No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungal Recognition and Host Defense Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: I. M. Dambuza1, S. M. Levitz2, M. G. Netea3, G. D. Brown4
  • Editor: Joseph Heitman5
    Affiliations: 1: MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom; 2: Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; 3: Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; 4: MRC Centre for Medical Mycology, Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom; 5: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016
  • Received 06 March 2016 Accepted 15 May 2017 Published 28 July 2017
  • G. D. Brown, gordon.brown@abdn.ac.uk
image of Fungal Recognition and Host Defense Mechanisms
    Preview this microbiology spectrum article:
    Zoom in

    Fungal Recognition and Host Defense Mechanisms, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0050-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0050-2016-2.gif
  • Abstract:

    Fungi have emerged as premier opportunistic microbes of the 21st century, having a considerable impact on human morbidity and mortality. The huge increase in incidence of these diseases is largely due to the HIV pandemic and use of immunosuppressive therapies, underscoring the importance of the immune system in defense against fungi. This article will address how the mammalian immune system recognizes and mounts a defense against medically relevant fungal species.

  • Citation: Dambuza I, Levitz S, Netea M, Brown G. 2017. Fungal Recognition and Host Defense Mechanisms. Microbiol Spectrum 5(4):FUNK-0050-2016. doi:10.1128/microbiolspec.FUNK-0050-2016.

Key Concept Ranking

Immune Systems
Innate Immune System
Adaptive Immune System
Fungal Infections
T Helper Cells
Transforming Growth Factor beta


1. Burnet FM. 1959. The Clonal Selection Theory of Acquired Immunity. Vanderbilt University Press, Nashville, TN. http://dx.doi.org/10.5962/bhl.title.8281 [PubMed]
2. Billingham RE, Brent L, Medawar PB. 1953. Actively acquired tolerance of foreign cells. Nature 172:603–606 http://dx.doi.org/10.1038/172603a0.
3. Bretscher PA, Cohn M. 1970. A theory of self-nonself discrimination. Science 169:1042–1049.
4. Lafferty KJ, Cunningham AJ. 1975. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 53:27–42 http://dx.doi.org/10.1038/icb.1975.3. [PubMed]
5. Lafferty KJ, Warren HS, Woolnough JA, Talmage DW. 1978. Immunological induction of T lymphocytes: role of antigen and the lymphocyte costimulator. Blood Cells 4:395–406. [PubMed]
6. Jenkins MK, Schwartz RH. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302–319 http://dx.doi.org/10.1084/jem.165.2.302.
7. Janeway CA Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13 http://dx.doi.org/10.1101/SQB.1989.054.01.003.
8. Matzinger P. 1994. Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045 http://dx.doi.org/10.1146/annurev.iy.12.040194.005015. [PubMed]
9. Brown GD. 2010. How fungi have shaped our understanding of mammalian immunology. Cell Host Microbe 7:9–11 http://dx.doi.org/10.1016/j.chom.2009.12.005.
10. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13 http://dx.doi.org/10.1126/scitranslmed.3004404.
11. Latgé JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290 http://dx.doi.org/10.1111/j.1365-2958.2007.05872.x.
12. Erwig LP, Gow NA. 2016. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176 http://dx.doi.org/10.1038/nrmicro.2015.21. [PubMed]
13. Latgé JP. 2010. Tasting the fungal cell wall. Cell Microbiol 12:863–872 http://dx.doi.org/10.1111/j.1462-5822.2010.01474.x.
14. Levitz SM. 2010. Innate recognition of fungal cell walls. PLoS Pathog 6:e1000758 http://dx.doi.org/10.1371/journal.ppat.1000758.
15. Sen R, Baltimore D. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716 http://dx.doi.org/10.1016/0092-8674(86)90346-6.
16. Nüsslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C. 1980. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283:474–476 http://dx.doi.org/10.1038/283474a0.
