No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Mycobiome: Impact on Health and Disease States

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Najla El-Jurdi1, Mahmoud A. Ghannoum2
  • Editor: Joseph Heitman3
    Affiliations: 1: Department of Medicine, Division of Hematology-Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106; 2: Center For Medical Mycology, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH 44106; 3: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0045-2016
  • Received 14 February 2016 Accepted 02 March 2017 Published 09 June 2017
  • Mahmoud Ghannoum, mahmoud.ghannoum@case.edu
image of The Mycobiome: Impact on Health and Disease States
    Preview this microbiology spectrum article:
    Zoom in

    The Mycobiome: Impact on Health and Disease States, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0045-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0045-2016-2.gif
  • Abstract:

    The term “microbiome” refers to microorganisms (microbiota) and their genomes (metagenome) coexisting with their hosts. Some researchers coined the term “second genome” to underscore the importance of the microbiota and its collective metagenome on their host’s health and/or disease. It is now undeniable that the commensal fungal microorganisms, alongside the other components of the microbiota, play a central role in association with the human host. In recognition, projects were launched nationally and internationally to unify efforts to characterize the microbiome and elucidate the functional role of the microbiota and the mechanism(s) by which these organisms and their metabolites (metabolome) may affect health and disease states. In this article, we will highlight the role of the fungal community as an indispensable component of the microbiome.

  • Citation: El-Jurdi N, Ghannoum M. 2017. The Mycobiome: Impact on Health and Disease States. Microbiol Spectrum 5(3):FUNK-0045-2016. doi:10.1128/microbiolspec.FUNK-0045-2016.

Key Concept Ranking

Upper Gastrointestinal Tract
Lower Gastrointestinal Tract
Candida tropicalis
Candida albicans


