng.3857.
83. Shen JC, Rideout WM III, Jones PA. 1992. High frequency mutagenesis by a DNA methyltransferase. Cell 71:1073–1080. http://dx.doi.org/10.1016/S0092-8674(05)80057-1
84. Yebra MJ, Bhagwat AS. 1995. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry 34:14752–14757. http://dx.doi.org/10.1021/bi00045a016
85. Selker EU, Fritz DY, Singer MJ. 1993. Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science 262:1724–1728. http://dx.doi.org/10.1126/science.8259516
86. Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu JR. 2016. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 26:499–509. http://dx.doi.org/10.1101/gr.199877.115
87. Wang C, Xu JR, Liu H. 2016. A-to-I RNA editing independent of ADARs in filamentous fungi. RNA Biol 13:940–945. http://dx.doi.org/10.1080/15476286.2016.1215796 [PubMed]
88. Ruesch CE, Ramakrishnan M, Park J, Li N, Chong HS, Zaman R, Joska TM, Belden WJ. 2014. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. G3 (Bethesda) 5:93–101. http://dx.doi.org/10.1534/g3.114.015446
89. Duncan IW. 2002. Transvection effects in Drosophila. Annu Rev Genet 36:521–556. http://dx.doi.org/10.1146/annurev.genet.36.060402.100441
90. Galagan JE, Selker EU. 2004. RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423. http://dx.doi.org/10.1016/j.tig.2004.07.007

Citations loading...


Article metrics loading...



Transposable elements have colonized the genomes of nearly all organisms, including fungi. Although transposable elements may sometimes provide beneficial functions to their hosts their overall impact is considered deleterious. As a result, the activity of transposable elements needs to be counterbalanced by the host genome defenses. In fungi, the primary genome defense mechanisms include repeat-induced point mutation (RIP) and methylation induced premeiotically, meiotic silencing by unpaired DNA, sex-induced silencing, cosuppression (also known as somatic quelling), and cotranscriptional RNA surveillance. Recent studies of the filamentous fungus have shown that the process of repeat recognition for RIP apparently involves interactions between coaligned double-stranded segments of chromosomal DNA. These studies have also shown that RIP can be mediated by the conserved pathway that establishes transcriptional (heterochromatic) silencing of repetitive DNA. In light of these new findings, RIP emerges as a specialized case of the general phenomenon of heterochromatic silencing of repetitive DNA.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The structure of motif VI in Masc1/RID proteins is not canonical. The canonical motif VI contains the absolutely conserved NV diad (asparagine-valine). This diad is present in all C5-cytosine methyltransferases except Masc1/RID. The asparagine residue of NV physically interacts with the proline residue of the catalytic triad PCQ (in motif IV) and thus plays a critical role by controlling the positions of these segments with respect to one another in the native structure of the protein. The valine residue of NV is also functionally important, because its substitution for alanine is known to inactivate the catalytic activity of M.HhaI. Yet in all Masc1/RID proteins the NV diad is replaced with either QT (e.g., in RID) or ET (e.g., in Masc1), hinting at the possibility that Masc1/RID proteins might have unique catalytic and/or substrate requirements.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0042-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Recognition of interspersed homology during RIP in . This assay detects and quantifies the occurrence of RIP mutations in response to engineered DNA repeats. Instances of DNA homology are created between two short segments of chromosomal DNA, one of which is normally represented by an endogenous sequence, while the sequence and orientation of the other segment can be manipulated as desired. In this situation, the number of RIP mutations provides a very sensitive readout of DNA homology perceived by the recombination-independent mechanism of repeat recognition for RIP. Weak interspersed homology is formed between the endogenous 500-bp segment (blue) and a synthetic DNA segment (green) integrated at a nearby position as the replacement of the () gene. This particular pattern involves 4-bp units of homology spaced with the periodicity of 11 bp and exists between “repeat units” in the inverted orientation. Pairwise sequence comparisons showing all matches of 4 bp long. Two situations are presented: random homology (left panel) and interspersed homology (right panel). No cryptic homology can be seen except the intended pattern of weak interspersed homology (magenta box). The occurrence of mutations induced by weak interspersed homology. Seventy progeny spores from the “XKO” cross ( 70 ), which had been previously found to contain at least one RIP mutation, were reanalyzed by sequencing of an additional 255 bp in the “left” flank of the construct (corresponding to the single-copy coding/translated sequence of ).

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0042-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error