17. Anderson KV, Bokla L, Nüsslein-Volhard C. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798 http://dx.doi.org/10.1016/0092-8674(85)90275-2.
18. Reichhart JM, Georgel P, Meister M, Lemaitre B, Kappler C, Hoffmann JA. 1993. Expression and nuclear translocation of the rel/NF-kappa B-related morphogen dorsal during the immune response of Drosophila. C R Acad Sci III 316:1218–1224. [PubMed]
19. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983 http://dx.doi.org/10.1016/S0092-8674(00)80172-5.
20. Medzhitov R, Janeway CA Jr. 1997. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9 http://dx.doi.org/10.1016/S0952-7915(97)80152-5.
21. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088 http://dx.doi.org/10.1126/science.282.5396.2085.
22. Kawai T, Akira S. 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337 http://dx.doi.org/10.1093/intimm/dxp017.
23. Gay NJ, Packman LC, Weldon MA, Barna JC. 1991. A leucine-rich repeat peptide derived from the Drosophila Toll receptor forms extended filaments with a beta-sheet structure. FEBS Lett 291:87–91 http://dx.doi.org/10.1016/0014-5793(91)81110-T.
24. O’Neill LA, Bowie AG. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364 http://dx.doi.org/10.1038/nri2079. [PubMed]
25. Takeda K, Akira S. 2004. TLR signaling pathways. Semin Immunol 16:3–9 http://dx.doi.org/10.1016/j.smim.2003.10.003.
26. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150 http://dx.doi.org/10.1016/S1074-7613(00)80596-8.
27. Li X, Qin J. 2005. Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med (Berl) 83:258–266 http://dx.doi.org/10.1007/s00109-004-0622-4. [PubMed]
28. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU. 2007. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA 104:18660–18665 http://dx.doi.org/10.1073/pnas.0705939104.
29. von Bernuth H, Picard C, Puel A, Casanova J-L. 2012. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans. Eur J Immunol 42:3126–3135 http://dx.doi.org/10.1002/eji.201242683. [PubMed]
30. Van der Graaf CA, Netea MG, Morré SA, Den Heijer M, Verweij PE, Van der Meer JW, Kullberg BJ. 2006. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17:29–34. [PubMed]
31. Bochud P-Y, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, Rodrigues SD, Li S, Hansen JA, Zhao LP, Aderem A, Boeckh M. 2008. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359:1766–1777 http://dx.doi.org/10.1056/NEJMoa0802629. [PubMed]
32. Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. 2008. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 197:618–621 http://dx.doi.org/10.1086/526500. [PubMed]
33. Nahum A, Dadi H, Bates A, Roifman CM. 2012. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. Autoimmun Rev 11:341–347 http://dx.doi.org/10.1016/j.autrev.2011.10.007.
34. Motta V, Soares F, Sun T, Philpott DJ. 2015. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 95:149–178 http://dx.doi.org/10.1152/physrev.00009.2014.
35. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. 2004. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325 http://dx.doi.org/10.1016/S1074-7613(04)00046-9.
36. van de Veerdonk FL, Kullberg BJ, van der Meer JWM, Gow NAR, Netea MG. 2008. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312 http://dx.doi.org/10.1016/j.mib.2008.06.002.
37. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436 http://dx.doi.org/10.1038/nature07965. [PubMed]
38. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497 http://dx.doi.org/10.1016/j.chom.2009.05.002.
39. Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS. 2009. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol 200:303.e1-6. doi:10.1016/j.ajog.2008.10.039.
40. Saïd-Sadier N, Padilla E, Langsley G, Ojcius DM. 2010. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5:e10008 http://dx.doi.org/10.1371/journal.pone.0010008.
41. Tavares AH, Magalhães KG, Almeida RD, Correa R, Burgel PH, Bocca AL. 2013. NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 7:e2595 http://dx.doi.org/10.1371/journal.pntd.0002595.