1. Chen Y, Zhao Y, Cheng Q, Wu D, Liu H. 2015. The role of intestinal microbiota in acute graft-versus-host disease. J Immunol Res 2015:145859 http://dx.doi.org/10.1155/2015/145859. doi:10.1155/2015/145859.
2. Manzo VE, Bhatt AS. 2015. The human microbiome in hematopoiesis and hematologic disorders. Blood 126:311–318 http://dx.doi.org/10.1182/blood-2015-04-574392. [PubMed]
3. Vieira AT, Fukumori C, Ferreira CM. 2016. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clin Transl Immunology 5:e87 http://dx.doi.org/10.1038/cti.2016.38.
4. Levy M, Blacher E, Elinav E. 2016. Microbiome, metabolites and host immunity. Curr Opin Microbiol 35:8–15 http://dx.doi.org/10.1016/j.mib.2016.10.003.
5. Arthur JC, Jobin C. 2011. The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17:396–409 http://dx.doi.org/10.1002/ibd.21354. [PubMed]
6. Breban M. 2016. Gut microbiota and inflammatory joint diseases. Joint Bone Spine 83:645–649 http://dx.doi.org/10.1016/j.jbspin.2016.04.005. [PubMed]
7. Doycheva I, Leise MD, Watt KD. 2016. The intestinal microbiome and the liver transplant recipient: what we know and what we need to know. Transplantation 100:61–68 http://dx.doi.org/10.1097/TP.0000000000001008.
8. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463 http://dx.doi.org/10.1016/j.cell.2013.11.024.
9. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, De Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL. 2016. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015 http://dx.doi.org/10.1038/ncomms12015.
10. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. 2017. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 179:24–37. [PubMed]
11. Qin J, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60 http://dx.doi.org/10.1038/nature11450.
12. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Ehrlich SD, Zheng S, Li L. 2014. Alterations of the human gut microbiome in liver cirrhosis. Nature 513:59–64 http://dx.doi.org/10.1038/nature13568.
13. Serrano-Villar S, Rojo D, Martínez-Martínez M, Deusch S, Vázquez-Castellanos JF, Sainz T, Vera M, Moreno S, Estrada V, Gosalbes MJ, Latorre A, Margolles A, Seifert J, Barbas C, Moya A, Ferrer M. 2016. HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Sci Rep 6:26192 http://dx.doi.org/10.1038/srep26192. [PubMed]
14. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. 2014. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150 http://dx.doi.org/10.1073/pnas.1412008111.
15. Suhr MJ, Banjara N, Hallen-Adams HE. 2016. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol 62:209–215 http://dx.doi.org/10.1111/lam.12539.
16. Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. 2016. The gut microbiome in human immunodeficiency virus infection. BMC Med 14:83 http://dx.doi.org/10.1186/s12916-016-0625-3.
17. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. 2016. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut http://dx.doi.org/10.1136/gutjnl-2016-312580. [Epub ahead of print.] doi:10.1136/gutjnl-2016-312580.
18. Coleman OI, Nunes T. 2016. Role of the microbiota in colorectal cancer: updates on microbial associations and therapeutic implications. Biores Open Access 5:279–288 http://dx.doi.org/10.1089/biores.2016.0028.
19. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713 http://dx.doi.org/10.1371/journal.ppat.1000713.
20. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM. 2012. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317 http://dx.doi.org/10.1126/science.1221789.
21. Brown RE, Ghannoum MA, Mukherjee PK, Gillevet PM, Sikaroodi M. 2015. Quorum-sensing dysbiotic shifts in the HIV-infected oral metabiome. PLoS One 10:e0123880 http://dx.doi.org/10.1371/journal.pone.0123880.
22. Ostaff MJ, Stange EF, Wehkamp J. 2013. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 5:1465–1483 http://dx.doi.org/10.1002/emmm.201201773.
23. Singh B, Qin N, Reid G. 2015. Microbiome regulation of autoimmune, gut and liver associated diseases. Inflamm Allergy Drug Targets 14:84–93 http://dx.doi.org/10.2174/1871528114666160128150747.
24. Suhr MJ, Hallen-Adams HE. 2015. The human gut mycobiome: pitfalls and potentials: a mycologist’s perspective. Mycologia 107:1057–1073 http://dx.doi.org/10.3852/15-147.
25. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370 http://dx.doi.org/10.1038/nature12171.
26. Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC, Ng WL, Segre JA, Kong HH, NISC Comparative Sequencing Program. 2016. Diverse human skin fungal communities in children converge in adulthood. J Invest Dermatol 136:2356–2363 http://dx.doi.org/10.1016/j.jid.2016.05.130.
27. Leung MH, Chan KC, Lee PK. 2016. Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 4:46 http://dx.doi.org/10.1186/s40168-016-0192-z.
28. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA. 2014. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996 http://dx.doi.org/10.1371/journal.ppat.1003996.
29. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L. 2011. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498 http://dx.doi.org/10.1016/j.diagmicrobio.2010.04.005.
30. Thomas HC, Foster GR, Sumiya M, McIntosh D, Jack DL, Turner MW, Summerfield JA. 1996. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet 348:1417–1419 http://dx.doi.org/10.1016/S0140-6736(96)05409-8.
31. Dollive S, Peterfreund GL, Sherrill-Mix S, Bittinger K, Sinha R, Hoffmann C, Nabel CS, Hill DA, Artis D, Bachman MA, Custers-Allen R, Grunberg S, Wu GD, Lewis JD, Bushman FD. 2012. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13:R60 http://dx.doi.org/10.1186/gb-2012-13-7-r60.
32. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. 2013. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019 http://dx.doi.org/10.1371/journal.pone.0066019. [PubMed]
33. Sartor RB. 2012. Gut microbiota: diet promotes dysbiosis and colitis in susceptible hosts. Nat Rev Gastroenterol Hepatol 9:561–562 http://dx.doi.org/10.1038/nrgastro.2012.157. [PubMed]
34. Goldsmith JR, Sartor RB. 2014. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 49:785–798 http://dx.doi.org/10.1007/s00535-014-0953-z.
35. Ramaswamy K, Correa M, Koshy A. 2007. Non-healing gastric ulcer associated with Candida infection. Indian J Med Microbiol 25:57–58 http://dx.doi.org/10.4103/0255-0857.31064.
36. Santelmann H, Howard JM. 2005. Yeast metabolic products, yeast antigens and yeasts as possible triggers for irritable bowel syndrome. Eur J Gastroenterol Hepatol 17:21–26 http://dx.doi.org/10.1097/00042737-200501000-00005.
37. Krause R, Reisinger EC. 2005. Candida and antibiotic-associated diarrhoea. Clin Microbiol Infect 11:1–2 http://dx.doi.org/10.1111/j.1469-0691.2004.00978.x.
38. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM. 2009. Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood) 234:430–441 http://dx.doi.org/10.3181/0810-RM-301.
39. Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S. 2008. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841 http://dx.doi.org/10.1080/00365520801935434.
40. Cominelli F. 2013. Inhibition of leukocyte trafficking in inflammatory bowel disease. N Engl J Med 369:775–776 http://dx.doi.org/10.1056/NEJMe1307415.
41. Nielsen OH, Ainsworth MA. 2013. Tumor necrosis factor inhibitors for inflammatory bowel disease. N Engl J Med 369:754–762 http://dx.doi.org/10.1056/NEJMct1209614.
42. Abraham C, Cho JH. 2009. Inflammatory bowel disease. N Engl J Med 361:2066–2078 http://dx.doi.org/10.1056/NEJMra0804647.
43. Standaert-Vitse A, Sendid B, Joossens M, François N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF. 2009. Candida albicans colonization and ASCA in familial Crohn’s disease. Am J Gastroenterol 104:1745–1753 http://dx.doi.org/10.1038/ajg.2009.225.
44. Trojanowska D, Zwolinska-Wcislo M, Tokarczyk M, Kosowski K, Mach T, Budak A. 2010. The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in gastrointestinal tract based on genetic affinity between strains. Med Sci Monit 16:CR451–CR457. [PubMed]
45. Jawhara S, Thuru X, Standaert-Vitse A, Jouault T, Mordon S, Sendid B, Desreumaux P, Poulain D. 2008. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J Infect Dis 197:972–980 http://dx.doi.org/10.1086/528990.
46. Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, Neut C, Vermeire S, Clemente J, Colombel JF, Fujioka H, Poulain D, Sendid B, Ghannoum MA. 2016. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial crohn’s disease. MBio 7:e01250-16 http://dx.doi.org/10.1128/mBio.01250-16.
47. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S. 2011. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637 http://dx.doi.org/10.1136/gut.2010.223263.
48. Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. 2014. The dynamics of a family’s gut microbiota reveal variations on a theme. Microbiome 2:25 http://dx.doi.org/10.1186/2049-2618-2-25.
49. Ghannoum M. 2016. Cooperative evolutionary strategy between the bacteriome and mycobiome. MBio 7:e01951-16 http://dx.doi.org/10.1128/mBio.01951-16.
50. Zwolinska-Wcislo M, Brzozowski T, Budak A, Kwiecien S, Sliwowski Z, Drozdowicz D, Trojanowska D, Rudnicka-Sosin L, Mach T, Konturek SJ, Pawlik WW. 2009. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. J Physiol Pharmacol 60:107–118.
51. Samuel S, Loftus EV Jr, Sandborn WJ. 2010. The effects of itraconazole on inflammatory bowel disease activity in patients treated for histoplasmosis. Aliment Pharmacol Ther 32:1207–1209 http://dx.doi.org/10.1111/j.1365-2036.2010.04444.x. [PubMed]
52. Malik A, Sharma D, Zhu Q, Karki R, Guy CS, Vogel P, Kanneganti TD. 2016. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis and tumorigenesis. J Clin Invest 126:4469–4481 http://dx.doi.org/10.1172/JCI88625.
53. Wang X, Yang Y, Huycke MM. 2016. Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. Free Radic Biol Med [Epub ahead of print.] doi:10.1016/j.freeradbiomed.2016.10.504.
54. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, Sawayama H, Kinoshita K, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H. 2016. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22:5574–5581 http://dx.doi.org/10.1158/1078-0432.CCR-16-1786.
55. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foerster J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Huerta JM, Molina-Montes E, Dorronsoro M, Quirós JR, Duell EJ, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E. 2013. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62:1764–1770 http://dx.doi.org/10.1136/gutjnl-2012-303006.
56. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Bérard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Doré J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976 http://dx.doi.org/10.1126/science.1240537.
57. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970 http://dx.doi.org/10.1126/science.1240527.
58. Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst 108:108.
59. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089 http://dx.doi.org/10.1126/science.aac4255.
60. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, Kato LM, Fagarasan S. 2012. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336:485–489 http://dx.doi.org/10.1126/science.1217718.
61. Botticelli A, Zizzari I, Mazzuca F, Ascierto PA, Putignani L, Marchetti L, Napoletano C, Nuti M, Marchetti P. 2017. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget 8:8890–8899.
62. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, Ponce DM, Barker JN, Giralt S, van den Brink M, Pamer EG. 2014. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124:1174–1182 http://dx.doi.org/10.1182/blood-2014-02-554725.
63. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MR, Pamer EG. 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914 http://dx.doi.org/10.1093/cid/cis580.
64. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MR. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 209:903–911 http://dx.doi.org/10.1084/jem.20112408.
65. Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H, Shimoda S, Iwasaki H, Shimono N, Ayabe T, Akashi K, Teshima T. 2012. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins. Blood 120:223–231 http://dx.doi.org/10.1182/blood-2011-12-401166.
66. Gerbitz A, Schultz M, Wilke A, Linde HJ, Schölmerich J, Andreesen R, Holler E. 2004. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood 103:4365–4367 http://dx.doi.org/10.1182/blood-2003-11-3769.
67. van der Velden WJ, Netea MG, de Haan AF, Huls GA, Donnelly JP, Blijlevens NM. 2013. Role of the mycobiome in human acute graft-versus-host disease. Biol Blood Marrow Transplant 19:329–332 http://dx.doi.org/10.1016/j.bbmt.2012.11.008.
68. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, Zhu W, Sporrer D, Hehlgans T, Kreutz M, Holler B, Wolff D, Edinger M, Andreesen R, Levine JE, Ferrara JL, Gessner A, Spang R, Oefner PJ. 2014. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 20:640–645 http://dx.doi.org/10.1016/j.bbmt.2014.01.030.
69. Pamer EG, Taur Y, Jenq R, van den Brink MRM. 2014. Impact of the intestinal microbiota on infections and survival following hematopoietic stem cell transplantation. Blood 124:SCI-48.
70. Marr KA, Seidel K, Slavin MA, Bowden RA, Schoch HG, Flowers ME, Corey L, Boeckh M. 2000. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood 96:2055–2061. [PubMed]
71. Ghannoum MA, Perfect JR (ed). 2016. Antifungal Therapy, 2nd ed. CRC Press, Boca Raton, FL.

