1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungal Diversity Revisited: 2.2 to 3.8 Million Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: David L. Hawksworth1, Robert Lücking2
  • Editors: Joseph Heitman3, Timothy Y. James4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom, and Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; 2: Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany; 3: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 4: Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
  • Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0052-2016
  • Received 24 May 2017 Accepted 01 June 2017 Published 28 July 2017
  • Robert Lücking, r.luecking@bgbm.org
image of Fungal Diversity Revisited: 2.2 to 3.8 Million Species
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Fungal Diversity Revisited: 2.2 to 3.8 Million Species, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0052-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/4/FUNK-0052-2016-2.gif
  • Abstract:

    The question of how many species of there are has occasioned much speculation, with figures mostly posited from around half a million to 10 million, and in one extreme case even a sizable portion of the spectacular number of 1 trillion. Here we examine new evidence from various sources to derive an updated estimate of global fungal diversity. The rates and patterns in the description of new species from the 1750s show no sign of approaching an asymptote and even accelerated in the 2010s after the advent of molecular approaches to species delimitation. Species recognition studies of (semi-)cryptic species hidden in morpho-species complexes suggest a weighted average ratio of about an order of magnitude for the number of species recognized after and before such studies. New evidence also comes from extrapolations of plant:fungus ratios, with information now being generated from environmental sequence studies, including comparisons of molecular and fieldwork data from the same sites. We further draw attention to undescribed species awaiting discovery in biodiversity hot spots in the tropics, little-explored habitats (such as lichen-inhabiting fungi), and material in collections awaiting study. We conclude that the commonly cited estimate of 1.5 million species is conservative and that the actual range is properly estimated at 2.2 to 3.8 million. With 120,000 currently accepted species, it appears that at best just 8%, and in the worst case scenario just 3%, are named so far. Improved estimates hinge particularly on reliable statistical and phylogenetic approaches to analyze the rapidly increasing amount of environmental sequence data.

  • Citation: Hawksworth D, Lücking R. 2017. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol Spectrum 5(4):FUNK-0052-2016. doi:10.1128/microbiolspec.FUNK-0052-2016.

Key Concept Ranking

Aspergillus flavus
0.5194805
Fusarium graminearum
0.5194805
Aspergillus flavus
0.5194805
Fusarium graminearum
0.5194805
Aspergillus flavus
0.5194805
Fusarium graminearum
0.5194805
0.5194805

References

1. Locey KJ, Lennon JT. 2016. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA 113:5970–5975 http://dx.doi.org/10.1073/pnas.1521291113. [PubMed]
2. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 2011. How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127 http://dx.doi.org/10.1371/journal.pbio.1001127. [PubMed]
3. Hawksworth DL. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655 http://dx.doi.org/10.1016/S0953-7562(09)80810-1.
4. Hawksworth DL. 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432 http://dx.doi.org/10.1017/S0953756201004725.
5. Erwin TL. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75.
6. Lücking R, Dal-Forno M, Sikaroodi M, Gillevet PM, Bungartz F, Moncada B, Yánez-Ayabaca A, Chaves JL, Coca LF, Lawrey JD. 2014. A single macrolichen constitutes hundreds of unrecognized species. Proc Natl Acad Sci USA 111:11091–11096 http://dx.doi.org/10.1073/pnas.1403517111.
7. Lücking R, Johnston MK, Aptroot A, Kraichak E, Lendemer JC, Boonpragob K, Cáceres MES, Ertz D, Ferraro LI, Jia ZF, Kalb K, Mangold A, Manoch L, Mercado-Díaz JA, Moncada B, Mongkolsuk P, Papong K, Parnmen S, Peláez RN, Poengsungnoen V, Rivas Plata E, Saipunkaew W, Sipman HJM, Sutjaritturakan J, Van den Broeck D, Von Konrat M, Weerakoon G, Lumbsch HT. 2014. One hundred and seventy five new species of Graphidaceae: closing the gap or a drop in the bucket? Phytotaxa 189:7–38 http://dx.doi.org/10.11646/phytotaxa.189.1.4.