42. Kistowska M, Fenini G, Jankovic D, Feldmeyer L, Kerl K, Bosshard P, Contassot E, French LE. 2014. Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signalling. Exp Dermatol 23:884–889 http://dx.doi.org/10.1111/exd.12552.
43. Guo C, Chen M, Fa Z, Lu A, Fang W, Sun B, Chen C, Liao W, Meng G. 2014. Acapsular Cryptococcus neoformans activates the NLRP3 inflammasome. Microbes Infect 16:845–854 http://dx.doi.org/10.1016/j.micinf.2014.08.013.
44. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858 http://dx.doi.org/10.4049/jimmunol.175.5.2851.
45. Cui S, Eisenächer K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP. 2008. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29:169–179 http://dx.doi.org/10.1016/j.molcel.2007.10.032.
46. Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M Jr, Inagaki F, Fujita T. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428–440 http://dx.doi.org/10.1016/j.molcel.2007.11.028. [PubMed]
47. Jaeger M, van der Lee R, Cheng SC, Johnson MD, Kumar V, Ng A, Plantinga TS, Smeekens SP, Oosting M, Wang X, Barchet W, Fitzgerald K, Joosten LA, Perfect JR, Wijmenga C, van de Veerdonk FL, Huynen MA, Xavier RJ, Kullberg BJ, Netea MG. 2015. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis 34:963–974 http://dx.doi.org/10.1007/s10096-014-2309-2.
48. del Fresno C, Soulat D, Roth S, Blazek K, Udalova I, Sancho D, Ruland J, Ardavín C. 2013. Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38:1176–1186 http://dx.doi.org/10.1016/j.immuni.2013.05.010. [PubMed]
49. Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG. 2013. Genetic susceptibility to Candida infections. EMBO Mol Med 5:805–813 http://dx.doi.org/10.1002/emmm.201201678.
50. Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Müller M, Kuchler K. 2011. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. J Immunol 186:3104–3112 http://dx.doi.org/10.4049/jimmunol.1002599.
51. Zelensky AN, Gready JE. 2005. The C-type lectin-like domain superfamily. FEBS J 272:6179–6217 http://dx.doi.org/10.1111/j.1742-4658.2005.05031.x.
52. Drickamer K, Fadden AJ. 2002. Genomic analysis of C-type lectins. Biochem Soc Symp 69:59–72 http://dx.doi.org/10.1042/bss0690059. [PubMed]
53. Brown GD, Gordon S. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413:36–37 http://dx.doi.org/10.1038/35092620. [PubMed]
54. Sancho D, Reis e Sousa C. 2012. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529 http://dx.doi.org/10.1146/annurev-immunol-031210-101352. [PubMed]
55. Dambuza IM, Brown GD. 2015. C-type lectins in immunity: recent developments. Curr Opin Immunol 32:21–27 http://dx.doi.org/10.1016/j.coi.2014.12.002.
56. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SC, Geijtenbeek TB. 2009. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10:203–213 http://dx.doi.org/10.1038/ni.1692.
57. Hardison SE, Brown GD. 2012. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822 http://dx.doi.org/10.1038/ni.2369.
58. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589 http://dx.doi.org/10.1038/sj.cdd.4402195.
59. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. 2009. Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343 http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004.
60. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, Geijtenbeek TB. 2012. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254 http://dx.doi.org/10.1038/ni.2222.
61. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C. 2007. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638 http://dx.doi.org/10.1038/ni1460.
62. Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N, Kinjo T, Nakamura K, Kawakami K, Iwakura Y. 2007. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8:39–46 http://dx.doi.org/10.1038/ni1425.
63. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD. 2007. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38 http://dx.doi.org/10.1038/ni1408.
64. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, Faro-Trindade I, Brown GD, Steele C. 2009. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 182:4938–4946 http://dx.doi.org/10.4049/jimmunol.0804250.
65. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morré SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG. 2009. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767 http://dx.doi.org/10.1056/NEJMoa0901053.