Citations loading...


Article metrics loading...



The term “microbiome” refers to microorganisms (microbiota) and their genomes (metagenome) coexisting with their hosts. Some researchers coined the term “second genome” to underscore the importance of the microbiota and its collective metagenome on their host’s health and/or disease. It is now undeniable that the commensal fungal microorganisms, alongside the other components of the microbiota, play a central role in association with the human host. In recognition, projects were launched nationally and internationally to unify efforts to characterize the microbiome and elucidate the functional role of the microbiota and the mechanism(s) by which these organisms and their metabolites (metabolome) may affect health and disease states. In this article, we will highlight the role of the fungal community as an indispensable component of the microbiome.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schema showing potential interactions between bacteria, fungi, and the host in the gut in Crohn’s disease (CD). Inter- and intrakingdom interactions impact the host immune system in the setting of CD, resulting in increased levels of proinflammatory cytokines (e.g., Th17 cytokines) under the influence of enteric pathogens and immunomodulatory components of biofilms (e.g., fungal β-glucans, bacterial lipopolysaccharides), causing increased oxidative damage and apoptotic cell death. Additionally, microbial-induced production of mucolytic enzymes may lead to barrier dysfunction, resulting in tissue damage and lesion formation. Interactions between fungi, bacteria, and the host in the gut of CD patients, showing an increase in the levels of , , and . Biofilm formation by gut microbiota can influence host response to microbial dysbiosis ( 71 ).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0045-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error