8. Aptroot A, Cáceres MES, Johnston MK, Lücking R. 2016. How diverse is the lichenized fungal family Trypetheliaceae (Ascomycota: Dothideomycetes): a quantitative prediction of global species richness. Lichenologist 48:983–1011 http://dx.doi.org/10.1017/S0024282916000463.
9. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550 http://dx.doi.org/10.1128/AEM.71.9.5544-5550.2005.
10. Blackwell M. 2011. The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438 http://dx.doi.org/10.3732/ajb.1000298.
11. Hawksworth DL. 1992. The need for a more effective biological nomenclature for the 21st century. Bot J Linn Soc 109:543–567 http://dx.doi.org/10.1111/j.1095-8339.1992.tb01450.x.
12. Costello MJ, Wilson SP. 2011. Predicting the number of known and unknown species in European seas using rates of description. Glob Ecol Biogeogr 20:319–330 http://dx.doi.org/10.1111/j.1466-8238.2010.00603.x.
13. Richards RA. 2010. The Species Problem: a Philosophical Analysis. Cambridge University Press, Cambridge, United Kingdom. http://dx.doi.org/10.1017/CBO9780511762222
14. Kunz W. 2012. Do Species Exist? Principles of Taxonomic Classification. Wiley-Blackwell, Weinheim, Germany. http://dx.doi.org/10.1002/9783527664283
15. Hawksworth DL. 1996. Microbial collections as a tool in biodiversity and biosystematic research, p 26–35. In Samson RA, Stalpers JA, van de Mei D, Stouthamer AH (ed), Culture Collections to Improve the Quality of Life. Proceedings of the Eighth International Congress. Centraalbureau voor Schimmelcultures and World Federation for Culture Collections, Baarn, The Netherlands.
16. Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW. 2014. Introducing the consolidated species concept to resolve species in the Teratosphaericaeae. Persoonia 33:1–40 http://dx.doi.org/10.3767/003158514X681981.
17. Leavitt SD, Divakar PK, Crespo A, Lumbsch HT. 2016. A matter of time: understanding the limits of the power of molecular data for delimiting species boundaries. Herzogia 29:479–492 http://dx.doi.org/10.13158/heia.29.2.2016.479.
18. Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed. CAB International, Wallingford, United Kingdom.
19. Schoch CL, et al, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246 http://dx.doi.org/10.1073/pnas.1117018109.
20. Geml J, Laursen GA, O’Neill K, Nusbaum HC, Taylor DL. 2006. Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria). Mol Ecol 15:225–239 http://dx.doi.org/10.1111/j.1365-294X.2005.02799.x.
21. Buyck B, Hofstetter V. 2011. The contribution of tef-1 sequences to species delimitation in the Cantharellus cibarius complex in the southeastern USA. Fung Div 49:35–46 http://dx.doi.org/10.1007/s13225-011-0095-z.
22. Lücking R, et al. 2016. Turbo-taxonomy to assemble a megadiverse lichen genus: seventy new species of Cora (Basidiomycota: Agaricales: Hygrophoraceae), honouring David Leslie Hawksworth’s seventieth birthday. Fungal Diversity 81:1–69. doi:10.1007/s13225-016-0374-9.
23. Singh G, Dal Grande F, Divakar PK, Otte J, Leavitt SD, Szczepanska K, Crespo A, Rico VJ, Aptroot A, Cáceres MES, Lumbsch HT, Schmitt I. 2015. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS One 10:e0124625 http://dx.doi.org/10.1371/journal.pone.0124625.
24. Mark K, Saag L, Leavitt SD, Will-Wolf S, Nelsen MP, Tõrra T, Saag A, Randlane T, Lumbsch HT. 2016. Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea, section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset. Organ Div Evol 16:497–524. http://dx.doi.org/10.1007/s13127-016-0273-7. (Erratum, doi:10.1007/s13127-016-0311-5.)