66. Kerscher B, Willment JA, Brown GD. 2013. The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 25:271–277 http://dx.doi.org/10.1093/intimm/dxt006.
67. Plato A, Hardison SE, Brown GD. 2015. Pattern recognition receptors in antifungal immunity. Semin Immunopathol 37:97–106 http://dx.doi.org/10.1007/s00281-014-0462-4.
68. Barreto-Bergter E, Figueiredo RT. 2014. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 4:145 http://dx.doi.org/10.3389/fcimb.2014.00145.
69. Wüthrich M, Deepe GS Jr, Klein B. 2012. Adaptive immunity to fungi. Annu Rev Immunol 30:115–148 http://dx.doi.org/10.1146/annurev-immunol-020711-074958.
70. Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T, Yamasaki S. 2013. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13:477–488 http://dx.doi.org/10.1016/j.chom.2013.03.008.
71. Goodridge HS, Wolf AJ, Underhill DM. 2009. Beta-glucan recognition by the innate immune system. Immunol Rev 230:38–50 http://dx.doi.org/10.1111/j.1600-065X.2009.00793.x.
72. Taylor PR, Roy S, Leal SM Jr, Sun Y, Howell SJ, Cobb BA, Li X, Pearlman E. 2014. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol 15:143–151 http://dx.doi.org/10.1038/ni.2797. [PubMed]
73. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD, Moita LF, Taylor PR, Reis e Sousa C. 2009. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051 http://dx.doi.org/10.1084/jem.20082818.
74. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung SH, Komatsu R, Miura N, Adachi Y, Ohno N, Shibuya K, Yamamoto N, Kawakami K, Yamasaki S, Saito T, Akira S, Iwakura Y. 2010. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691 http://dx.doi.org/10.1016/j.immuni.2010.05.001.
75. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888 http://dx.doi.org/10.1084/jem.20091750.
76. Wevers BA, Kaptein TM, Zijlstra-Willems EM, Theelen B, Boekhout T, Geijtenbeek TB, Gringhuis SI. 2014. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15:494–505 http://dx.doi.org/10.1016/j.chom.2014.03.008.
77. Cambi A, Netea MG, Mora-Montes HM, Gow NA, Hato SV, Lowman DW, Kullberg BJ, Torensma R, Williams DL, Figdor CG. 2008. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem 283:20590–20599 http://dx.doi.org/10.1074/jbc.M709334200.
78. Tacken PJ, Ginter W, Berod L, Cruz LJ, Joosten B, Sparwasser T, Figdor CG, Cambi A. 2011. Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood 118:4111–4119 http://dx.doi.org/10.1182/blood-2011-04-346957.
79. Dan JM, Kelly RM, Lee CK, Levitz SM. 2008. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect Immun 76:2362–2367 http://dx.doi.org/10.1128/IAI.00095-08.
80. Lee SJ, Zheng NY, Clavijo M, Nussenzweig MC. 2003. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71:437–445 http://dx.doi.org/10.1128/IAI.71.1.437-445.2003.
81. Glocker EO, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschläger N, Gross O, Ruland J, Grimbacher B. 2009. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–1735 http://dx.doi.org/10.1056/NEJMoa0810719.
82. Alves de Medeiros AK, Lodewick E, Bogaert DJ, Haerynck F, Van Daele S, Lambrecht B, Bosma S, Vanderdonckt L, Lortholary O, Migaud M, Casanova JL, Puel A, Lanternier F, Lambert J, Brochez L, Dullaers M. 2016. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol 36:204–209 http://dx.doi.org/10.1007/s10875-016-0255-8. (Erratum, 36:528. doi:10.1007/s10875-016-0283-4.)
83. Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, Héritier S, Chomton M, Frémond ML, Gonzales E, Galeotti C, Romana S, Jacquemin E, Angoulvant A, Bidault V, Canioni D, Lachenaud J, Mansouri D, Mahdaviani SA, Adimi P, Mansouri N, Jamshidi M, Bougnoux ME, Abel L, Lortholary O, Blanche S, Casanova JL, Picard C, Puel A. 2015. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis 211:1241–1250 http://dx.doi.org/10.1093/infdis/jiu412.
84. Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, Alirezaie N, Majewski J, Sheppard DC, Behr MA, Foulkes WD, Vinh DC. 2014. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis 59:81–84 http://dx.doi.org/10.1093/cid/ciu215.
85. Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, Fink DL, Hsu AP, Zhai B, Karauzum H, Mikelis CM, Rose SR, Ferre EM, Yockey L, Lemberg K, Kuehn HS, Rosenzweig SD, Lin X, Chittiboina P, Datta SK, Belhorn TH, Weimer ET, Hernandez ML, Hohl TM, Kuhns DB, Lionakis MS. 2015. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog 11:e1005293 http://dx.doi.org/10.1371/journal.ppat.1005293.
86. Liévin-Le Moal V, Servin AL. 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19:315–337 http://dx.doi.org/10.1128/CMR.19.2.315-337.2006.
87. Frenkel ES, Ribbeck K. 2015. Salivary mucins in host defense and disease prevention. J Oral Microbiol 7:29759 http://dx.doi.org/10.3402/jom.v7.29759. [PubMed]
88. Underhill DM, Iliev ID. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416 http://dx.doi.org/10.1038/nri3684.
89. Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S. 2008. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841 http://dx.doi.org/10.1080/00365520801935434.
90. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM. 2012. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317 http://dx.doi.org/10.1126/science.1221789.
91. Moyes DL, Naglik JR. 2012. The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552 http://dx.doi.org/10.1016/j.chom.2012.05.009.
92. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. 2008. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71 http://dx.doi.org/10.1038/nature06880. [PubMed]
93. Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S, Ohno N, Iwakura Y. 2015. Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18:183–197 http://dx.doi.org/10.1016/j.chom.2015.07.003.
94. Lamas B, Richard ML, Leducq V, Pham H-P, Michel M-L, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L, Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F, Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay J-M, Langella P, Xavier RJ, Sokol H. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22:598–605 http://dx.doi.org/10.1038/nm.4102.
95. Brown GD. 2011. Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29:1–21 http://dx.doi.org/10.1146/annurev-immunol-030409-101229.
96. Lionakis MS, Swamydas M, Fischer BG, Plantinga TS, Johnson MD, Jaeger M, Green NM, Masedunskas A, Weigert R, Mikelis C, Wan W, Lee CC, Lim JK, Rivollier A, Yang JC, Laird GM, Wheeler RT, Alexander BD, Perfect JR, Gao JL, Kullberg BJ, Netea MG, Murphy PM. 2013. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123:5035–5051 http://dx.doi.org/10.1172/JCI71307.
97. Steele C, Marrero L, Swain S, Harmsen AG, Zheng M, Brown GD, Gordon S, Shellito JE, Kolls JK. 2003. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 198:1677–1688 http://dx.doi.org/10.1084/jem.20030932.
98. Philippe B, Ibrahim-Granet O, Prévost MC, Gougerot-Pocidalo MA, Sanchez Perez M, Van der Meeren A, Latgé JP. 2003. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71:3034–3042 http://dx.doi.org/10.1128/IAI.71.6.3034-3042.2003.
99. Quintin J, Saeed S, Martens JH, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, Jacobs L, Jansen T, Kullberg BJ, Wijmenga C, Joosten LA, Xavier RJ, van der Meer JW, Stunnenberg HG, Netea MG. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232 http://dx.doi.org/10.1016/j.chom.2012.06.006.
100. Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. 2014. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis 209:109–119 http://dx.doi.org/10.1093/infdis/jit413.
101. Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R, Du P, Rosenfeld J, Leiner I, Chen CC, Ron Y, Hohl TM, Rivera A. 2014. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog 10:e1003940 http://dx.doi.org/10.1371/journal.ppat.1003940.
102. Kullberg BJ, van ’t Wout JW, van Furth R. 1990. Role of granulocytes in increased host resistance to Candida albicans induced by recombinant interleukin-1. Infect Immun 58:3319–3324. [PubMed]
103. Horn DL, Ostrosky-Zeichner L, Morris MI, Ullmann AJ, Wu C, Buell DN, Kovanda LL, Cornely OA. 2010. Factors related to survival and treatment success in invasive candidiasis or candidemia: a pooled analysis of two large, prospective, micafungin trials. Eur J Clin Microbiol Infect Dis 29:223–229 http://dx.doi.org/10.1007/s10096-009-0843-0.
104. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489 http://dx.doi.org/10.1146/annurev-immunol-020711-074942.
105. McCormick A, Heesemann L, Wagener J, Marcos V, Hartl D, Loeffler J, Heesemann J, Ebel F. 2010. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect 12:928–936 http://dx.doi.org/10.1016/j.micinf.2010.06.009.
106. Menegazzi R, Decleva E, Dri P. 2012. Killing by neutrophil extracellular traps: fact or folklore? Blood 119:1214–1216 http://dx.doi.org/10.1182/blood-2011-07-364604.
107. Kobayashi Y. 2015. Neutrophil biology: an update. EXCLI J 14:220–227. [PubMed]
108. Brinkmann V, Zychlinsky A. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198:773–783 http://dx.doi.org/10.1083/jcb.201203170. [PubMed]
109. Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959 http://dx.doi.org/10.1182/blood.V97.12.3951.
110. Kahlenberg JM, Kaplan MJ. 2013. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol 191:4895–4901 http://dx.doi.org/10.4049/jimmunol.1302005.
111. Zhang X, Oglęcka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A. 2010. Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta 1798:2201–2208 http://dx.doi.org/10.1016/j.bbamem.2009.12.011.
112. Tsai PW, Yang CY, Chang HT, Lan CY. 2011. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One 6:e17755 http://dx.doi.org/10.1371/journal.pone.0017755.
113. Alalwani SM, Sierigk J, Herr C, Pinkenburg O, Gallo R, Vogelmeier C, Bals R. 2010. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur J Immunol 40:1118–1126 http://dx.doi.org/10.1002/eji.200939275. [PubMed]
114. Dürr UHN, Sudheendra US, Ramamoorthy A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425 http://dx.doi.org/10.1016/j.bbamem.2006.03.030.
115. Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162 http://dx.doi.org/10.1084/jem.137.5.1142.
116. Pasare C, Medzhitov R. 2004. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21:733–741 http://dx.doi.org/10.1016/j.immuni.2004.10.006.
117. Manicassamy S, Pulendran B. 2009. Modulation of adaptive immunity with Toll-like receptors. Semin Immunol 21:185–193 http://dx.doi.org/10.1016/j.smim.2009.05.005. [PubMed]
118. Vignali DA, Kuchroo VK. 2012. IL-12 family cytokines: immunological playmakers. Nat Immunol 13:722–728 http://dx.doi.org/10.1038/ni.2366.
119. Shuai K, Liu B. 2003. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3:900–911 http://dx.doi.org/10.1038/nri1226. [PubMed]
120. Schulz O, Edwards AD, Schito M, Aliberti J, Manickasingham S, Sher A, Reis e Sousa C. 2000. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13:453–462 http://dx.doi.org/10.1016/S1074-7613(00)00045-5.
121. Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A, Yoshida H. 2003. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170:4886–4890 http://dx.doi.org/10.4049/jimmunol.170.10.4886. [PubMed]
122. Beaman L. 1987. Fungicidal activation of murine macrophages by recombinant gamma interferon. Infect Immun 55:2951–2955. [PubMed]
123. Brummer E, Stevens DA. 1995. Antifungal mechanisms of activated murine bronchoalveolar or peritoneal macrophages for Histoplasma capsulatum. Clin Exp Immunol 102:65–70 http://dx.doi.org/10.1111/j.1365-2249.1995.tb06637.x.
124. Novak ML, Koh TJ. 2013. Macrophage phenotypes during tissue repair. J Leukoc Biol 93:875–881 http://dx.doi.org/10.1189/jlb.1012512.
125. Verma A, Wüthrich M, Deepe G, Klein B. 2014. Adaptive immunity to fungi. Cold Spring Harb Perspect Med 5:a019612 http://dx.doi.org/10.1101/cshperspect.a019612. [PubMed]
126. Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS Jr. 2013. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39:697–710 http://dx.doi.org/10.1016/j.immuni.2013.09.006.
127. Laan M, Prause O, Miyamoto M, Sjöstrand M, Hytönen AM, Kaneko T, Lötvall J, Lindén A. 2003. A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-alpha. Eur Respir J 21:387–393 http://dx.doi.org/10.1183/09031936.03.00303503. [PubMed]
128. Zhang L, Yuan S, Cheng G, Guo B. 2011. Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One 6:e28432 http://dx.doi.org/10.1371/journal.pone.0028432. [PubMed]
129. Liu L, et al. 2011. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648 http://dx.doi.org/10.1084/jem.20110958.
130. Stockinger B, Veldhoen M. 2007. Differentiation and function of Th17 T cells. Curr Opin Immunol 19:281–286 http://dx.doi.org/10.1016/j.coi.2007.04.005. [PubMed]
131. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279 http://dx.doi.org/10.1084/jem.20061308.
132. Gaffen SL, Hernández-Santos N, Peterson AC. 2011. IL-17 signaling in host defense against Candida albicans. Immunol Res 50:181–187 http://dx.doi.org/10.1007/s12026-011-8226-x.
133. Conti HR, Gaffen SL. 2010. Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect 12:518–527 http://dx.doi.org/10.1016/j.micinf.2010.03.013.
134. De Luca A, Zelante T, D’Angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L. 2010. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3:361–373 http://dx.doi.org/10.1038/mi.2010.22.
135. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schäffer AA, Puck JM, Grimbacher B. 2007. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619 http://dx.doi.org/10.1056/NEJMoa073687.
136. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, Gumbleton M, Toulon A, Bodemer C, El-Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M, Wolfman NM, Al-Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68 http://dx.doi.org/10.1126/science.1200439.
137. Puel A, Cypowyj S, Maródi L, Abel L, Picard C, Casanova JL. 2012. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol 12:616–622 http://dx.doi.org/10.1097/ACI.0b013e328358cc0b.
138. Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, Ikinciogullari A, Dogu F, Belkadi A, Levy R, Migaud M, Boisson B, Bolze A, Itan Y, Goudin N, Cottineau J, Picard C, Abel L, Bustamante J, Casanova JL, Puel A. 2015. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med 212:619–631 http://dx.doi.org/10.1084/jem.20141065. [PubMed]
139. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, Olszewski MA. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4:e00264-13 http://dx.doi.org/10.1128/mBio.00264-13.
140. Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ. 2004. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718 http://dx.doi.org/10.4049/jimmunol.172.6.3712.
141. Moreira AP, Cavassani KA, Massafera Tristão FS, Campanelli AP, Martinez R, Rossi MA, Silva JS. 2008. CCR5-dependent regulatory T cell migration mediates fungal survival and severe immunosuppression. J Immunol 180:3049–3056 http://dx.doi.org/10.4049/jimmunol.180.5.3049.
142. Kekäläinen E, Tuovinen H, Joensuu J, Gylling M, Franssila R, Pöntynen N, Talvensaari K, Perheentupa J, Miettinen A, Arstila TP. 2007. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol 178:1208–1215 http://dx.doi.org/10.4049/jimmunol.178.2.1208.