25. Nagy LG, Házi J, Vágvölgyi C, Papp T. 2012. Phylogeny and species delimitation in the genus Coprinellus with special emphasis on the haired species. Mycologia 104:254–275 http://dx.doi.org/10.3852/11-149.
26. Dal Forno M. 2015. Evolution and diversity of the Basidiolichen clade Dictyonema (Agaricales: Hygrophoraceae). PhD dissertation, College of Science, Environmental Science and Public Policy, George Mason University, Fairfax, VA.
27. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin H-D, Dugan FM, Schroers H-J, Braun U, Crous PW. 2010. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94 http://dx.doi.org/10.3114/sim.2010.67.01.
28. Moncada B, Lücking R, Suárez A. 2014. Molecular phylogeny of the genus Sticta (lichenized Ascomycota: Lobariaceae) in Colombia. Fung Div 64:205–231 http://dx.doi.org/10.1007/s13225-013-0230-0.
29. Le Gac M, Hood ME, Fournier E, Giraud T. 2007. Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61:15–26 http://dx.doi.org/10.1111/j.1558-5646.2007.00002.x.
30. O’Donnell K, Kistler HC, Tacke BK, Casper HH. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97:7905–7910 http://dx.doi.org/10.1073/pnas.130193297.
31. Menkis A, Urbina H, James TY, Rosling A. 2014. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biol 118:943–955 http://dx.doi.org/10.1016/j.funbio.2014.08.005.
32. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP. 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492 http://dx.doi.org/10.1126/science.aaf8287.
33. Lazarus KL, James TY. 2015. Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fungal Ecol 14:62–70 http://dx.doi.org/10.1016/j.funeco.2014.11.004.
34. Livermore JA, Mattes TE. 2013. Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environ Microbiol 15:2333–2341 http://dx.doi.org/10.1111/1462-2920.12106.
35. Roy BA, Vogler DR, Bruns TD, Szaro TM. 1998. Cryptic species in the Puccinia monoica complex. Mycologia 90:846–853 http://dx.doi.org/10.2307/3761326.
36. Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB. 2010. Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J Res 40:1288–1301 http://dx.doi.org/10.1139/X10-081.
37. Tedersoo L, et al. 2014. Global diversity and geography of soil fungi. Science 346:1256688 http://dx.doi.org/10.1126/science.1256688.
38. Piepenbring M, Hofmann TA, Unterseher M, Kost G. 2012. Species richness of plants and fungi in western Panama: towards a fungal inventory in the neotropics. Biodivers Conserv 21:2181–2193 http://dx.doi.org/10.1007/s10531-011-0213-y.
39. Royal Botanic Gardens Kew. 2017. State of the World’s Plants Report 2017. Royal Botanic Gardens Kew, London, United Kingdom.
40. Geml J, Nouhra ER, Wicaksono CY, Pastor N, Fernandez L, Becerra AG. 2012. Mycota of the Andean Yungas forests: assessments of fungal diversity and habitat partitioning in a threatened ecosystem. Inoculum 63:18.
41. Grantham NS, Reich BJ, Pacifici K, Laber EB, Menninger HL, Henley JB, Barberán A, Leff JW, Fierer N, Dunn RR. 2015. Fungi identify the geographic origin of dust samples. PLoS One 10:e0122605 http://dx.doi.org/10.1371/journal.pone.0122605. [PubMed]
42. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration. 2011. The sequence read archive. Nucleic Acids Res 39(Database):D19–D21 http://dx.doi.org/10.1093/nar/gkq1019.
43. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucleic Acids Res 41(D1):D36–D42 http://dx.doi.org/10.1093/nar/gks1195.
44. Nagy LG, Petkovits T, Kovács GM, Voigt K, Vágvölgyi C, Papp T. 2011. Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 191:789–794 http://dx.doi.org/10.1111/j.1469-8137.2011.03707.x.