143. Shoham S, Levitz SM. 2005. The immune response to fungal infections. Br J Haematol 129:569–582 http://dx.doi.org/10.1111/j.1365-2141.2005.05397.x.
144. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. 2013. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 190:521–525 http://dx.doi.org/10.4049/jimmunol.1202924.
145. Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. 2014. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 40:117–127 http://dx.doi.org/10.1016/j.immuni.2013.12.002.
146. Islam A, Li SS, Oykhman P, Timm-McCann M, Huston SM, Stack D, Xiang RF, Kelly MM, Mody CH. 2013. An acidic microenvironment increases NK cell killing of Cryptococcus neoformans and Cryptococcus gattii by enhancing perforin degranulation. PLoS Pathog 9:e1003439 http://dx.doi.org/10.1371/journal.ppat.1003439.
147. Specht CA, Lee CK, Huang H, Tipper DJ, Shen ZT, Lodge JK, Leszyk J, Ostroff GR, Levitz SM. 2015. Protection against experimental cryptococcosis following vaccination with glucan particles containing Cryptococcus alkaline extracts. MBio 6:e01905-15 http://dx.doi.org/10.1128/mBio.01905-15.
148. Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, Norelli F, Bellucci C, Polonelli L, Costantino P, Rappuoli R, Cassone A. 2005. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 202:597–606 http://dx.doi.org/10.1084/jem.20050749.
149. Wozniak KL, Young ML, Wormley FL Jr. 2011. Protective immunity against experimental pulmonary cryptococcosis in T cell-depleted mice. Clin Vaccine Immunol 18:717–723 http://dx.doi.org/10.1128/CVI.00036-11.
150. Perruccio K, Tosti A, Burchielli E, Topini F, Ruggeri L, Carotti A, Capanni M, Urbani E, Mancusi A, Aversa F, Martelli MF, Romani L, Velardi A. 2005. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood 106:4397–4406 http://dx.doi.org/10.1182/blood-2005-05-1775.
151. Sadelain M, Brentjens R, Rivière I. 2013. The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398 http://dx.doi.org/10.1158/2159-8290.CD-12-0548.
152. Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, Roszik J, Rabinovich B, Olivares S, Krishnamurthy J, Zhang L, Najjar AM, Huls MH, Lee DA, Champlin RE, Kontoyiannis DP, Cooper LJ. 2014. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci USA 111:10660–10665 http://dx.doi.org/10.1073/pnas.1312789111.
153. Averbuch D, Engelhard D, Pegoraro A, Cesaro S. 2016. Review on efficacy and complications of granulocyte transfusions in neutropenic patients. Curr Drug Targets. [Epub ahead of print.] http://dx.doi.org/10.2174/1389450117666160201113612. [PubMed]
154. de Sousa MG, Belda W Jr, Spina R, Lota PR, Valente NS, Brown GD, Criado PR, Benard G. 2014. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin Infect Dis 58:1734–1737 http://dx.doi.org/10.1093/cid/ciu168. [PubMed]

Citations loading...


Article metrics loading...



Fungi have emerged as premier opportunistic microbes of the 21st century, having a considerable impact on human morbidity and mortality. The huge increase in incidence of these diseases is largely due to the HIV pandemic and use of immunosuppressive therapies, underscoring the importance of the immune system in defense against fungi. This article will address how the mammalian immune system recognizes and mounts a defense against medically relevant fungal species.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

More than half a century of immunogical theories.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Signaling pathways involved in antifungal immunity.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

PRRs and the fungal components they recognize. (Adapted with modifications from reference 12 ).

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Schematic representation of the sequential inflammatory immune reaction involved in antifungal immune responses.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Selected human genetic associations with fungal susceptibility discussed in this article

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0050-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error