45. Lücking R, Lawrey JD, Gillevet PM, Sikaroodi M, Dal-Forno M, Berger SA. 2014. Multiple ITS haplotypes in the genome of the lichenized basidiomycete Cora inversa (Hygrophoraceae): fact or artifact? J Mol Evol 78:148–162 http://dx.doi.org/10.1007/s00239-013-9603-y.
46. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461 http://dx.doi.org/10.1093/bioinformatics/btq461. [PubMed]
47. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH. 2011. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47 http://dx.doi.org/10.1016/j.fbr.2011.01.001.
48. Hibbett D. 2016. The invisible dimension of fungal diversity. Science 351:1150–1151 http://dx.doi.org/10.1126/science.aae0380.
49. de Beer ZW, Marincowitz S, Duong TA, Kim JJ, Rodrigues A, Wingfield MJ. 2016. Hawksworthiomyces gen. nov. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biol 120:1323–1340 http://dx.doi.org/10.1016/j.funbio.2016.07.004. [PubMed]
50. Hawksworth DL, Hibbett DS, Kirk PM, Lücking R. 2016. (308–310) Proposals to permit DNA sequence data to serve as types of names of fungi. Taxon 65:899–900 http://dx.doi.org/10.12705/654.31.
51. Lücking R, Moncada M. 2017. Dismantling Marchandiomphalina into Agonimia (Verrucariaceae) and Lawreymyces gen. nov. (Corticiaceae): setting a precedent to the formal recognition of thousands of voucherless fungi based on type sequences. Fung Div 84:119–138. doi:10.1007/s13225-017-0382-4
52. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY. 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879 http://dx.doi.org/10.1126/science.1206958.
53. Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY. 2017. Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5:42 http://dx.doi.org/10.1186/s40168-017-0259-5. [PubMed]
54. Scheffers BR, Joppa LN, Pimm SL, Laurance WF. 2012. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27:501–510 http://dx.doi.org/10.1016/j.tree.2012.05.008.
55. Henkel TW, Aime MC, Chin MML, Miller SL, Vilgalys R, Smith ME. 2012. Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodivers Conserv 21:2195–2220 http://dx.doi.org/10.1007/s10531-011-0166-1.
56. López-Quintero CA, Straatsma G, Franco-Molano AE, Boekhoet T. 2012. Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers Conserv 21:2221–2243 http://dx.doi.org/10.1007/s10531-012-0280-8.
57. Truong C, Mujic AB, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva PA, Fernández N, Escobar JM, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny PB, Smith ME. 2017. How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214:913–919 http://dx.doi.org/10.1111/nph.14509.
58. Hawksworth DL, Minter DW, Kinsey GC, Cannon PF. 1997. Inventorying a tropical fungal biota: intensive and extensive approaches, p 29–50. In Janardhanan KK, Rajendran C, Natarajan K, Hawksworth DL (ed), Tropical Mycology. Oxford & IBH Publishing, New Dehli, India.
59. Clauzade G, Roux C. 1976. Les Champignons Lichénicoles non Lichénisés. Univ. des Sciences et Techn. du Languedoc, Laboratoire de Systématique et Géobotanique Méditerranéenne, Inst. de Botanique, Montpellier, France.
60. Hawksworth DL. 2003. The lichenicolous fungi of Great Britain and Ireland: an overview and annotated checklist. Lichenologist 35:191–232 http://dx.doi.org/10.1016/S0024-2829(03)00027-6.
61. Etayo J, Sancho LG. 2008. Hongos Liquenicolas del Sur de Sudamerica, Especialmente de Isla Navarino (Chile). Bibliotheca Lichenologica series vol. 98. J. Cramer, Berlin, Germany.
62. Fleischhacker A, Grube M, Kopun T, Hafellner J, Muggia L. 2015. Community analyses uncover high diversity of lichenicolous fungi in alpine habitats. Microb Ecol 70:348–360 http://dx.doi.org/10.1007/s00248-015-0579-6.
63. Zhang T, Wei XL, Wei YZ, Liu HY, Yu LY. 2016. Diversity and distribution of cultured endolichenic fungi in the Ny-Ålesund region, Svalbard (high Arctic). Extremophiles 20:461–470 http://dx.doi.org/10.1007/s00792-016-0836-8.
64. Döbbeler P, Hertel H. 2013. Bryophilous ascomycetes everywhere: distribution maps of selected species on liverworts, mosses and Polytrichaceae. Herzogia 26:361–404 http://dx.doi.org/10.13158/heia.26.2.2013.361.
65. Davey ML, Kauserud H, Ohlson M. 2014. Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol Ecol 90:313–325 http://dx.doi.org/10.1111/1574-6941.12386.
66. Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T. 2016. Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecol 24:94–101 http://dx.doi.org/10.1016/j.funeco.2016.09.005.
67. Kohlmeyer J, Kohlmeyer E. 2013. Marine Mycology: The Higher Fungi. Academic Press, San Diego, CA.
68. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TM, Zani CL, Junior PA, Romanha AJ, Carvalho AG, Gil LH, Rosa CA, Minnis AM, Rosa LH. 2014. Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic peninsula. Microb Ecol 67:775–787 http://dx.doi.org/10.1007/s00248-014-0374-9.
69. Arnold AE. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66 http://dx.doi.org/10.1016/j.fbr.2007.05.003.
70. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol 182:314–330 http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x. [PubMed]
71. Higgins KL, Arnold AE, Coley PD, Kursar TA. 2014. Communities of fungal endophytes in tropical forest grasses: highly diverse host-and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11 http://dx.doi.org/10.1016/j.funeco.2013.12.005.
72. Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD. 2014. The sooty moulds. Fung Div 66:1–36 http://dx.doi.org/10.1007/s13225-014-0278-5.
73. Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G. 2010. Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185 http://dx.doi.org/10.5598/imafungus.2010.01.02.11. [PubMed]
74. Suh SO, McHugh JV, Pollock DD, Blackwell M. 2005. The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265 http://dx.doi.org/10.1017/S0953756205002388.
75. Lichtwardt RW. 2012. Trichomycete gut fungi from tropical regions of the world. Biodiv Conserv 21:2397–2402 http://dx.doi.org/10.1007/s10531-011-0146-5.
76. Gouba N, Raoult D, Drancourt M. 2013. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 8:e59474 http://dx.doi.org/10.1371/journal.pone.0059474.
77. Wang Y, Tretter ED, Johnson EM, Kandel P, Lichtwardt RW, Novak SJ, Smith JF, White MM. 2014. Using a five-gene phylogeny to test morphology-based hypotheses of Smittium and allies, endosymbiotic gut fungi (Harpellales) associated with arthropods. Mol Phylogenet Evol 79:23–41 http://dx.doi.org/10.1016/j.ympev.2014.05.008.
78. Weir A, Hammond PM. 1997. Laboulbeniales on beetles: host utilization patterns and species richness of the parasites. Biodiv Conserv 6:701–719 http://dx.doi.org/10.1023/A:1018318320019.
79. Weir A. 2004. The Laboulbeniales: an enigmatic group of arthropod-associated fungi. Symbiosis 4:611–620.
80. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS. 2009. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133, S7 http://dx.doi.org/10.3114/sim.2009.64.06.
81. Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkeley GJM, Stielow JB, Zucconi L, Selbmann L. 2014. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fung Div 65:127–165 http://dx.doi.org/10.1007/s13225-013-0277-y.
82. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421 http://dx.doi.org/10.1128/AEM.00653-09.
83. Hawksworth DL, Rossman AY. 1997. Where are all the undescribed fungi? Phytopathology 87:888–891 http://dx.doi.org/10.1094/PHYTO.1997.87.9.888.
84. Bebber DP, Carine MA, Wood JR, Wortley AH, Harris DJ, Prance GT, Davidse G, Paige J, Pennington TD, Robson NKB, Scotland RW. 2010. Herbaria are a major frontier for species discovery. Proc Natl Acad Sci USA 107:22169–22171 http://dx.doi.org/10.1073/pnas.1011841108.
85. Brock PM, Döring H, Bidartondo MI. 2009. How to know unknown fungi: the role of a herbarium. New Phytol 181:719–724 http://dx.doi.org/10.1111/j.1469-8137.2008.02703.x.
86. Larsson E, Jacobsson S. 2004. Controversy over Hygrophorus cossus settled using ITS sequence data from 200 year-old type material. Mycol Res 108:781–786 http://dx.doi.org/10.1017/S0953756204000310.
87. Begerow D, Nilsson H, Unterseher M, Maier W. 2010. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108 http://dx.doi.org/10.1007/s00253-010-2585-4.
88. Staats M, Cuenca A, Richardson JE, Vrielink-van Ginkel R, Petersen G, Seberg O, Bakker FT. 2011. DNA damage in plant herbarium tissue. PLoS One 6:e28448 http://dx.doi.org/10.1371/journal.pone.0028448.
89. Särkinen T, Staats M, Richardson JE, Cowan RS, Bakker FT. 2012. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PLoS One 7:e43808 http://dx.doi.org/10.1371/journal.pone.0043808. [PubMed]
90. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H. 2013. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224 http://dx.doi.org/10.1111/1755-0998.12065.
91. Crous PW, Giraldo A, Hawksworth DL, Robert V, Kirk PM, Guarro J, Robbertse B, Schoch CL, Damm U, Trakunyingcharoen T, Groenewald JZ. 2014. The genera of Fungi: fixing the application of type species of generic names. IMA Fungus 5:141–160 http://dx.doi.org/10.5598/imafungus.2014.05.01.14. [PubMed]
92. Ariyawansa HA, Hawksworth DL, Hyde KD, Jones EBG, Maharachchikumbura SSN, Manamgoda DS, Thambugala KM, Udayanga D, Camporesi E, Daranagama A, Jayawardena R, Liu J-K, McKenzie EHC, Phookamsak R, Senanayake IC, Shivas RG, Tian Q, Xu J-C. 2014. Epitypification and neotypification: guidelines with appropriate and inappropriate examples. Fung Div 69:57–91 http://dx.doi.org/10.1007/s13225-014-0315-4.
93. Bass D, Richards TA. 2011. Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biol Rev 25:159–164 http://dx.doi.org/10.1016/j.fbr.2011.10.003.
94. Schmit JP, Mueller GM. 2007. An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111 http://dx.doi.org/10.1007/s10531-006-9129-3.
95. Hammond PM. 1995. Described and estimated species numbers: an objective assessment of current knowledge, p 29–71. In Allsopp D, Colwell RR, Hawksworth DL (ed), Microbial Diversity and Ecosystem Function. CAB International, Wallingford, United Kingdom.
96. Chapman AD. 2009. Numbers of Living Species in Australia and the World, 2nd ed. Australian Biological Resources Survey, Canberra, ACT, Australia.
97. Joppa LN, Roberts DL, Pimm SL. 2011. How many species of flowering plants are there? Proc Biol Sci 278:554–559 http://dx.doi.org/10.1098/rspb.2010.1004. [PubMed]
98. May RM. 1994. Conceptual aspects of the quantification of the extent of biological diversity. Philos Trans R Soc Lond B Biol Sci 345:13–20 http://dx.doi.org/10.1098/rstb.1994.0082.
99. Hawksworth DL. 2012. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433 http://dx.doi.org/10.1007/s10531-012-0335-x.
100. Dal-Forno M, Lücking R, Bungartz F, Yánez-Ayabaca A, Marcelli MP, Spielmann AA, Coca LF, Chaves JL, Aptroot A, Sipman HJM, Sikaroodi M, Gillevet P, Lawrey JD. 2016. From one to six: unrecognized species diversity in the genus Acantholichen (lichenized Basidiomycota: Hygrophoraceae). Mycologia 108:38–55 http://dx.doi.org/10.3852/15-060.
101. Geiser DM, Pitt JI, Taylor JW. 1998. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA 95:388–393 http://dx.doi.org/10.1073/pnas.95.1.388.
102. Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899 http://dx.doi.org/10.1111/j.0014-3820.2005.tb01059.x.
103. Koufopanou V, Burt A, Szaro T, Taylor JW. 2001. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol Biol Evol 18:1246–1258 http://dx.doi.org/10.1093/oxfordjournals.molbev.a003910.
104. Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98. [PubMed]
105. Brown EM, McTaggart LR, Zhang SX, Low DE, Stevens DA, Richardson SE. 2013. Phylogenetic analysis reveals a cryptic species Blastomyces gilchristii, sp. nov. within the human pathogenic fungus Blastomyces dermatitidis. PLoS One 8:e59237 http://dx.doi.org/10.1371/journal.pone.0059237. (Erratum, 11:e0168018. doi:10.1371/journal.pone.0168018.)
106. Walker AS, Gautier AL, Confais J, Martinho D, Viaud M, Le Pêcheur P, Dupont J, Fournier E. 2011. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–1445 http://dx.doi.org/10.1094/PHYTO-04-11-0104.
107. Lombard L, Crous PW, Wingfield BD, Wingfield MJ. 2010. Multigene phylogeny and mating tests reveal three cryptic species related to Calonectria pauciramosa. Stud Mycol 66:15–30 http://dx.doi.org/10.3114/sim.2010.66.02.
108. Douhan GW, Rizzo DM. 2005. Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271 http://dx.doi.org/10.1111/j.1469-8137.2004.01305.x.
109. Kauserud H, Svegården IB, Decock C, Hallenberg N. 2007. Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota). Mol Ecol 16:389–399 http://dx.doi.org/10.1111/j.1365-294X.2006.03129.x.
110. Alamouti SM, Wang V, Diguistini S, Six DL, Bohlmann J, Hamelin RC, Feau N, Breuil C. 2011. Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Mol Ecol 20:2581–2602 http://dx.doi.org/10.1111/j.1365-294X.2011.05109.x.
111. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O. 2011. Cryptic speciation in Hymenoscyphus albidus. For Pathol 41:133–142 http://dx.doi.org/10.1111/j.1439-0329.2010.00645.x.
112. Alves A, Crous PW, Correia A, Phillips AJL. 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fung Div 28:1–13.
113. Kroken S, Taylor JW. 2001. A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53 http://dx.doi.org/10.2307/3761604.
114. Moncada B, Lücking R, Betancourt-Macuase L. 2013. Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella. Lichenologist 45:203–263 http://dx.doi.org/10.1017/S0024282912000825.
115. Bidochka MJ, Small CLN, Spironello M. 2005. Recombination within sympatric cryptic species of the insect pathogenic fungus Metarhizium anisopliae. Environ Microbiol 7:1361–1368 http://dx.doi.org/10.1111/j.1462-5822.2005.00823.x.
116. Pavlic D, Slippers B, Coutinho TA, Wingfield MJ. 2009. Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Mol Phylogenet Evol 51:259–268 http://dx.doi.org/10.1016/j.ympev.2008.12.017. [PubMed]
117. Roberto TN, Rodrigues AM, Hahn RC, de Camargo ZP. 2016. Identifying Paracoccidioides phylogenetic species by PCR-RFLP of the alpha-tubulin gene. Med Mycol 54:240–247 http://dx.doi.org/10.1093/mmy/myv083.
118. Divakar PK, Leavitt SD, Molina MC, Del-Prado R, Lumbsch HT, Crespo A. 2016. A DNA barcoding approach for identification of hidden diversity in Parmeliaceae (Ascomycota): Parmelia sensu stricto as a case study. Bot J Linn Soc 180:21–29 http://dx.doi.org/10.1111/boj.12358.
119. Molina MC, Del-Prado R, Divakar PK, Sánchez-Mata D, Crespo A. 2011. Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae). Organ Div Evol 11:331–342 http://dx.doi.org/10.1007/s13127-011-0060-4.
120. Del-Prado R, Divakar PK, Lumbsch HT, Crespo AM. 2016. Hidden genetic diversity in an asexually reproducing lichen forming fungal group. PLoS One 11:e0161031 http://dx.doi.org/10.1371/journal.pone.0161031.
121. Grünig CR, Duò A, Sieber TN, Holdenrieder O. 2008. Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.1.-Acephala applanata species complex. Mycologia 100:47–67 http://dx.doi.org/10.1080/15572536.2008.11832498.
122. Leavitt SD, Fankhauser JD, Leavitt DH, Porter LD, Johnson LA, St Clair LL. 2011. Complex patterns of speciation in cosmopolitan “rock posy” lichens: discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Mol Phylogenet Evol 59:587–602 http://dx.doi.org/10.1016/j.ympev.2011.03.020.
123. Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW. 2002. Cryptic species in Stachybotrys chartarum. Mycologia 94:814–822 http://dx.doi.org/10.1080/15572536.2003.11833175.
124. Sato H, Yumoto T, Murakami N. 2007. Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). Am J Bot 94:1630–1641 http://dx.doi.org/10.3732/ajb.94.10.1630.
125. Sato H, Murakami N. 2008. Reproductive isolation among cryptic species in the ectomycorrhizal genus Strobilomyces: population-level CAPS marker-based genetic analysis. Mol Phylogenet Evol 48:326–334 http://dx.doi.org/10.1016/j.ympev.2008.01.033.
126. Carriconde F, Gardes M, Jargeat P, Heilmann-Clausen J, Mouhamadou B, Gryta H. 2008. Population evidence of cryptic species and geographical structure in the cosmopolitan ectomycorrhizal fungus, Tricholoma scalpturatum. Microb Ecol 56:513–524 http://dx.doi.org/10.1007/s00248-008-9370-2.
microbiolspec.FUNK-0052-2016.citations
cm/5/4
content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0052-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.FUNK-0052-2016
2017-07-28
2017-09-25

Abstract:

The question of how many species of there are has occasioned much speculation, with figures mostly posited from around half a million to 10 million, and in one extreme case even a sizable portion of the spectacular number of 1 trillion. Here we examine new evidence from various sources to derive an updated estimate of global fungal diversity. The rates and patterns in the description of new species from the 1750s show no sign of approaching an asymptote and even accelerated in the 2010s after the advent of molecular approaches to species delimitation. Species recognition studies of (semi-)cryptic species hidden in morpho-species complexes suggest a weighted average ratio of about an order of magnitude for the number of species recognized after and before such studies. New evidence also comes from extrapolations of plant:fungus ratios, with information now being generated from environmental sequence studies, including comparisons of molecular and fieldwork data from the same sites. We further draw attention to undescribed species awaiting discovery in biodiversity hot spots in the tropics, little-explored habitats (such as lichen-inhabiting fungi), and material in collections awaiting study. We conclude that the commonly cited estimate of 1.5 million species is conservative and that the actual range is properly estimated at 2.2 to 3.8 million. With 120,000 currently accepted species, it appears that at best just 8%, and in the worst case scenario just 3%, are named so far. Improved estimates hinge particularly on reliable statistical and phylogenetic approaches to analyze the rapidly increasing amount of environmental sequence data.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Numbers of newly introduced species names of fungi for each decade from 1750 to 2010. Based on data from the Index Fungorum database provided by P. M. Kirk.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0052-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Numbers of newly introduced species names of fungi for each year from 1975 to 2015. Note that the data for 2015 were incomplete when this work went to press. Based on data from the Index Fungorum database provided by P. M. Kirk.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0052-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Growth in the total catalogued number of species names of fungi by decade from 1750 compared with the global number of accepted species. Based on figures adopted in the 10 editions of for 1943–2008 and data in the Index Fungorum and Species Fungorum (Catalogue of Life) databases provided by P. M. Kirk.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0052-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Selected species recognition studies in different groups of fungi

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.FUNK-0052-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error